RESUMEN
BACKGROUND: The combination of photodynamic therapy (PDT) and LL-37 has never been tested in an animal study and our research team background suggests this strategy might be a promising alternative to intensify periodontitis resolution. This study aimed to assess the effects of multiple sessions of PDT with chlorin-e6 conjugated to the antimicrobial peptide LL-37 loaded nanoemulsion, as adjunctive therapy in experimental periodontitis in rats. METHODS: Experimental periodontitis was induced in 81 rats. After disease establishment, animals were assigned to three groups: SRP (scaling and root planning); SRP + 1PDT, SRP followed by a single PDT session; SRP + 4PDT (n = 27), SRP followed by four PDT sessions at 0, 24, 48 and 72 h after SRP. Animals were subjected to euthanasia at 7, 14 and 28 days, and samples were submitted to osteoclast quantification, immunological and microtomography analysis. RESULTS: All treatments resulted in significant periodontal improvements and there was no significant difference between the groups in both local inflammatory response and healing process. Minimal adjunctive effects could be found for the combined therapy in terms of cytokine levels (IL-1ß and IL-10), with no statistical significance. However, the number of TRAP-positive osteoclasts per mm of alveolar bone linear surface for the group treated with PDT sessions was significantly lower than those treated with SRP only. CONCLUSIONS: Multiple PDT sessions with chlorin-e6 and LL-37 nanoemulsion as an adjunct to scaling and root planning reduced the presence of osteoclast in the local site but did not contribute towards bone regeneration and IL-1ß and IL-10 levels.
Asunto(s)
Péptidos Catiónicos Antimicrobianos , Catelicidinas , Clorofilidas , Emulsiones , Periodontitis , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Animales , Fotoquimioterapia/métodos , Periodontitis/tratamiento farmacológico , Ratas , Porfirinas/farmacología , Porfirinas/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Raspado Dental/métodos , Masculino , Ratas Wistar , Aplanamiento de la Raíz/métodosRESUMEN
Monocytes are the primary targets of Zika virus (ZIKV) and are associated with ZIKV pathogenesis. Currently, there is no effective treatment for ZIKV infection. It is known that 1,25-dihydroxy vitamin D3 (VitD3) has strong antiviral activity in dengue virus-infected macrophages, but it is unknown whether VitD3 inhibits ZIKV infection in monocytes. We investigated the relationship between ZIKV infection and the expression of genes of the VitD3 pathway, as well as the inflammatory response of infected monocytes in vitro. ZIKV replication was evaluated using a plaque assay, and VitD3 pathway gene expression was analyzed by RT-qPCR. Pro-inflammatory cytokines/chemokines were quantified using ELISA. We found that VitD3 did not suppress ZIKV replication. The results showed a significant decrease in the expression of vitamin D3 receptor (VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), and cathelicidin antimicrobial peptide (CAMP) genes upon ZIKV infection. Treatment with VitD3 was unable to down-modulate production of pro-inflammatory cytokines, except TNF-α, and chemokines. This suggests that ZIKV infection inhibits the expression of VitD3 pathway genes, thereby preventing VitD3-dependent inhibition of viral replication and the inflammatory response. This is the first study to examine the effects of VitD3 in the context of ZIKV infection, and it has important implications for the role of VitD3 in the control of viral replication and inflammatory responses during monocyte infection.
