Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.068
Filtrar
1.
PLoS One ; 19(5): e0303872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771780

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is among the top public health concerns in the globe. Estimating the prevalence of multidrug resistance (MDR), MDR index (MDR-I) and extended-spectrum beta-lactamase (ESBL)-producing lactose fermenting Enterobacteriaceae (LFE) is important in designing strategies to combat AMR. Thus, this study was designed to determine the status of MDR, MDR-I and ESBL-producing LFE isolated from the human-dairy interface in the northwestern part of Ethiopia, where such information is lacking. METHODOLOGY: A cross-sectional study was conducted from June 2022 to August 2023 by analyzing 362 samples consisting of raw pooled milk (58), milk container swabs (58), milker's hand swabs (58), farm sewage (57), milker's stool (47), and cow's feces (84). The samples were analyzed using standard bacteriological methods. The antimicrobial susceptibility patterns and ESBL production ability of the LFE isolates were screened using the Kirby-Bauer disk diffusion method, and candidate isolates passing the screening criteria were phenotypically confirmed by using cefotaxime (30 µg) and cefotaxime /clavulanic acid (30 µg/10 µg) combined-disk diffusion test. The isolates were further characterized genotypically using multiplex polymerase chain reaction targeting the three ESBL-encoding- genes namely blaTEM, blaSHV, and blaCTX-M. RESULTS: A total of 375 bacterial isolates were identified and the proportion of MDR and ESBL-producing bacterial isolates were 70.7 and 21.3%, respectively. The MDR-I varied from 0.0 to 0.81 with an average of 0.30. The ESBL production was detected in all sample types. Genotypically, the majority of the isolates (97.5%), which were positive on the phenotypic test, were carrying one or more of the three genes. CONCLUSION: A high proportion of the bacterial isolates were MDR; had high MDR-I and were positive for ESBL production. The findings provide evidence that the human-dairy interface is one of the important reservoirs of AMR traits. Therefore, the implementation of AMR mitigation strategies is highly needed in the area.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Enterobacteriaceae , Lactosa , beta-Lactamasas , Humanos , Etiopía , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/enzimología , Lactosa/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Estudios Transversales , Antibacterianos/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Bovinos , Infecciones por Enterobacteriaceae/microbiología , Cefotaxima/farmacología , Leche/microbiología , Fermentación , Heces/microbiología
2.
Curr Microbiol ; 81(5): 131, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592505

RESUMEN

Fresh vegetables can harbor antibiotic-resistant bacteria, including extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales. Enterobacter hormaechei is a bacterium belonging to the Enterobacterales order and the most commonly identified nosocomial pathogen of Enterobacter cloacae complex. The purpose of this study was to characterize a multi-drug resistant ESBL-producing E. hormaechei strain isolated from a sample of mixed sprouts. Vegetable samples were pre-enriched in buffered peptone water, followed by enrichment in Enterobacteria Enrichment Broth, and isolation on Chromagar™ ESBL plates. One isolate from a sprout sample was confirmed to produce both ESBL and AmpC ß-lactamases through the combination disk diffusion assay using antibiotic disks containing cefotaxime and ceftazidime with or without clavulanate, and with or without cloxacillin, respectively. The isolate was also resistant to multiple antibiotics, including cefotaxime, ceftazidime, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, gentamicin, ampicillin, and amoxicillin-clavulanate, as determined by antimicrobial susceptibility testing. Through whole genome sequencing, the isolate was identified as E. hormaechei 057-E1, which carried multiple antibiotic resistance (AR) genes and a sul2-aph(3″)-Ib-aph(6)-Id-blaTEM-1-ISEcp1 -blaCTX-M-15 gene cluster. Our results further demonstrate the important role of fresh vegetables in AR and highlight the need to develop strategies for AR mitigation in fresh vegetables.


