Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(2): e0280656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730356

RESUMEN

Gemcitabine is an antineoplastic drug commonly used in the treatment of several types of cancers including pancreatic cancer and non-small cell lung cancer. Although gemcitabine-induced cardiotoxicity is widely recognized, the exact mechanism of cardiac dysfunction causing arrhythmias remains unclear. The objective of this study was to electrophysiologically evaluate the proarrhythmic cardiotoxicity of gemcitabine focusing on the human rapid delayed rectifier potassium channel, hERG channel. In heterologous hERG expressing HEK293 cells (hERG-HEK cells), hERG channel current (IhERG) was reduced by gemcitabine when applied for 24 h but not immediately after the application. Gemcitabine modified the activation gating properties of the hERG channel toward the hyperpolarization direction, while inactivation, deactivation or reactivation gating properties were unaffected by gemcitabine. When gemcitabine was applied to hERG-HEK cells in combined with tunicamycin, an inhibitor of N-acetylglucosamine phosphotransferase, gemcitabine was unable to reduce IhERG or shift the activation properties toward the hyperpolarization direction. While a mannosidase I inhibitor kifunensine alone reduced IhERG and the reduction was even larger in combined with gemcitabine, kifunensine was without effect on IhERG when hERG-HEK cells were pretreated with gemcitabine for 24 h. In addition, gemcitabine down-regulated fluorescence intensity for hERG potassium channel protein in rat neonatal cardiomyocyte, although hERG mRNA was unchanged. Our results suggest the possible mechanism of arrhythmias caused by gemcitabine revealing a down-regulation of IhERG through the post-translational glycosylation disruption possibly at the early phase of hERG channel glycosylation in the endoplasmic reticulum that alters the electrical excitability of cells.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratas , Gemcitabina , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Regulación hacia Abajo , Cardiotoxicidad/etiología , Células HEK293 , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/genética , Canales de Potasio de Tipo Rectificador Tardío/genética , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo
2.
J Comput Neurosci ; 48(4): 377-386, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33063225

RESUMEN

Channelopathies involving acquired or genetic modifications of the delayed rectifier K+ channel Kv1.1 include phenotypes characterized by enhanced neuronal excitability. Affected Kv1.1 channels exhibit combinations of altered expression, voltage sensitivity, and rates of activation and deactivation. Computational modeling and analysis can reveal the potential of particular channelopathies to alter neuronal excitability. A dynamical systems approach was taken to study the excitability and underlying dynamical structure of the Hodgkin-Huxley (HH) model of neural excitation as properties of the delayed rectifier K+ channel were altered. Bifurcation patterns of the HH model were determined as the amplitude of steady injection current was varied simultaneously with single parameters describing the delayed rectifier rates of activation and deactivation, maximal conductance, and voltage sensitivity. Relatively modest changes in the properties of the delayed rectifier K+ channel analogous to what is described for its channelopathies alter the bifurcation structure of the HH model and profoundly modify excitability of the HH model. Channelopathies associated with Kv1.1 can reduce the threshold for onset of neural activity. These studies also demonstrate how pathological delayed rectifier K+ channels could lead to the observation of the generalized Hopf bifurcation and, perhaps, other variants of the Hopf bifurcation. The observed bifurcation patterns collectively demonstrate that properties of the nominal delayed rectifier in the HH model appear optimized to permit activation of the HH model over the broadest possible range of input currents.


Asunto(s)
Canalopatías/fisiopatología , Canales de Potasio de Tipo Rectificador Tardío/genética , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Canalopatías/genética , Simulación por Computador
3.
Eur J Pharmacol ; 883: 173378, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32710951