Asunto(s)
Catelicidinas , Monocitos , Replicación Viral , Vitamina D3 24-Hidroxilasa , Infección por el Virus Zika , Virus Zika , Humanos , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Citocinas/metabolismo , Citocinas/genética , Monocitos/virología , Monocitos/metabolismo , Monocitos/inmunología , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Replicación Viral/efectos de los fármacos , Vitamina D3 24-Hidroxilasa/genética , Vitamina D3 24-Hidroxilasa/metabolismo , Virus Zika/fisiología , Infección por el Virus Zika/virología , Infección por el Virus Zika/metabolismoRESUMEN
An alarming global public health and economic peril has been the emergence of antibiotic resistance resulting from clinically relevant bacteria pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species constantly exhibiting intrinsic and extrinsic resistance mechanisms against last-resort antibiotics like gentamycin, ciprofloxacin, tetracycline, colistin, and standard ampicillin prescription in clinical practices. The discovery and applications of antimicrobial peptides (AMPs) with antibacterial properties have been considered and proven as alternative antimicrobial agents to antibiotics. In this study, we have designed, produced, and purified a recombinant novel multifunctional hybrid antimicrobial peptide LL-37_Renalexin for the first time via the application of newly designed flexible GS peptide linker coupled with the use of our previously characterized small metal-binding proteins SmbP and CusF3H+ as carrier proteins that allow for an enhanced bacterial expression, using BL21(DE3) and SHuffle T7(DE3) Escherichia coli strains, and purification of the hybrid peptide via immobilized metal affinity chromatography. The purified tag-free LL-37_Renalexin hybrid peptide exhibited above 85% reduction in bacteria colony-forming units and broad-spectrum antimicrobial effects against Staphylococcus aureus, Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), and Klebsiella pneumoniae bacteria clinical isolates at a lower minimum inhibition concentration level (10-33 µM) as compared to its counterpart single-AMPs LL-37 and Renalexin (50-100 µM). KEY POINTS: ⢠The hybrid antimicrobial peptide LL-37_Renalexin has been designed using a GS linker. ⢠The peptide was expressed with the carrier proteins SmbP and CusF3H+. ⢠The hybrid peptide shows antibacterial potency against clinical bacterial isolates.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Catelicidinas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Staphylococcus aureus , Escherichia coli/genética , Proteínas Portadoras/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
Host defense peptides (HDPs) are naturally occurring polypeptide sequences that, in addition to being active against bacteria, fungi, viruses, and other parasites, may stimulate immunomodulatory responses. Cathelicidins, a family of HDPs, are produced by diverse animal species, such as mammals, fish, birds, amphibians, and reptiles, to protect them against pathogen infections. These peptides have variable C-terminal domains responsible for their antimicrobial and immunomodulatory activities and a highly conserved N-terminal pre-pro region homologous to cathelin. Although cathelicidins are the major components of innate immunity, the molecular basis by which they induce an immune response is still unclear. In this review, we will address the role of the LL-37 domain and its SK-24, IV-20, FK-13 and LL-37 fragments in the immunity response. Other cathelicidins also share structural and functional characteristics with the LL-37 domain, suggesting that these fragments may be responsible for interaction between these peptides and receptors in humans. Fragments of the LL-37 domain can give us clues about how homologous cathelicidins, in general, induce an immune response.
Asunto(s)
Antiinfecciosos , Catelicidinas , Dominios Proteicos , Animales , Humanos , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Catelicidinas/química , Catelicidinas/genética , Inmunidad Innata , Mamíferos , Dominios Proteicos/fisiologíaRESUMEN
Although vitamin D (VD) is known to have multiple effects on the skin and immunity, its effects on atopic dermatitis (AD) severity remain unclear. We investigated whether oral cholecalciferol (VD3) supplementation changes stratum corneum expression of the vitamin D receptor (vdr), and the epidermal alarmins Cathelicidin Antimicrobial Peptide (camp/LL-37) and Thymic Stromal Lymphopoietin (tslp) in children with AD. We conducted an open-label supplementation study with weekly oral VD3 for six weeks in children with AD. Serum 25-hydroxyvitamin D (25OHD), lesional Staphylococcus aureus colonization, and AD severity evaluated by SCORAD index were evaluated before and after supplementation. Tape stripping (TS) was performed on non-lesional and lesional skin to measure mRNA expression of vdr, camp, and tslp through RT-qPCR and LL-37 peptide by ELISA. Twenty-two children with moderate-severe AD received weekly oral VD3 for six weeks. Total serum 25OHD increased from 45.1 ± 23 to 93.5 ± 24.3 nmoL/L (p < 0.0001), while SCORAD decreased from 41.4 ± 13.5 to 31.5 ± 15.8 (p < 0.0001). After treatment, epidermal gene expression of camp increased significantly in non-lesional (p = 0.014) and lesional (p = 0.0007) tape stripping samples, while vdr only increased in lesional skin samples (p < 0.0001). LL-37 peptide increased significantly only in lesional skin samples (p = 0.008). Gene expression of tslp did not change after oral VD3 treatment. In children with AD, oral VD3 supplementation was associated with improved VD status and AD severity, as well as increased VDR and Cathelicidin expression in lesional skin, which provide mechanistic clues on its effects.