Asunto(s)
Antibacterianos , Ceftazidima , Enterobacter , Antibacterianos/farmacología , Cefotaxima , beta-Lactamasas/genética , Combinación Amoxicilina-Clavulanato de Potasio
3.
Rev. esp. quimioter ; 37(2): 158-162, abr. 2024. tab, graf
Artículo en Inglés | IBECS | ID: ibc-231649

RESUMEN

Objectives. We assessed the in vitro activity of delafloxacin and the synergy between cefotaxime and delafloxacin among cefotaxime non-susceptible invasive isolates of Streptococcus pneumoniae (CNSSP). Material and methods. A total of 30 CNSSP (cefotaxime MIC > 0.5 mg/L) were studied. Serotyping was performed by the Pneumotest-Latex and Quellung reaction. Minimum inhibitory concentrations (MICs) of delafloxacin, levofloxacin, penicillin, cefotaxime, erythromycin and vancomycin were determined by gradient diffusion strips (GDS). Synergistic activity of delafloxacin plus cefotaxime against clinical S. pneumoniae isolates was evaluated by the GDS cross method. Results. Delafloxacin showed a higher pneumococcal activity than its comparator levofloxacin (MIC50, 0.004 versus 0.75 mg/L and MIC90, 0.047 versus >32 mg/L). Resistance to delafloxacin was identified in 7/30 (23.3%) isolates, belonging to serotypes 14 and 9V. Synergy between delafloxacin and cefotaxime was detected in 2 strains (serotypes 19A and 9V). Antagonism was not observed. Addition of delafloxacin increased the activity of cefotaxime in all isolates. Delafloxacin susceptibility was restored in 5/7 (71.4%) strains. Conclusions. CNSSP showed a susceptibility to delafloxacin of 76.7%. Synergistic interactions between delafloxacin and cefotaxime were observed in vitro among CNSSP by GDS cross method. (AU)


Objetivos. Evaluamos la actividad in vitro de delafloxacino y la sinergia entre cefotaxima y delafloxacino entre aislados invasivos de Streptococcus pneumoniae no sensibles a cefotaxima (SPNSC). Material y métodos. Se estudiaron un total de 30 SPNSC (CIM de cefotaxima > 0,5 mg/L). El serotipado se realizó mediante la reacción Pneumotest-Latex y Quellung. Las concentraciones mínimas inhibitorias (CMI) de delafloxacino, levofloxacino, penicilina, cefotaxima, eritromicina y vancomicina se determinaron mediante tiras de difusión en gradiente (GDS). La actividad sinérgica de delafloxacino y cefotaxima frente aislados clínicos de S. pneumoniae se evaluó mediante el método cruzado GDS. Resultados. Delafloxacino mostró una mayor actividad neumocócica que su comparador levofloxacino (CIM50, 0,004 versus 0,75 mg/L y MIC90, 0,047 versus > 32 mg/L). Se identificó resistencia a delafloxacino en 7/30 (23,3%) aislados, pertenecientes a los serotipos 14 y 9V. Se detectó sinergia entre delafloxacino y cefotaxima en 2 cepas (serotipos 19A y 9V). No se observó antagonismo. La adición de delafloxacino aumentó la actividad de cefotaxima en todos los aislados. La sensibilidad a delafloxacino se restableció en 5/7 (71,4%) cepas. Conclusiones. SPNSC mostraron una susceptibilidad a delafloxacino del 76,7%. Se observaron interacciones sinérgicas in vitro entre delafloxacino y cefotaxima entre SPNSC mediante el método cruzado GDS. (AU)


Asunto(s)
Humanos , Streptococcus pneumoniae , Sinergismo Farmacológico , Cefotaxima , Levofloxacino , Penicilinas , Eritromicina , Vancomicina
4.
PLoS One ; 19(4): e0302298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635540