RESUMEN

The slowly and rapidly activating delayed rectifier K+ channels (IKs and IKr, respectively) contribute to the repolarization of ventricular action potential in human heart and thereby determine QT interval on an electrocardiogram. Loss-of-function mutations in genes encoding IKs and IKr cause type 1 and type 2 long QT syndrome (LQT1 and LQT2, respectively), accompanied by a high risk of malignant ventricular arrhythmias and sudden cardiac death. This study was designed to investigate which cardiac electrophysiological conditions exaggerate QT-prolonging and arrhythmogenic effects of sevoflurane. We used the O'Hara-Rudy dynamic model to reconstruct human ventricular action potential and a pseudo-electrocardiogram, and simulated LQT1 and LQT2 phenotypes by decreasing conductances of IKs and IKr, respectively. Sevoflurane, but not propofol, prolonged ventricular action potential duration and QT interval in wild-type, LQT1 and LQT2 models. The QT-prolonging effect of sevoflurane was more profound in LQT2 than in wild-type and LQT1 models. The potent inhibitory effect of sevoflurane on IKs was primarily responsible for its QT-prolonging effect. In LQT2 model, IKs was considerably enhanced during excessive prolongation of ventricular action potential duration by reduction of IKr and relative contribution of IKs to ventricular repolarization was markedly elevated, which appears to underlie more pronounced QT-prolonging effect of sevoflurane in LQT2 model, compared with wild-type and LQT1 models. This simulation study clearly elucidates the electrophysiological basis underlying the difference in QT-prolonging effect of sevoflurane among wild-type, LQT1 and LQT2 models, and may provide important information for developing anesthetic strategies for patients with long QT syndrome in clinical settings.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Síndrome de Romano-Ward/inducido químicamente , Sevoflurano/toxicidad , Estudios de Casos y Controles , Simulación por Computador , Canales de Potasio de Tipo Rectificador Tardío/genética , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Miocitos Cardíacos/metabolismo , Propofol/toxicidad , Medición de Riesgo , Factores de Riesgo , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/metabolismo , Síndrome de Romano-Ward/fisiopatología , Factores de Tiempo
4.
Food Chem Toxicol ; 107(Pt A): 293-301, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28689918

RESUMEN

Elephantopus scaber Linn and its major bioactive component, deoxyelephantopin are known for their medicinal properties and are often reported to have various cytotoxic and antitumor activities. This plant is widely used as folk medicine for a plethora of indications although its safety profile remains unknown. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. The hERG potassium channel is an important antitarget in cardiotoxicity evaluation. This study investigated the effects of deoxyelephantopin on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells. The hERG tail currents following depolarization pulses were insignificantly affected by deoxyelephantopin in the transfected cell line. Current reduction was less than 40% as compared with baseline at the highest concentration of 50 µM. The results were consistent with the molecular docking simulation and hERG surface protein expression. Interestingly, it does not affect the hERG expression at both transcriptional and translational level at most concentrations, although higher concentration at 10 µM caused protein accumulation. In conclusion, deoxyelephantopin is unlikely a clinically significant hERG channel and Ikr blocker.


Asunto(s)
Asteraceae/química , Canales de Potasio de Tipo Rectificador Tardío/genética , Canales de Potasio Éter-A-Go-Go/genética , Lactonas/farmacología , Miocardio/metabolismo , Extractos Vegetales/farmacología , Potasio/metabolismo , Sesquiterpenos/farmacología , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Corazón/efectos de los fármacos , Humanos
5.
Card Electrophysiol Clin ; 8(2): 307-22, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27261823

RESUMEN

Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia.


Asunto(s)
Arritmias Cardíacas , Canales de Potasio de Tipo Rectificador Tardío , Síndrome de QT Prolongado , Canales de Potasio de Tipo Rectificador Tardío/antagonistas & inhibidores , Canales de Potasio de Tipo Rectificador Tardío/genética , Electrocardiografía , Humanos , Mutación , Bloqueadores de los Canales de Potasio
6.
Card Electrophysiol Clin ; 8(2): 275-84, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27261821

RESUMEN

Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity.


Asunto(s)
Canales de Potasio de Tipo Rectificador Tardío , Bloqueadores de los Canales de Potasio , Canales de Potasio de Tipo Rectificador Tardío/química , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/genética , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Humanos , Modelos Moleculares , Mutación , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología
7.
Artículo en Inglés | MEDLINE | ID: mdl-26215639