Asunto(s)
Dermatitis Atópica , Humanos , Niño , Dermatitis Atópica/tratamiento farmacológico , Catelicidinas/genética , Catelicidinas/metabolismo , Receptores de Calcitriol/genética , Vitamina D , Epidermis/metabolismo , Citocinas/metabolismo , Linfopoyetina del Estroma TímicoRESUMEN
Abstract The present study investigated the effects of valerian methanolic extract and valerenic acid on the expression of LL-37 gene and protein in A549 and MRC5 line cells. After preparing Valerian seeds, sowing them in March 2020, and harvesting the rhizome in October 2020, the extract was prepared from the valerian rhizome by maceration method. Valerian acid content was determined using high performance liquid chromatography (HPLC). Two cell lines (A549 and MRC-5) were used to study the effects of valerian extract, and the MTT test was used to evaluate cell viability. The expression of LL-37 mRNA and protein was assessed by Real-Time PCR and western blot, respectively. In vivo safety assessments and histopathological analysis were also conducted. Data was analyzed by Graphpad Prism 8 software. Valerian methanolic extract and valerenic acid upregulated the LL-37 mRNA and protein expression in both treated cell lines. Valerenic acid showed a greater effect on upregulating LL-37 expression than valerian methanolic extract. A549 cells were more sensitive to valerian methanolic extract compared to MRC5 cells, and its cell viability was reduced. Furthermore, liver and kidney-related safety assessments showed that valerian methanolic extract had no toxic effects. In general, it was concluded that the methanolic extract of valerian as well as the resulting valerenic acid as the most important component of the extract has the ability to upregulate LL-37expression. Therefore, methanolic extract of valerian and valerenic acid can be considered for improving the immune system.
Asunto(s)
Valeriana/efectos adversos , Extractos Vegetales/efectos adversos , Catelicidinas/efectos adversos , Western Blotting/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Péptidos Catiónicos Antimicrobianos/agonistas , Células A549/clasificación , Genes/genética , Hígado/anomalíasRESUMEN
Leprosy is an infectious disease influenced by genetic, immunological, and environmental factors. Reduced gene expressions may be associated with the immunological response pattern and leprosy susceptibility. We investigated the direct and indirect effects of Vitamin D Receptor (VDR) and Cathelicidin Antimicrobial Peptide (CAMP) gene expressions on the serum levels of vitamin D, Cathelicidin, and cytokines in newly-diagnosed leprosy patients and post-six-months of multidrug therapy (MDT). Thirty-four leprosy patients were assessed, paucibacillary (PB; n = 14) and multibacillary (MB; n = 20) cases, untreated or having received six months of MDT, 18 healthy controls, and 25 household contacts. VDR and CAMP gene expression levels were strongly correlated to some important cytokines in both, untreated leprosy patients (PB, r = 0.9319; MB, r = 0.9569) and patients who had undergone MDT (PB, r = 0.9667; MB, r = 0.9569). We observed that both gene expressions directly influenced IL-2, IFN-γ, and IL-17F serum levels in leprosy patients compared to the household contacts and healthy individuals. VDR and CAMP gene expressions induced a persistent inflammatory response in PB and MB leprosy patients, even after six months of MDT, to fight the Mycobacterium leprae infection. Due to the persistent inflammatory profile, multidrug therapy is suggested to be maintained for more than six months, especially for MB patients. Vitamin D supplementation is recommended from the onset as a transcription factor to improve VDR and CAMP gene expression in leprosy patients.
Asunto(s)
Lepra , Receptores de Calcitriol , Péptidos Catiónicos Antimicrobianos , Péptidos Antimicrobianos , Citocinas/genética , Quimioterapia Combinada , Expresión Génica , Humanos , Inmunidad , Interleucina-17/genética , Interleucina-2/uso terapéutico , Leprostáticos/uso terapéutico , Lepra/tratamiento farmacológico , Mycobacterium leprae , Receptores de Calcitriol/genética , Factores de Transcripción/genética , Vitamina D , CatelicidinasRESUMEN
The emergence of multidrug-resistant bacteria, viruses and tumors is a serious threat to public health. Among natural peptides, indolicidin, a 13-residue peptide belonging to the cathelicidin family, deserves special attention. Indolicidin has a broad spectrum of biological activity and is active against a wide range of targets, such as bacteria (Gram+ and Gram-), fungi and viruses. Here, we review the most important features of the biological activity, potential applications and perspectives of indolicidin and its analogs. Although not yet approved for commercialization, this peptide has great potential to be applied in different areas, including the medical, biomedical, food industry and other unexplored areas. To achieve this goal, a multidisciplinary team of researchers must work together to fine tune peptides that overall lead to novel analogs and formulations to combat existing and possibly future diseases.
Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Animales , Péptidos Catiónicos Antimicrobianos/genética , Biopelículas/efectos de los fármacos , Catelicidinas/genética , Catelicidinas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Relación Estructura-ActividadRESUMEN
Biophysical characterization of antimicrobial peptides helps to understand the mechanistic aspects of their action. The physical behavior of the KR-12 antimicrobial peptide (e.g. orientation and changes in secondary structure), was analyzed after interactions with a Staphylococcus aureus membrane model and solid surfaces. We performed antimicrobial tests using Gram-positive S. aureus (ATCC 25923) bacteria. Moreover, Langmuir-Blodgett experiments showed that the synthetic peptide can disturb the lipidic membrane at a concentration lower than the Minimum Inhibitory Concentration, thus confirming that KR-12/lipid interactions are involved. Partially- and fully-deactivated KR-12 hybrid samples were obtained by physisorption and covalent immobilization in chitosan/silica and glyoxal-rich solid supports. The correlation of Langmuir-Blodgett data with the α-helix formation, followed by FTIR-ATR in a frozen-like state, and the antimicrobial activity showed the importance of these interactions and conformation changes on the first step action mode of this peptide. This is the first time that material science (immobilization in solid surfaces assisted by FTIR-ATR analysis in frozen-like state) and physical (Langmuir-Blodgett/Schaefer) approaches are combined for exploring mechanistic aspects of the primary action mode of the KR-12 antimicrobial peptide against S. aureus.
Asunto(s)
Antibacterianos/química , Péptidos Antimicrobianos/química , Catelicidinas/química , Lípidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Antibacterianos/farmacología , Catelicidinas/farmacología , Quitosano/química , Quitosano/farmacología , Humanos , Lípidos/química , Lípidos de la Membrana/antagonistas & inhibidores , Pruebas de Sensibilidad Microbiana , Fragmentos de Péptidos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidadRESUMEN
The coronavirus disease 2019 (COVID-19) is related to enhanced production of NETs, and autoimmune/autoinflammatory phenomena. We evaluated the proportion of low-density granulocytes (LDG) by flow cytometry, and their capacity to produce NETs was compared with that of conventional neutrophils. NETs and their protein cargo were quantified by confocal microscopy and ELISA. Antinuclear antibodies (ANA), anti-neutrophil cytoplasmic antibodies (ANCA) and the degradation capacity of NETs were addressed in serum. MILLIPLEX assay was used to assess the cytokine levels in macrophages' supernatant and serum. We found a higher proportion of LDG in severe and critical COVID-19 which correlated with severity and inflammatory markers. Severe/critical COVID-19 patients had higher plasmatic NE, LL-37 and HMGB1-DNA complexes, whilst ISG-15-DNA complexes were lower in severe patients. Sera from severe/critical COVID-19 patients had lower degradation capacity of NETs, which was reverted after adding hrDNase. Anti-NET antibodies were found in COVID-19, which correlated with ANA and ANCA positivity. NET stimuli enhanced the secretion of cytokines in macrophages. This study unveils the role of COVID-19 NETs as inducers of pro-inflammatory and autoimmune responses. The deficient degradation capacity of NETs may contribute to the accumulation of these structures and anti-NET antibodies are related to the presence of autoantibodies.