RESUMEN

OBJECTIVE: Underdosing of antibiotics is common in patients with sickle cell disease (SCD). We hypothesized that in critically-ill patients with SCD receiving cefotaxime during acute chest syndrome, the continuous infusion may outperform the intermittent administration in achieving pharmacokinetic/pharmacodynamic targets. DESIGN: Prospective before-after study. SETTINGS: Intensive-care unit of a French teaching hospital and sickle cell disease referral center. PATIENTS: Sixty consecutive episodes of severe acute chest syndrome in 58 adult patients with sickle cell disease. INTERVENTIONS: Patients were treated with intermittent administration during the first period (April 2016 -April 2018) and with continuous infusion during the second period (May 2018 -August 2019). MEASUREMENTS AND MAIN RESULTS: We included 60 episodes of acute chest syndrome in 58 patients (29 [25-34] years, 37/58 (64%) males). Daily dose of cefotaxime was similar between groups (59 [48-88] vs. 61 [57-64] mg/kg/day, p = 0.84). Most patients (>75%) presented a glomerular hyperfiltration with no difference between groups (p = 0.25). More patients had a cefotaxime trough level ≥2 mg/L with continuous infusion than intermittent administration: 28 (93%) vs. 5 (16%), p<0.001. The median residual concentration was higher in the continuous infusion than intermittent administration group: 10.5 [7.4-13.3] vs. 0 [0-0] mg/L, p<0.001. No infection relapse was observed in the entire cohort. Hospital length of stay was similar between groups. CONCLUSION: As compared to intermittent administration, continuous infusion of cefotaxime maximizes the pharmacokinetic/pharmacodynamic parameters in patients with SCD. The clinical outcome did not differ between the two administration methods; however, the study was underpowered to detect such a difference.


Asunto(s)
Síndrome Torácico Agudo , Anemia de Células Falciformes , Masculino , Adulto , Humanos , Femenino , Cefotaxima/uso terapéutico , Síndrome Torácico Agudo/tratamiento farmacológico , Estudios Prospectivos , Antibacterianos/farmacología , Anemia de Células Falciformes/tratamiento farmacológico , Infusiones Intravenosas , Enfermedad Crítica/terapia
5.
Sex Transm Infect ; 100(3): 173-180, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38575313

RESUMEN

OBJECTIVES: International travel combined with sex may contribute to dissemination of antimicrobial-resistant (AMR) Neisseria gonorrhoeae (Ng). To assess the role of travel in Ng strain susceptibility, we compared minimum inhibitory concentrations (MICs) for five antibiotics (ie, azithromycin, ceftriaxone, cefotaxime, cefixime and ciprofloxacin) in strains from clients with an exclusively Dutch sexual network and clients with an additional international sexual network. METHODS: From 2013 to 2019, we recorded recent residence of sexual partners of clients (and of their partners) with Ng at the Center for Sexual Health of Amsterdam. We categorised clients as having: (1) exclusively sexual partners residing in the Netherlands ('Dutch only') or (2) at least one partner residing outside the Netherlands. We categorised the country of residence of sexual partners by World Bank/EuroVoc regions. We analysed the difference of log-transformed MIC of Ng strains between categories using linear or hurdle regression for each antibiotic. RESULTS: We included 3367 gay and bisexual men who had sex with men (GBMSM), 516 women and 525 men who exclusively had sex with women (MSW) with Ng. Compared with GBMSM with a 'Dutch only' network, GBMSM with: (1) a Western European network had higher MICs for ceftriaxone (ß=0.19, 95% CI=0.08 to 0.29), cefotaxime (ß=0.19, 95% CI=0.08 to 0.31) and cefixime (ß=0.06, 95% CI=0.001 to 0.11); (2) a Southern European network had a higher MIC for cefixime (ß=0.10, 95% CI=0.02 to 0.17); and (3) a sub-Saharan African network had a lower MIC for ciprofloxacin (ß=-1.79, 95% CI=-2.84 to -0.74). In women and MSW, higher MICs were found for ceftriaxone in clients with a Latin American and Caribbean network (ß=0.26, 95% CI=0.02 to 0.51). CONCLUSIONS: For three cephalosporin antibiotics, we found Ng strains with slightly higher MICs in clients with partner(s) from Europe or Latin America and the Caribbean. International travel might contribute to the spread of Ng with lower susceptibility. More understanding of the emergence of AMR Ng is needed.