RESUMEN

Fishes are increasingly used as models for human cardiac diseases, creating a need for a better understanding of the molecular basis of fish cardiac ion currents. To this end we cloned KCNH6 channel of the crucian carp (Carassius carassius) that produces the rapid component of the delayed rectifier K(+) current (IKr), the main repolarising current of the fish heart. KCNH6 (ccErg2) was the main isoform of the Kv11 potassium channel family with relative transcript levels of 98.9% and 99.6% in crucian carp atrium and ventricle, respectively. KCNH2 (ccErg1), an orthologue to human cardiac Erg (Herg) channel, was only slightly expressed in the crucian carp heart. The native atrial IKr and the cloned ccErg2 were inhibited by similar concentrations of verapamil, terfenadine and KB-R7943 (P>0.05), while the atrial IKr was about an order of magnitude more sensitive to E-4031 than ccErg2 (P<0.05) suggesting that some accessory ß-subunits may be involved. Sensitivity of the crucian carp atrial IKr to E-4031, terfenadine and KB-R7943 was similar to what has been reported for the Herg channel. In contrast, the sensitivity of the crucian carp IKr to verapamil was approximately 30 times higher than the previously reported values for the Herg current. In conclusion, the cardiac IKr is produced by non-orthologous gene products in fish (Erg2) and mammalian hearts (Erg1) and some marked differences exist in drug sensitivity between fish and mammalian Erg1/2 which need to be taken into account when using fish heart as a model for human heart.


Asunto(s)
Carpas/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Proteínas de Peces/antagonistas & inhibidores , Corazón/efectos de los fármacos , Miocardio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Secuencia de Aminoácidos , Animales , Células CHO , Carpas/genética , Clonación Molecular , Cricetulus , Canales de Potasio de Tipo Rectificador Tardío/genética , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Masculino , Potenciales de la Membrana , Modelos Animales , Datos de Secuencia Molecular , Potasio/metabolismo , ARN Mensajero/metabolismo , Especificidad de la Especie , Transfección
8.
Biophys J ; 108(1): 62-75, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25564853

RESUMEN

The slow delayed rectifier (IKs) channel is composed of the KCNQ1 channel and KCNE1 auxiliary subunit, and functions to repolarize action potentials in the human heart. IKs activators may provide therapeutic efficacy for treating long QT syndromes. Here, we show that a new KCNQ1 activator, ML277, can enhance IKs amplitude in adult guinea pig and canine ventricular myocytes. We probe its binding site and mechanism of action by computational analysis based on our recently reported KCNQ1 and KCNQ1/KCNE1 3D models, followed by experimental validation. Results from a pocket analysis and docking exercise suggest that ML277 binds to a side pocket in KCNQ1 and the KCNE1-free side pocket of KCNQ1/KCNE1. Molecular-dynamics (MD) simulations based on the most favorable channel/ML277 docking configurations reveal a well-defined ML277 binding space surrounded by the S2-S3 loop and S4-S5 helix on the intracellular side, and by S4-S6 transmembrane helices on the lateral sides. A detailed analysis of MD trajectories suggests two mechanisms of ML277 action. First, ML277 restricts the conformational dynamics of the KCNQ1 pore, optimizing K(+) ion coordination in the selectivity filter and increasing current amplitudes. Second, ML277 binding induces global motions in the channel, including regions critical for KCNQ1 gating transitions. We conclude that ML277 activates IKs by binding to an intersubunit space and allosterically influencing pore conductance and gating transitions. KCNE1 association protects KCNQ1 from an arrhythmogenic (constitutive current-inducing) effect of ML277, but does not preclude its current-enhancing effect.


Asunto(s)
Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Neurotransmisores/farmacología , Animales , Sitios de Unión , Células COS , Células Cultivadas , Chlorocebus aethiops , Canales de Potasio de Tipo Rectificador Tardío/genética , Perros , Cobayas , Iones/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Potasio/metabolismo , Estructura Secundaria de Proteína , Transfección
9.
Biochim Biophys Acta ; 1848(10 Pt B): 2685-702, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25542783

RESUMEN

Cancer is a disease with marked heterogeneity in both response to therapy and survival. Clinical and histopathological characteristics have long determined prognosis and therapy. The introduction of molecular diagnostics has heralded an explosion in new prognostic factors. Overall, histopathology, immunohistochemistry and molecular biology techniques have described important new prognostic subgroups in the different cancer categories. Ion channels and transporters (ICT) are a new class of membrane proteins which are aberrantly expressed in several types of human cancers. Besides regulating different aspect of cancer cell behavior, ICT can now represent novel cancer biomarkers. A summary of the data obtained so far and relative to breast, prostate, lung, colorectal, esophagus, pancreatic and gastric cancers are reported. Special emphasis is given to those studies aimed at relating specific ICT or a peculiar ICT profile with current diagnostic methods. Overall, we are close to exploit ICTs for diagnostic, prognostic or predictive purposes in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/diagnóstico , Neoplasias/genética , Acuaporinas/genética , Acuaporinas/metabolismo , Biomarcadores de Tumor/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/genética , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Femenino , Humanos , Masculino , Neoplasias/metabolismo , Neoplasias/patología , Especificidad de Órganos , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Pronóstico , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo
10.
PLoS One ; 9(8): e103556, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25136824