Asunto(s)
Autoinmunidad , COVID-19/sangre , COVID-19/inmunología , Trampas Extracelulares/inmunología , Inmunidad Humoral , Inflamación , Neutrófilos/inmunología , Anticuerpos Antinucleares , Péptidos Catiónicos Antimicrobianos/sangre , Autoanticuerpos/metabolismo , Estudios Transversales , Citocinas/metabolismo , Citocinas/farmacología , Citometría de Flujo , Granulocitos/metabolismo , Proteína HMGB1/sangre , Voluntarios Sanos , Humanos , Microscopía Confocal , Monocitos/citología , Neutrófilos/citología , SARS-CoV-2 , Ubiquitinas/farmacología , CatelicidinasRESUMEN
Urinary tract infections (UTI) during pregnancy are frequently associated with hypertensive disorders, increasing the risk of perinatal morbidity. Calcitriol, vitamin D3's most active metabolite, has been involved in blood pressure regulation and prevention of UTIs, partially through modulating vasoactive peptides and antimicrobial peptides, like cathelicidin. However, nothing is known regarding the interplay between placental calcitriol, cathelicidin, and maternal blood pressure in UTI-complicated pregnancies. Here, we analyzed the correlation between these parameters in pregnant women with UTI and with normal pregnancy (NP). Umbilical venous serum calcitriol and its precursor calcidiol were significantly elevated in UTI. Regardless of newborn's sex, we found strong negative correlations between calcitriol and maternal systolic and diastolic blood pressure in the UTI cohort (p < 0.002). In NP, this relationship was observed only in female-carrying mothers. UTI-female placentas showed higher expression of cathelicidin and CYP27B1, the calcitriol activating-enzyme, compared to male and NP samples. Accordingly, cord-serum calcitriol from UTI-female neonates negatively correlated with maternal bacteriuria. Cathelicidin gene expression positively correlated with gestational age in UTI and with newborn anthropometric parameters. Our results suggest that vitamin D deficiency might predispose to maternal cardiovascular risk and perinatal infections especially in male-carrying pregnancies, probably due to lower placental CYP27B1 and cathelicidin expression.
Asunto(s)
Presión Sanguínea/inmunología , Calcitriol/sangre , Sangre Fetal/metabolismo , Complicaciones Infecciosas del Embarazo/sangre , Infecciones Urinarias/sangre , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/sangre , Adulto , Péptidos Catiónicos Antimicrobianos/sangre , Femenino , Edad Gestacional , Humanos , Recién Nacido , Masculino , Placenta/metabolismo , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/microbiología , Factores Sexuales , Infecciones Urinarias/inmunología , Infecciones Urinarias/microbiología , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/inmunología , Deficiencia de Vitamina D/microbiología , CatelicidinasRESUMEN
The aim of this study was to analyze the expression of mBD4, mBD3 and CRAMP in joint of mice with type II collagen-induced arthritis/CIA and to explore its possible association with IL-10, IL-4, IFN-γ, IL-17, MMP3, RANK/RANKL/OPG and histological parameters. METHODS: CIA was induced in 44 DBA/1 J mice. The joints from mice were classified into the onset, peak and remission phase of CIA. Histological sections were stained with hematoxylin-eosin and safranin O. The expression of CRAMP, mBD-3, mBD-4, and MMP-3 was evaluated using reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. The expression of IL-10, IL-4, IFN-γ, IL-17, RANK/RANKL/OPG was analyzed by RT-PCR. RESULTS: We observed that inflammation and immunostained cells for CRAMP increased in the peak and remission phases compared to the control group. In addition, increments in relative expressions of CRAMP were detected for the remission phase and in IL-4 and IL-17 in the peak phase compared to the control and onset phase. In addition, an increase in IL-10 in a peak phase compared to the control, as well as the relative expression of IFN-γ in remission phase was higher than in the onset phase. This was accompanied by an increase in cartilage damage in the peak phase compared to the control. Cells immunostained to MMP3 increased in the peak phase compared to the onset and control group, and relative expression of MMP3 was detected in the peak phase compared to the onset, remission, and control group. We observed that the relative expression of RANK and RANKL in the peak phase was higher than in control and onset phase. Finally, the relative expression of OPG in the peak phase compared to the onset, remission, and control group was detected. Regarding CRAMP behavior in the different phases studied, it was positively correlated with IL-4 and RANK, and showed a negative correlation with IFN-γ, IL-17, IL-10, RANKL, OPG and RANKL/OPG ratio in the control group. Also was positively correlated with IFN-γ, IL-17, IL-4, IL-10, as well as with RANK, RANKL, and OPG in the onset and peak phases of the CIA. In the peak phase, CRAMP showed a positive association with MMP3, and we observed a direct correlation between CRAMP and IFN-γ and RANKL/OPG ratio in remission phase. mBD3 correlates positively with IFN-γ, IL-17, IL-10, RANKL, OPG and RANKL/OPG ratio, and showed a negative correlation with CRAMP, MMP3, and RANK in the control group. Also, it was directly associated with IFN-γ, IL-17, IL-4, IL-10 and RANKL in the onset phase while it was inversely associated with CRAMP, MMP-3, RANK, RANKL, and OPG in the peak phase. Finally, mBD3 was inversely correlated with MMP3 in the remission phase and was directly associated with CRAMP, IFN-γ and RANKL/OPG ratio in this phase. mBD4 was directly associated with CRAMP, IFN-γ, IL-17, IL-4, IL-10, RANKL / OPG in the onset phase, and with CRAMP, IFN-γ, IL-17, IL-4, IL-10, MMP3, RANK, RANKL and OPG in the peak phase. Finally, mBD4 was positively associated with mBD3, IFN-γ, IL-17, IL-10, RANK, RANKL OPG and RANKL/OPG in the CIA remission phase. CONCLUSIONS: Our results demonstrate that CRAMP plays an important role in CIA progress and suggest that its abundance is associated with local pro- and anti-inflammatory status. This makes us propose CRAMP as a possible contributor of bone reconstruction in the last stage of CIA.