Asunto(s)
Antiinfecciosos , Gonorrea , Salud Sexual , Masculino , Femenino , Humanos , Neisseria gonorrhoeae , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Cefixima/farmacología , Gonorrea/tratamiento farmacológico , Gonorrea/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Azitromicina/farmacología , Cefotaxima/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana
6.
Front Cell Infect Microbiol ; 14: 1353433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558854

RESUMEN

Objective: To analyze the clinical epidemiological characteristics including clinical features, disease prognosis of pneumococcal meningitis (PM), and drug sensitivity of S. pneumoniae isolates in Chinese children. Methods: A retrospective analysis was performed on the clinical, laboratory microbiological data of 160 hospitalized children less than 15 years of age with PM from January 2019 to December 2020 in 33 tertiary hospitals in China. Results: A total of 160 PM patients were diagnosed, including 103 males and 57 females The onset age was 15 days to 15 years old, and the median age was 1 year and 3 months. There were 137 cases (85.6%) in the 3 months to <5 years age group, especially in the 3 months to <3 years age group (109 cases, 68.2%); S. pneumoniae was isolated from cerebrospinal fluid (CSF) culture in 95(35.6%), and 57(35.6%) in blood culture. The positive rates of S. pneumoniae detection by CSF metagenomic next-generation sequencing (mNGS)and antigen detection method were 40.2% (35/87) and 26.9% (21/78). Fifty-five cases (34.4%) had one or more predisposing factors of bacterial meningitis; and 113 cases (70.6%) had one or more extracranial infection diseases Fever (147, 91.9%) was the most common clinical symptom, followed by vomiting (61, 38.1%) and altered mental status (47,29.4%). Among 160 children with PM, the main intracranial imaging complications were subdural effusion and (or) empyema in 43 cases (26.9%), hydrocephalus in 24 cases (15.0%), cerebral abscess in 23 cases (14.4%), intracranial hemorrhage in 8 cases (5.0%), and other cerebrovascular diseases in 13 cases (8.1%) including encephalomalacia, cerebral infarction, and encephalatrophy. Subdural effusion and (or) empyema and hydrocephalus mainly occurred in children < 1 years old (90.7% (39/43) and 83.3% (20/24), respectively). 17 cases with PM (39.5%) had more than one intracranial imaging abnormality. S. pneumoniae isolates were completely sensitive to vancomycin (100.0%, 75/75), linezolid (100.0%,56/56), ertapenem (6/6); highly sensitive to levofloxacin (81.5%, 22/27), moxifloxacin (14/17), rifampicin (96.2%, 25/26), and chloramphenicol (91.3%, 21/23); moderately sensitive to cefotaxime (56.1%, 23/41), meropenem (51.1%, 23/45) and ceftriaxone (63.5, 33/52); less sensitive to penicillin (19.6%, 27/138) and clindamycin (1/19); completely resistant to erythromycin (100.0%, 31/31). The cure and improvement rate were 22.5% (36/160)and 66.3% (106/160), respectively. 18 cases (11.3%) had an adverse outcome, including 6 cases withdrawing treatment therapy, 5 cases unhealed, 5 cases died, and 2 recurrences. S. pneumoniae was completely susceptible to vancomycin (100.0%, 75/75), linezolid (100.0%, 56/56), and ertapenem (6/6); susceptible to cefotaxime, meropenem, and ceftriaxone in the order of 56.1% (23/41), 51.1% (23/45), and 63.5 (33/52); completely resistant to erythromycin (100.0%, 31/31). Conclusion: Pediatric PM is more common in children aged 3 months to < 3 years old. Intracranial complications mostly occur in children < 1 year of age with fever being the most common clinical manifestations and subdural effusion and (or) empyema and hydrocephalus being the most common complications, respectively. CSF non-culture methods can facilitate improving the detection rate of pathogenic bacteria. More than 10% of PM children had adverse outcomes. S. pneumoniae strains are susceptible to vancomycin, linezolid, ertapenem, levofloxacin, moxifloxacin, rifampicin, and chloramphenicol.