RESUMEN

Cutaneous pain sensations are mediated largely by C-nociceptors consisting of both mechano-sensitive (CM) and mechano-insensitive (CMi) fibres that can be distinguished from one another according to their characteristic axonal properties. In healthy skin and relative to CMi fibres, CM fibres show a higher initial conduction velocity, less activity-dependent conduction velocity slowing, and less prominent post-spike supernormality. However, after sensitization with nerve growth factor, the electrical signature of CMi fibres changes towards a profile similar to that of CM fibres. Here we take a combined experimental and modelling approach to examine the molecular basis of such alterations to the excitation thresholds. Changes in electrical activation thresholds and activity-dependent slowing were examined in vivo using single-fibre recordings of CM and CMi fibres in domestic pigs following NGF application. Using computational modelling, we investigated which axonal mechanisms contribute most to the electrophysiological differences between the fibre classes. Simulations of axonal conduction suggest that the differences between CMi and CM fibres are strongly influenced by the densities of the delayed rectifier potassium channel (Kdr), the voltage-gated sodium channels NaV1.7 and NaV1.8, and the Na+/K+-ATPase. Specifically, the CM fibre profile required less Kdr and NaV1.8 in combination with more NaV1.7 and Na+/K+-ATPase. The difference between CM and CMi fibres is thus likely to reflect a relative rather than an absolute difference in protein expression. In support of this, it was possible to replicate the experimental reduction of the ADS pattern of CMi nociceptors towards a CM-like pattern following intradermal injection of nerve growth factor by decreasing the contribution of Kdr (by 50%), increasing the Na+/K+-ATPase (by 10%), and reducing the branch length from 2 cm to 1 cm. The findings highlight key molecules that potentially contribute to the NGF-induced switch in nociceptors phenotype, in particular NaV1.7 which has already been identified clinically as a principal contributor to chronic pain states such as inherited erythromelalgia.


Asunto(s)
Nervio Femoral/fisiología , Mecanorreceptores/metabolismo , Fibras Nerviosas Amielínicas/fisiología , Nocicepción/fisiología , Nociceptores/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Axones/efectos de los fármacos , Axones/fisiología , Canales de Potasio de Tipo Rectificador Tardío/genética , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Estimulación Eléctrica , Nervio Femoral/efectos de los fármacos , Expresión Génica , Inyecciones Intradérmicas , Mecanorreceptores/efectos de los fármacos , Mecanotransducción Celular , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/genética , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Fibras Nerviosas Amielínicas/efectos de los fármacos , Factor de Crecimiento Nervioso/administración & dosificación , Conducción Nerviosa/efectos de los fármacos , Conducción Nerviosa/fisiología , Nocicepción/efectos de los fármacos , Nociceptores/efectos de los fármacos , Piel/inervación , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Porcinos
14.
Heart Rhythm ; 10(8): 1220-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23608591

RESUMEN

BACKGROUND: Slow delayed-rectifier potassium current (IKs) channels, made of the pore-forming KCNQ1 and auxiliary KCNE1 subunits, play a key role in determining action potential duration (APD) in cardiac myocytes. The consequences of drug-induced KCNQ1 splice alteration remain unknown. OBJECTIVE: To study the modulation of KCNQ1 alternative splicing by amiloride and the consequent changes in IKs and action potentials (APs) in ventricular myocytes. METHODS: Canine endocardial, midmyocardial, and epicardial ventricular myocytes were isolated. Levels of KCNQ1a and KCNQ1b as well as a series of splicing factors were quantified by using the reverse transcriptase-polymerase chain reaction and Western blot. The effect of amiloride-induced changes in the KCNQ1b/total KCNQ1 ratio on AP was measured by using whole-cell patch clamp with and without isoproterenol. RESULTS: With 50 µmol/L of amiloride for 6 hours, KCNQ1a at transcriptional and translational levels increased in midmyocardial myocytes but decreased in endo- and epicardial myocytes. Likewise, changes in splicing factors in midmyocardial were opposite to that in endo- and epicardial myocytes. In midmyocardial myocytes amiloride shortened APD and decreased isoproterenol-induced early afterdepolarizations significantly. The same amiloride-induced effects were demonstrated by using human ventricular myocyte model for AP simulations under beta-adrenergic stimulation. Moreover, amiloride reduced the transmural dispersion of repolarization in pseudo-electrocardiogram. CONCLUSIONS: Amiloride regulates IKs and APs with transmural differences and reduces arrhythmogenicity through the modulation of KCNQ1 splicing. We suggested that the modulation of KCNQ1 splicing may help prevent arrhythmia.