Asunto(s)
Artritis/genética , Remodelación Ósea/genética , Catelicidinas/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , beta-Defensinas/genética , Animales , Artritis/inducido químicamente , Artritis/patología , Colágeno Tipo II/toxicidad , Regulación de la Expresión Génica/genética , Humanos , Inflamación/genética , Inflamación/patología , RatonesRESUMEN
Snake venoms are important sources of bioactive molecules, including those with antiparasitic activity. Cathelicidins form a class of such molecules, which are produced by a variety of organisms. Batroxicidin (BatxC) is a cathelicidin found in the venom of the common lancehead (Bothrops atrox). In the present work, BatxC and two synthetic analogues, BatxC(C-2.15Phe) and BatxC(C-2.14Phe)des-Phe1, were assessed for their microbicidal activity. All three peptides showed a broad-spectrum activity on Gram-positive and -negative bacteria, as well as promastigote and amastigote forms of Leishmania (Leishmania) amazonensis. Circular dichroism (CD) and nuclear magnetic resonance (NMR) data indicated that the three peptides changed their structure upon interaction with membranes. Biomimetic membrane model studies demonstrated that the peptides exert a permeabilization effect in prokaryotic membranes, leading to cell morphology distortion, which was confirmed by atomic force microscopy (AFM). The molecules considered in this work exhibited bactericidal and leishmanicidal activity at low concentrations, with the AFM data suggesting membrane pore formation as their mechanism of action. These peptides stand as valuable prototype drugs to be further investigated and eventually used to treat bacterial and protozoal infections.
Asunto(s)
Antibacterianos/farmacología , Péptidos Antimicrobianos/farmacología , Antiprotozoarios/farmacología , Bothrops , Venenos de Serpiente/química , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Péptidos Antimicrobianos/química , Antiprotozoarios/química , Catelicidinas , Células Cultivadas , Leishmania/efectos de los fármacos , Macrófagos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , América del SurRESUMEN
Inefficient autologous tissue recovery in skin wounds increases the susceptibility of patients to infections caused by multidrug resistant microorganisms, resulting in a high mortality rate. Genetic modification of skin cells has become an important field of study because it could lead to the construction of more functional skin grafts, through the overexpression of antimicrobial peptides that would prevent early contamination and infection with bacteria. In this study, we produce and evaluate human skin equivalents (HSEs) containing transfected human primary fibroblasts and keratinocytes by polyplexes to express the antimicrobial peptide LL-37. The effect of LL-37 on the metabolic activity of normal HSEs was evaluated before the construction of the transfected HSEs, and the antimicrobial efficacy against Pseudomonas aeruginosa and Staphylococcus aureus was evaluated. Subsequently, the levels of LL-37 in the culture supernatants of transfected HSEs, as well as the local expression, were determined. It was found that LL-37 treatment significantly promoted the cellular proliferation of HSEs. Furthermore, HSEs that express elevated levels of LL-37 were shown to possess histological characteristics close to the normal skin and display enhanced antimicrobial activity against S. aureus in vitro. These findings demonstrate that HSEs expressing LL-37 through nonviral modification of skin cells are a promising approach for the prevention of bacterial colonization in wounds.