Asunto(s)
Empiema , Hidrocefalia , Meningitis Bacterianas , Meningitis Neumocócica , Efusión Subdural , Adolescente , Niño , Femenino , Humanos , Lactante , Masculino , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cefotaxima , Ceftriaxona/uso terapéutico , Cloranfenicol , Empiema/tratamiento farmacológico , Ertapenem/uso terapéutico , Eritromicina/uso terapéutico , Hidrocefalia/tratamiento farmacológico , Levofloxacino , Linezolid/uso terapéutico , Meningitis Bacterianas/diagnóstico , Meningitis Neumocócica/diagnóstico , Meningitis Neumocócica/tratamiento farmacológico , Meningitis Neumocócica/epidemiología , Meropenem/uso terapéutico , Pruebas de Sensibilidad Microbiana , Moxifloxacino/uso terapéutico , Estudios Retrospectivos , Rifampin , Efusión Subdural/tratamiento farmacológico , Vancomicina , Recién Nacido , Preescolar
7.
Appl Environ Microbiol ; 90(5): e0212823, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38572968

RESUMEN

Escherichia coli is a promising subject for globally coordinated surveillance of antimicrobial resistance (AMR) in water environments due to its clinical relevance and widespread use as an indicator of fecal contamination. Cefotaxime-resistant E. coli was recently evaluated favorably for this purpose by the World Health Organization TriCycle Protocol, which specifies tryptone bile x-glucuronide (TBX) medium and incubation at 35°C. We assessed comparability with the U.S. Environmental Protection Agency-approved method for E. coli quantification, which uses membrane-thermotolerant E. coli (mTEC) agar and incubation at 44.5°C, in terms of recovery of E. coli and cefotaxime-resistant E. coli from wastewater influent and surface waters. Total E. coli concentrations in wastewater influent were 106-108 CFU/100 mL, while cefotaxime-resistant E. coli were ~100-fold lower. Total E. coli in surface waters were ~102 CFU/100 mL, and cefotaxime-resistant isolates were near the limit of detection (0.4 CFU/100 mL). Total and putative cefotaxime-resistant E. coli concentrations did not differ significantly between media or by incubation method; however, colonies isolated on mTEC were more frequently confirmed to species (97.1%) compared to those from TBX (92.5%). Incubation in a water bath at 44.5°C significantly decreased non-specific background growth and improved confirmation frequency on both media (97.4%) compared to incubation at 35°C (92.3%). This study helps to advance globally coordinated AMR in water environments and suggests that the TriCycle Protocol is adaptable to other standard methods that may be required in different locales, while also offering a means to improve specificity by decreasing the frequency of false-positive identification of cefotaxime-resistant E. coli by modifying incubation conditions.IMPORTANCEAs antibiotic-resistant bacteria in water environments are increasingly recognized as contributors to the global antibiotic resistance crisis, the need for a monitoring subject that captures antibiotic resistance trends on a global scale increases. The World Health Organization TriCycle Protocol proposes the use of cefotaxime-resistant Escherichia coli isolated on tryptone bile x-glucuronide agar. The U.S. Environmental Protection Agency (USEPA) criteria for safe recreational waters also use E. coli as an indicator but specify the use of mTEC agar at a higher incubation temperature (44.5°C vs 35°C). We assessed the comparability of these methods for isolating total and cefotaxime-resistant E. coli, finding overall good agreement and performance, but significantly higher specificity toward E. coli selection with the use of the USEPA incubation protocol and mTEC agar. This study is the first to directly compare these methods and provides evidence that the methods may be used interchangeably for global surveillance of antibiotic resistance in the environment.