Asunto(s)
Potenciales de Acción/fisiología , Empalme Alternativo/genética , Amilorida/farmacología , Canales de Potasio de Tipo Rectificador Tardío/genética , Diuréticos/farmacología , Canal de Potasio KCNQ1/genética , Miocitos Cardíacos/efectos de los fármacos , Animales , Western Blotting , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Perros , Ventrículos Cardíacos , Isoproterenol/farmacología , Canal de Potasio KCNQ1/metabolismo , Miocitos Cardíacos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Brain Struct Funct ; 218(1): 239-54, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22383041

RESUMEN

The rodent granular retrosplenial cortex (GRS) is reciprocally connected with the hippocampus. It is part of several networks implicated in spatial learning and memory, and is known to contain head-direction cells. There are, however, few specifics concerning the mechanisms and microcircuitry underlying its involvement in spatial and mnemonic functions. In this report, we set out to characterize intrinsic properties of a distinctive population of small pyramidal neurons in layer 2 of rat GRS. These neurons, as well as those in adjoining layer 3, were found to exhibit a late-spiking (LS) firing property. We established by multiple criteria that the LS property is a consequence of delayed rectifier and A-type potassium channels. These were identified as Kv1.1, Kv1.4 and Kv4.3 by Genechip analysis, in situ hybridization, single-cell reverse transcriptase-polymerase chain reaction, and pharmacological blockade. The LS property might facilitate comparison or integration of synaptic inputs during an interval delay, consistent with the proposed role of the GRS in memory-related processes.


Asunto(s)
Corteza Cerebral/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Células Piramidales/metabolismo , Potenciales de Acción , Animales , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Canales de Potasio de Tipo Rectificador Tardío/antagonistas & inhibidores , Canales de Potasio de Tipo Rectificador Tardío/genética , Hibridación in Situ , Cinética , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv1.4/metabolismo , Aprendizaje , Memoria , Red Nerviosa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Potasio Shal/metabolismo , Transmisión Sináptica
16.
Curr Med Chem ; 19(9): 1405-20, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22360488

RESUMEN

The slow delayed rectifier current (I(Ks)) is the slow component of cardiac delayed rectifier current and is critical for the late phase repolarization of cardiac action potential. This current is also an important target for Sympathetic Nervous System (SNS) to regulate the cardiac electivity to accommodate to heart rate alterations in response to exercise or emotional stress and can be up-regulated by ß- adrenergic or other signal molecules. I(Ks) channel is originated by the co-assembly of pore-forming KCNQ1 α-subunit and accessory KCNE1 ß-subunit. Mutations in any subunit can bring about severe long QT syndrome (LQT-1, LQT-5) as characterized by deliquium, seizures and sudden death. This review summarizes the normal physiological functions and molecular basis of I(Ks) channels, as well as illustrates up-to-date development on its blockers and activators. Therefore, the current extensive survey should generate fundamental understanding of the role of I(Ks) channel in modulating cardiac function and donate some instructions to the progression of I(Ks) blockers and activators as potential antiarrhythmic agents or pharmacological tools to determine the physiological and pathological function of I(Ks).