Asunto(s)
Péptidos Antimicrobianos , Staphylococcus aureus , Catelicidinas , Fibroblastos , Humanos , Queratinocitos , PielRESUMEN
Epidemiological studies have associated long-term exposure to environmental air pollution particulate matter (PM) with the development of diverse health problems. They include infectious respiratory diseases related to the deregulation of some innate immune response mechanisms, such as the host defense peptides' expression. Herein, we evaluated in BALB/c mice the effect of long-standing exposure (60 days) to urban-PM from the south of Mexico City, with aerodynamic diameters below 2.5 µm (PM2.5) and 10 µm (PM10) on the lung's gene expression and production of three host defense peptides (HDPs); murine beta-defensin-3, -4 (mBD-3, mBD-4) and cathelin-related antimicrobial peptide (CRAMP). We also evaluated mRNA levels of Il1b and Il10, two cytokines related to the expression of host defense peptides. Exposure to PM2.5 and PM10 differentially induced lung inflammation, being PM2.5, which caused higher inflammation levels, probably associated with a differential deposition on the airways, that facilitate the interaction with alveolar macrophages. Inflammation levels were associated with an early upregulation of the three HDPs assessed and an increment in Il1b mRNA levels. Interestingly, after 28 days of exposure, Il10 mRNA upregulation was observed and was associated with the downregulation of HDPs and Il1b mRNA levels. The upregulation of Il10 mRNA and suppression of HDPs might facilitate microbial colonization and the development of diseases associated with long-term exposure to PM.
Asunto(s)
Contaminantes Atmosféricos/toxicidad , Catelicidinas/metabolismo , Interleucina-1beta/metabolismo , Material Particulado/toxicidad , Neumonía/patología , beta-Defensinas/metabolismo , Animales , Catelicidinas/genética , Interleucina-1beta/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Neumonía/etiología , Neumonía/metabolismo , beta-Defensinas/genéticaRESUMEN
Neutrophil extracellular traps (NETs) are networks of decondensed chromatin loaded with antimicrobial peptides and enzymes produced against microorganisms or biochemical stimuli. Since their discovery, numerous studies made separately have revealed multiple triggers that induce similar NET morphologies allowing to classify them as lytic or non-lytic. However, the variability in NET composition depending on the inducer agent and the local milieu under similar conditions has been scarcely studied. In this work, a comparative study was conducted to evaluate structural and enzymatic divergences in NET composition induced by biochemical (phorbol myristate acetate [PMA] and hypochlorous acid [HOCl]) and microbiologic (Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa) stimuli, along with the presence of plasma from healthy donors or patients with systemic lupus erythematosus (SLE). The results showed a differential composition of DNA and the antimicrobial peptide cathelicidin (LL37) and a variable enzymatic activity (neutrophil elastase, cathepsin G, myeloperoxidase) induced by the different stimuli despite showing morphologically similar NETs. Additionally, SLE plasma´s presence increased DNA and LL37 release during NET induction independently of the trigger stimulus but with no enzymatic activity differences. This work provides new evidence about NET composition variability depending on the inducer stimulus and the local milieu.
Asunto(s)
Trampas Extracelulares/metabolismo , Lupus Eritematoso Sistémico/inmunología , Neutrófilos/metabolismo , Biomarcadores/análisis , Biomarcadores/metabolismo , Candida albicans/inmunología , Estudios de Casos y Controles , Catelicidinas/análisis , Catelicidinas/metabolismo , Catepsina G/análisis , Catepsina G/metabolismo , Células Cultivadas , Trampas Extracelulares/inmunología , Voluntarios Sanos , Humanos , Ácido Hipocloroso/inmunología , Elastasa de Leucocito/análisis , Elastasa de Leucocito/metabolismo , Lupus Eritematoso Sistémico/sangre , Neutrófilos/inmunología , Peroxidasa/análisis , Peroxidasa/metabolismo , Cultivo Primario de Células , Pseudomonas aeruginosa/inmunología , Staphylococcus aureus/inmunología , Acetato de Tetradecanoilforbol/inmunologíaRESUMEN
Several studies have documented the interaction between the immune and endocrine systems as an effective defense strategy against tuberculosis, involving the production of several molecules and immunological processes. In this study, we determined the effect of cortisol and dehydroepiandrosterone (DHEA) on the production of antimicrobial peptides such as cathelicidin and human ß-defensin (HBD) -2, and HBD-3 and their effect on intracellular growth of Mycobacterium tuberculosis (Mtb) in lung epithelial cells and macrophages. Our results showed that DHEA promotes the production of these antimicrobial peptides in infected cells, correlating with the decrease of Mtb bacilli loads. These results suggest the use of exogenous DHEA as an adjuvant for tuberculosis therapy.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/biosíntesis , Deshidroepiandrosterona/farmacología , Hidrocortisona/farmacología , Mycobacterium tuberculosis , beta-Defensinas/biosíntesis , Células A549 , Células Epiteliales/microbiología , Humanos , Macrófagos/microbiología , Células THP-1 , CatelicidinasRESUMEN
Infectious diseases are an important growing public health problem, which perspective has worsened due to the increasing number of drug-resistant strains in the last few years. Although diverse solutions have been proposed, one viable solution could be the use of immune system modulators. The induction of the immune response can be increased by histone deacetylase inhibitors (iHDAC), which in turn modulate the chromatin and increase the activation of different cellular pathways and nuclear factors such as STAT3, HIF-1α NF-kB, C/EBPα and, AP-1. These pathways are capable to promote several immune response-related molecules including those with antimicrobial properties such as antimicrobial peptides (AMPs) that lead to the elimination of pathogens including multi drug-resistant strains.