Asunto(s)
Antibacterianos , Cefotaxima , Escherichia coli , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Escherichia coli/genética , Cefotaxima/farmacología , Antibacterianos/farmacología , Microbiología del Agua , Monitoreo del Ambiente/métodos , Farmacorresistencia Bacteriana , Aguas Residuales/microbiología , Medios de Cultivo/química
8.
Nat Commun ; 15(1): 3327, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637501

RESUMEN

Many organismal traits are genetically determined and covary in evolving populations. The resulting trait correlations can either help or hinder evolvability - the ability to bring forth new and adaptive phenotypes. The evolution of evolvability requires that trait correlations themselves must be able to evolve, but we know little about this ability. To learn more about it, we here study two evolvable systems, a yellow fluorescent protein and the antibiotic resistance protein VIM-2 metallo beta-lactamase. We consider two traits in the fluorescent protein, namely the ability to emit yellow and green light, and three traits in our enzyme, namely the resistance against ampicillin, cefotaxime, and meropenem. We show that correlations between these traits can evolve rapidly through both mutation and selection on short evolutionary time scales. In addition, we show that these correlations are driven by a protein's ability to fold, because single mutations that alter foldability can dramatically change trait correlations. Since foldability is important for most proteins and their traits, mutations affecting protein folding may alter trait correlations mediated by many other proteins. Thus, mutations that affect protein foldability may also help shape the correlations of complex traits that are affected by hundreds of proteins.


Asunto(s)
Ampicilina , Proteínas , Mutación , Fenotipo , Ampicilina/farmacología , Cefotaxima , Evolución Biológica
9.
Sci Total Environ ; 926: 171899, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38527537

RESUMEN

Synanthropic bird species in human, poultry or livestock environments can increase the spread of pathogens and antibiotic-resistant bacteria between wild and domestic animals. We present the first telemetry-based spatial networks for a small songbird. We quantified landscape connectivity exerted by spotless starling movements, and aimed to determine if connectivity patterns were related to carriage of potential pathogens. We captured 28 starlings on a partridge farm in 2020 and tested them for Avian influenza virus, West Nile virus WNV, Avian orthoavulavirus 1, Coronavirus, Salmonella spp. and Escherichia coli. We did not detect any viruses or Salmonella, but one individual had antibodies against WNV or cross-reacting Flaviviruses. We found E. coli in 61 % (17 of 28) of starlings, 76 % (13 of 17) of which were resistant to gentamicin, 12 % (2 of 17) to cefotaxime/enrofloxacin and 6 % (1 of 17) were phenotypic extended spectrum beta-lactamase (ESBL) carriers. We GPS-tracked 17 starlings and constructed spatial networks showing how their movements (i.e. links) connect different farms with nearby urban and natural habitats (i.e. nodes with different attributes). Using E. coli carriage as a proxy for acquisition/dispersal of bacteria, we found differences across spatial networks constructed for E. coli positive (n = 7) and E. coli negative (n = 9) starlings. We used Exponential Random Graph Models to reveal significant differences between networks. In particular, an urban roost was more connected to other sites by movements of E. coli positive than by movements of E. coli negative starlings. Furthermore, an open pine forest used mainly for roosting was more connected to other sites by movements of E. coli negative than by movements of E. coli positive starlings. Using E. coli as a proxy for a potential pathogen carried by starlings, we reveal the pathways of spread that starlings could provide between farms, urban and natural habitats.