Asunto(s)
Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Animales , Antiarrítmicos/química , Antiarrítmicos/farmacología , Arritmias Cardíacas/genética , Canales de Potasio de Tipo Rectificador Tardío/agonistas , Canales de Potasio de Tipo Rectificador Tardío/antagonistas & inhibidores , Canales de Potasio de Tipo Rectificador Tardío/genética , Corazón/efectos de los fármacos , Humanos , Mutación , Miocardio/metabolismo , Potasio/metabolismo
17.
Surg Today ; 41(3): 382-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21365420

RESUMEN

PURPOSE: The augmenter of liver regeneration (ALR) might promote better renal function after orthotopic liver transplantation (OLT). Using a rat allogeneic OLT model, we investigated if ALR can mediate renal protection and its potential mechanisms. METHODS: Orthotopic liver transplant recipients were assigned to a cyclosporine A (CsA)-treated group (CsA group) and an ALR+CsA group (ALR group). Transplanted liver, kidneys, and serum were harvested on post-transplantation days 1, 3, and 7 for histological examination, and hepatic function and renal function analysis. We also measured the expression of hypoxiainducible factor-1 (HIF-1α) and O(2)-sensitive K(+) cannels (KV1.5 and KV2.1), and free Ca(2+) in the smooth muscle cells (SMCs) of intrarenal arterioles in the kidneys. RESULTS: All transplanted livers suffered mild acute rejection after OLT. Recipient kidney damage was more severe in the CsA group, characterized by increased serum creatinine, tubular epithelial apoptosis and necrosis, and the formation of casts. In the ALR group, HIF-1α, KV1.5, and KV2.1 were upregulated, accompanied by lower Ca(2+) concentration, in the SMCs shortly after OLT. CONCLUSION: Augmenter of liver regeneration might increase the expression of HIF-1α and K(+) channels and decrease intracellular free Ca(2+), thereby inhibiting arterial contraction and promoting kidney perfusion immediately after OLT.


Asunto(s)
Canales de Potasio de Tipo Rectificador Tardío/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Enfermedades Renales/prevención & control , Regeneración Hepática/genética , Trasplante de Hígado/fisiología , ARN Mensajero/genética , Regulación hacia Arriba , Animales , Calcio/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/biosíntesis , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Immunoblotting , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Canal de Potasio Kv1.5/biosíntesis , Canal de Potasio Kv1.5/genética , Masculino , Ratas , Ratas Endogámicas BN , Ratas Endogámicas Lew , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Potasio Shab/biosíntesis , Canales de Potasio Shab/genética
18.
Heart Rhythm ; 8(3): 463-70, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21109023

RESUMEN

BACKGROUND: Long QT syndrome (LQTS) is characterized by a prolonged QT interval that can lead to severe ventricular arrhythmias (torsades de pointes) and sudden death. Congenital LQTS type 2 (LQT2) is due to loss-of-function mutations in the KCNH2 gene encoding Kv11.1 channels responsible for the rapid component of the delayed rectifier current. OBJECTIVE: The purpose of this study was to determine the functional properties of the LQT2-associated mutation p.E637G found in a Spanish family. METHODS: Wild-type (WT) and p.E637G Kv11.1 channels were transiently transfected in Chinese hamster ovary cells, and currents were recorded using the patch-clamp technique. RESULTS: The p.E637G channels lost inward rectification and K(+) selectivity, generating small but measurable slowly activating, noninactivating currents. These important alterations were corrected neither by cotransfection with WT channels nor by incubation at low temperatures or with pharmacological chaperones. As a consequence of its effects on channel gating, the mutation significantly reduced the outward repolarizing current during the action potential (AP), resulting in a marked lengthening of the duration of a simulated human ventricular AP. CONCLUSION: We have identified and characterized an LQT2-associated mutation that through removal of C-type inactivation and reduction of K(+) selectivity causes the QT prolongation observed in the patients carrying the mutation. Moreover, the results obtained demonstrate the importance of the glutamic acid at position 637 for the inactivation process and K(+) selectivity of Kv11.1 channels.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Síndrome de QT Prolongado/genética , Mutación Missense/fisiología , Canales de Potasio con Entrada de Voltaje/genética , Animales , Cricetinae , Cricetulus , Canales de Potasio de Tipo Rectificador Tardío/genética , Canal de Potasio ERG1 , Ácido Glutámico/genética , Humanos , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/metabolismo , Transporte de Proteínas
19.
Am J Physiol Cell Physiol ; 298(3): C486-95, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19955484