Asunto(s)
Antiinfecciosos/farmacología , Catelicidinas/metabolismo , Enfermedades Transmisibles/tratamiento farmacológico , Defensinas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Animales , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/patología , Resistencia a Múltiples Medicamentos , HumanosRESUMEN
As components of the innate immune response, antimicrobial peptides (AMPs) efficiently contribute to infection control and maintenance of a latent state in pulmonary tuberculosis (TB). As a therapeutic strategy, the administration of recombinant AMPs could be limited by enzymatic degradation and high production costs. Likewise, strategies based on the induction of AMPs have generated controversial results. In this study, 2 recombinant type-5 adenoviruses (Ad) expressing the human ß-defensin 3 (HßD3) or cathelicidin (LL37) were assessed in a murine pulmonary TB model. Mice infected with either a high dose of a drug-sensitive (H37Rv) or a multidrug-resistant (MDR) strain of Mycobacterium tuberculosis (Mtb) were treated with a single administration of AdHßD3, AdLL37, AdGFP (control vector expressing a green fluorescent protein), or saline solution (SS). Lungs were obtained to determine the bacterial burden, histologic damage, and cytokine expression at different time points. Mice treated with AdHßD3 or AdLL37 showed significantly lower bacterial load and pneumonia, and higher proinflammatory cytokine expression than the control groups AdGFP and SS. A synergistic therapeutic effect could be observed when first- or second-line antibiotics (ABs) were administered with adenoviral therapy in animals infected with H37Rv or MDR strains, respectively. Adenovirus-delivered AMP's administration constitutes a promising adjuvant therapy for current anti-TB drugs by enhancing a protective immune response and potentially reducing current AB regimes' duration.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/administración & dosificación , Antituberculosos/administración & dosificación , Tuberculosis Pulmonar/patología , beta-Defensinas/administración & dosificación , Adenoviridae , Animales , Quimioterapia Combinada/métodos , Vectores Genéticos , Humanos , Ratones , Tuberculosis Resistente a Múltiples Medicamentos/patología , CatelicidinasRESUMEN
Background: Cathelicidins are ancient and well-conserved antimicrobial peptides (AMPs) with intriguing immunomodulatory properties in both infectious and non-infectious inflammatory diseases. In addition to direct antimicrobial activity, cathelicidins also participate in several signaling pathways inducing both pro-inflammatory and anti-inflammatory effects. Acute kidney injury (AKI) is common in critically ill patients and is associated with high mortality and morbidity. Rhabdomyolysis is a major trigger of AKI. Objectives: Here, we investigated the role of cathelicidins in non-infectious Acute kidney Injury (AKI). Method: Using an experimental model of rhabdomyolysis, we induced AKI in wild-type and cathelicidin-related AMP knockout (CRAMP-/-) mice. Results: We previously demonstrated that CRAMP-/- mice, as opposed wild-type mice, are protected from AKI during sepsis induced by cecal ligation and puncture. Conversely, in the current study, we show that CRAMP-/- mice are more susceptible to the rhabdomyolysis model of AKI. A more in-depth investigation of wild-type and CRAMP-/- mice revealed important differences in the levels of several inflammatory mediators. Conclusion: Cathelicidins can induce a varied and even opposing repertoire of immune-inflammatory responses depending on the subjacent disease and the cellular context.