Asunto(s)
Escherichia coli , Estorninos , Animales , Humanos , Animales Salvajes/microbiología , Estorninos/microbiología , Antibacterianos , Cefotaxima , Bacterias , beta-Lactamasas
10.
BMC Genomics ; 25(1): 287, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500034

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) remains a significant global health threat particularly impacting low- and middle-income countries (LMICs). These regions often grapple with limited healthcare resources and access to advanced diagnostic tools. Consequently, there is a pressing need for innovative approaches that can enhance AMR surveillance and management. Machine learning (ML) though underutilized in these settings, presents a promising avenue. This study leverages ML models trained on whole-genome sequencing data from England, where such data is more readily available, to predict AMR in E. coli, targeting key antibiotics such as ciprofloxacin, ampicillin, and cefotaxime. A crucial part of our work involved the validation of these models using an independent dataset from Africa, specifically from Uganda, Nigeria, and Tanzania, to ascertain their applicability and effectiveness in LMICs. RESULTS: Model performance varied across antibiotics. The Support Vector Machine excelled in predicting ciprofloxacin resistance (87% accuracy, F1 Score: 0.57), Light Gradient Boosting Machine for cefotaxime (92% accuracy, F1 Score: 0.42), and Gradient Boosting for ampicillin (58% accuracy, F1 Score: 0.66). In validation with data from Africa, Logistic Regression showed high accuracy for ampicillin (94%, F1 Score: 0.97), while Random Forest and Light Gradient Boosting Machine were effective for ciprofloxacin (50% accuracy, F1 Score: 0.56) and cefotaxime (45% accuracy, F1 Score:0.54), respectively. Key mutations associated with AMR were identified for these antibiotics. CONCLUSION: As the threat of AMR continues to rise, the successful application of these models, particularly on genomic datasets from LMICs, signals a promising avenue for improving AMR prediction to support large AMR surveillance programs. This work thus not only expands our current understanding of the genetic underpinnings of AMR but also provides a robust methodological framework that can guide future research and applications in the fight against AMR.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Ampicilina , Cefotaxima , Aprendizaje Automático , Nigeria
11.
Arch Microbiol ; 206(4): 194, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538852

RESUMEN

The simultaneous development of antibiotic resistance in bacteria due to metal exposure poses a significant threat to the environment and human health. This study explored how exposure to both arsenic and antibiotics affects the ability of an arsenite oxidizer, Achromobacter xylosoxidans CAW4, to transform arsenite and its antibiotic resistance patterns. The bacterium was isolated from arsenic-contaminated groundwater in the Chandpur district of Bangladesh. We determined the minimum inhibitory concentration (MIC) of arsenite, cefotaxime, and tetracycline for A. xylosoxidans CAW4, demonstrating a multidrug resistance (MDR) trait. Following this determination, we aimed to mimic an environment where A. xylosoxidans CAW4 was exposed to both arsenite and antibiotics. We enabled the strain to grow in sub-MIC concentrations of 1 mM arsenite, 40 µg/mL cefotaxime, and 20 µg/mL tetracycline. The expression dynamics of the arsenite oxidase (aioA) gene in the presence or absence of antibiotics were analyzed. The findings indicated that simultaneous exposure to arsenite and antibiotics adversely affected the bacteria's capacity to metabolize arsenic. However, when arsenite was present in antibiotics-containing media, it promoted bacterial growth. The study observed a global downregulation of the aioA gene in arsenic-antibiotic conditions, indicating the possibility of increased susceptibility through co-resistance across the entire bacterial population of the environment. This study interprets that bacterial arsenic-metabolizing ability can rescue the bacteria from antibiotic stress, further disseminating environmental cross-resistance. Therefore, the co-selection of metal-driven antibiotic resistance in bacteria highlights the need for effective measures to address this emerging threat to human health and the environment.


