Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Elife ; 72018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30109985

RESUMEN

Voltage-activated potassium (Kv) channels open to conduct K+ ions in response to membrane depolarization, and subsequently enter non-conducting states through distinct mechanisms of inactivation. X-ray structures of detergent-solubilized Kv channels appear to have captured an open state even though a non-conducting C-type inactivated state would predominate in membranes in the absence of a transmembrane voltage. However, structures for a voltage-activated ion channel in a lipid bilayer environment have not yet been reported. Here we report the structure of the Kv1.2-2.1 paddle chimera channel reconstituted into lipid nanodiscs using single-particle cryo-electron microscopy. At a resolution of ~3 Å for the cytosolic domain and ~4 Å for the transmembrane domain, the structure determined in nanodiscs is similar to the previously determined X-ray structure. Our findings show that large differences in structure between detergent and lipid bilayer environments are unlikely, and enable us to propose possible structural mechanisms for C-type inactivation.


Asunto(s)
Canal de Potasio Kv.1.2/ultraestructura , Membrana Dobles de Lípidos/química , Nanocompuestos/ultraestructura , Canales de Potasio Shab/ultraestructura , Animales , Microscopía por Crioelectrón , Cristalografía por Rayos X , Activación del Canal Iónico , Canal de Potasio Kv.1.2/química , Nanocompuestos/química , Potasio/química , Conformación Proteica , Ratas , Canales de Potasio Shab/química
2.
J Struct Biol ; 194(1): 49-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26835990

RESUMEN

This paper describes steps in the single-particle cryo-EM 3D structure determination of membrane proteins in their membrane environment. Using images of the Kv1.2 potassium-channel complex reconstituted into lipid vesicles, we describe procedures for the merging of focal-pairs of exposures and the removal of the vesicle-membrane signal from the micrographs. These steps allow 3D reconstruction to be performed from the protein particle images. We construct a 2D statistical model of the vesicle structure based on higher-order singular value decomposition (HOSVD), by taking into account the structural symmetries of the vesicles in polar coordinates. Non-roundness in the vesicle structure is handled with a non-linear shape alignment to a reference, which ensures a compact model representation. The results show that the learned model is an accurate representation of the imaged vesicle structures. Precise removal of the strong membrane signals allows better alignment and classification of images of small membrane-protein particles, and allows higher-resolution 3D reconstruction.


Asunto(s)
Algoritmos , Microscopía por Crioelectrón/métodos , Canal de Potasio Kv.1.2/ultraestructura , Proteínas de la Membrana/ultraestructura , Modelos Estadísticos , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Imagenología Tridimensional/métodos , Canal de Potasio Kv.1.2/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Análisis de Componente Principal , Ratas , Liposomas Unilamelares/metabolismo
3.
Sci Rep ; 4: 4201, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24569544

RESUMEN

Members of the six-transmembrane segment family of ion channels share a common structural design. However, there are sequence differences between the members that confer distinct biophysical properties on individual channels. Currently, we do not have 3D structures for all members of the family to help explain the molecular basis for the differences in their biophysical properties and pharmacology. This is due to low-level expression of many members in native or heterologous systems. One exception is rat Kv1.2 which has been overexpressed in Pichia pastoris and crystallised. Here, we tested chimaeras of rat Kv1.2 with the hERG channel for function in Xenopus oocytes and for overexpression in Pichia. Chimaera containing the S1-S6 transmembrane region of HERG showed functional and pharmacological properties similar to hERG and could be overexpressed and purified from Pichia. Our results demonstrate that rat Kv1.2 could serve as a surrogate to express difficult-to-overexpress members of the six-transmembrane segment channel family.


Asunto(s)
Canal de Potasio Kv.1.2/química , Canal de Potasio Kv.1.2/ultraestructura , Pichia/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular/métodos , Canal de Potasio Kv.1.2/fisiología , Conformación Molecular , Datos de Secuencia Molecular , Pichia/genética , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
4.
J Gen Physiol ; 131(6): 549-61, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18504314

RESUMEN

In voltage-gated K(+) channels (Kv), membrane depolarization promotes a structural reorganization of each of the four voltage sensor domains surrounding the conducting pore, inducing its opening. Although the crystal structure of Kv1.2 provided the first atomic resolution view of a eukaryotic Kv channel, several components of the voltage sensors remain poorly resolved. In particular, the position and orientation of the charged arginine side chains in the S4 transmembrane segments remain controversial. Here we investigate the proximity of S4 and the pore domain in functional Kv1.2 channels in a native membrane environment using electrophysiological analysis of intersubunit histidine metallic bridges formed between the first arginine of S4 (R294) and residues A351 or D352 of the pore domain. We show that histidine pairs are able to bind Zn(2+) or Cd(2+) with high affinity, demonstrating their close physical proximity. The results of molecular dynamics simulations, consistent with electrophysiological data, indicate that the position of the S4 helix in the functional open-activated state could be shifted by approximately 7-8 A and rotated counterclockwise by 37 degrees along its main axis relative to its position observed in the Kv1.2 x-ray structure. A structural model is provided for this conformation. The results further highlight the dynamic and flexible nature of the voltage sensor.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio Kv.1.2/química , Canal de Potasio Kv.1.2/ultraestructura , Dominios y Motivos de Interacción de Proteínas/fisiología , Alanina/química , Alanina/genética , Regulación Alostérica/fisiología , Secuencia de Aminoácidos , Animales , Arginina/química , Arginina/genética , Ácido Aspártico/química , Sitios de Unión/fisiología , Cadmio/química , Simulación por Computador , Transferencia de Energía/fisiología , Histidina/química , Histidina/genética , Activación del Canal Iónico/genética , Canal de Potasio Kv.1.2/genética , Potenciales de la Membrana/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oocitos , Técnicas de Placa-Clamp , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/genética , Estructura Secundaria de Proteína/fisiología , Electricidad Estática , Xenopus , Zinc/química
5.
Curr Biol ; 15(18): R771-4, 2005 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-16169480

RESUMEN

The recently determined structure of a mammalian voltage-gated potassium channel has important implications for our understanding of voltage-sensing and gating mechanisms in channels. It is also the first crystal structure of an overexpressed eukaryotic membrane protein.


Asunto(s)
Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv.1.2/ultraestructura , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...