RESUMEN

Human embryonic stem cells (hESCs) can self-renew while maintaining their pluripotency. Direct reprogramming of adult somatic cells to induced pluripotent stem cells (iPSCs) has been reported. Although hESCs and human iPSCs have been shown to share a number of similarities, such basic properties as the electrophysiology of iPSCs have not been explored. Previously, we reported that several specialized ion channels are functionally expressed in hESCs. Using transcriptomic analyses as a guide, we observed tetraethylammonium (TEA)-sensitive (IC(50) = 3.3 +/- 2.7 mM) delayed rectifier K(+) currents (I(KDR)) in 105 of 110 single iPSCs (15.4 +/- 0.9 pF). I(KDR) in iPSCs displayed a current density of 7.6 +/- 3.8 pA/pF at +40 mV. The voltage for 50% activation (V(1/2)) was -7.9 +/- 2.0 mV, slope factor k = 9.1 +/- 1.5. However, Ca(2+)-activated K(+) current (I(KCa)), hyperpolarization-activated pacemaker current (I(f)), and voltage-gated sodium channel (Na(V)) and voltage-gated calcium channel (Ca(V)) currents could not be measured. TEA inhibited iPSC proliferation (EC(50) = 7.8 +/- 1.2 mM) and viability (EC(50) = 5.5 +/- 1.0 mM). By contrast, 4-aminopyridine (4-AP) inhibited viability (EC(50) = 4.5 +/- 0.5 mM) but had less effect on proliferation (EC(50) = 0.9 +/- 0.5 mM). Cell cycle analysis further revealed that K(+) channel blockers inhibited proliferation primarily by arresting the mitotic phase. TEA and 4-AP had no effect on iPSC differentiation as gauged by ability to form embryoid bodies and expression of germ layer markers after induction of differentiation. Neither iberiotoxin nor apamin had any function effects, consistent with the lack of I(KCa) in iPSCs. Our results reveal further differences and similarities between human iPSCs and hESCs. A better understanding of the basic biology of iPSCs may facilitate their ultimate clinical application.


Asunto(s)
Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Potasio/metabolismo , Canales de Calcio/metabolismo , Ciclo Celular , Diferenciación Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/antagonistas & inhibidores , Canales de Potasio de Tipo Rectificador Tardío/genética , Relación Dosis-Respuesta a Droga , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Cinética , Potenciales de la Membrana , Células Madre Mesenquimatosas/metabolismo , Proteínas Musculares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio , Canales de Potasio Calcio-Activados/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/metabolismo
20.
J Neurophysiol ; 100(4): 2125-36, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18684900

RESUMEN

Whereas Kvbeta2 subunits modulate potassium current properties carried by Kv1 channel complexes in heterologous systems, little is known about the contributions of Kvbeta2 subunits to native potassium channel function. Using antisense approaches and in situ recordings from Xenopus embryo spinal cord neurons, we tested the in vivo roles of Kvbeta2 subunits in modulation of voltage-dependent potassium current (IKv). We focused on 1) two different populations of dorsal spinal neurons that express both Kvbeta2 and Kv1 alpha-subunit genes and 2) the 24- and 48-h developmental period, during which IKv undergoes developmental regulation. At both 24 and 48 h, antisense methods produced efficient knock-down of both Kvbeta2 protein and IKv. At both times, dominant negative suppression of Kv1 channels also eliminated IKv, indicating that Kv1 channels require Kvbeta2 subunits to function in dorsal spinal neurons. Even though Kv1 channels determined the IKv values of both dorsal neuron types, comparisons of their IKv properties revealed important differences at both developmental stages. The latter results support the notion that different Kv1 alpha-subunits and/or posttranslational modifications underlie the IKv values of the two dorsal neuron types. Overall, the results demonstrate that Kvbeta2 subunits function in vivo as obligatory subunits of Kv1 channels in at least two neuron types and two different developmental stages.


Asunto(s)
Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Neuronas/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Raíces Nerviosas Espinales/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Western Blotting , Interpretación Estadística de Datos , Canales de Potasio de Tipo Rectificador Tardío/genética , Relación Dosis-Respuesta a Droga , Electrofisiología , Potenciales de la Membrana/efectos de los fármacos , Microinyecciones , Neuronas/efectos de los fármacos , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/farmacología , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/genética , ARN/biosíntesis , ARN/genética , Raíces Nerviosas Espinales/citología , Raíces Nerviosas Espinales/efectos de los fármacos , Proteínas de Xenopus/genética , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...