Asunto(s)
Arsénico , Arsenitos , Humanos , Arsénico/farmacología , Arsénico/metabolismo , Arsenitos/farmacología , Arsenitos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias , Metales/farmacología , Metales/metabolismo , Farmacorresistencia Microbiana , Cefotaxima/metabolismo , Cefotaxima/farmacología , Tetraciclinas/metabolismo , Tetraciclinas/farmacología
12.
Infect Dis (Lond) ; 56(6): 451-459, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436273

RESUMEN

BACKGROUND: Only about 50% of intensive care unit (ICU) patients reach a free trough concentration above MIC (100% fT > MIC) of beta-lactam antibiotics. Although dose adjustments based on therapeutic drug monitoring (TDM) could be beneficial, TDM is not widely available. We investigated serum creatinine-based estimated GFR (eGFR) as a rapid screening tool to identify ICU patients at risk of insufficient exposure. METHOD: Ninety-three adult patients admitted to four ICUs in southeast Sweden treated with piperacillin/tazobactam, meropenem, or cefotaxime were included. Beta-lactam trough concentrations were measured. The concentration target was set to 100% fT > MICECOFF (2, 4, and 16 mg/L based on calculated free levels for meropenem, cefotaxime, and piperacillin, respectively). eGFR was primarily determined via Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) and compared to three other eGFR equations. Data was analysed using logistic regression and receiver operative characteristic (ROC) curves. RESULTS: With intermittent standard dosing, insufficient exposure was common in patients with a relative eGFR ≥48mL/min/1.73m2 [85%, (45/53)], particularly when treated with cefotaxime [96%, (24/25)]. This eGFR cut-off had a sensitivity of 92% and specificity of 82% (AUC 0.871, p < 0.001) in identifying insufficient exposure. In contrast, patients with eGFR <48mL/min/1.73m2 had high target attainment [90%, (36/40)] with a wide variability in drug exposure. There was no difference between the four eGFR equations (AUC 0.866-0.872, cut-offs 44-51 ml/min/1.73m2). CONCLUSION: Serum creatinine-based eGFR is a simple and widely available surrogate marker with potential for early identification of ICU patients at risk of insufficient exposure to piperacillin, meropenem, and cefotaxime.


Asunto(s)
Tasa de Filtración Glomerular , Unidades de Cuidados Intensivos , Antibióticos Betalactámicos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antibióticos Betalactámicos/administración & dosificación , Cefotaxima/sangre , Cefotaxima/uso terapéutico , Creatinina/sangre , Monitoreo de Drogas/métodos , Tasa de Filtración Glomerular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Curva ROC , Suecia
13.
J Pharm Biomed Anal ; 243: 116106, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492511

RESUMEN

With significant advancements in high-resolution mass spectrometry, there has been a substantial increase in the amount of chemical component data acquired from natural products. Therefore, the rapid and efficient extraction of valuable mass spectral information from large volumes of high-resolution mass spectrometry data holds crucial significance. This study illustrates a targeted annotation of the metabolic products of alkaloid and sesquiterpene components from Dendrobium nobile (D. nobile) aqueous extract in mice serum through the integration of an in-houses database, R programming, a virtual metabolic product library, polygonal mass defect filtering, and Kendrick mass defect strategies. The research process involved initially establishing a library of alkaloids and sesquiterpenes components and simulating 71 potential metabolic reactions within the organism using R programming, thus creating a virtual metabolic product database. Subsequently, employing the virtual metabolic product library allowed for polygonal mass defect filtering, rapidly screening 1705 potential metabolites of alkaloids and 3044 potential metabolites of sesquiterpenes in the serum. Furthermore, based on the chemical composition database of D. nobile and online mass spectrometry databases, 95 compounds, including alkaloids, sesquiterpenes, and endogenous components, were characterized. Finally, utilizing Kendrick mass defect analysis in conjunction with known alkaloids and sesquiterpenes targeted screening of 209 demethylation, methylation, and oxidation products in phase I metabolism, and 146 glucuronidation and glutathione conjugation products in phase II metabolism. This study provides valuable insights for the rapid and accurate annotation of chemical components and their metabolites in vivo within natural products.


Asunto(s)
Alcaloides , Productos Biológicos , Dendrobium , Sesquiterpenos , Animales , Ratones , Dendrobium/química , Sesquiterpenos/química , Cefotaxima
14.
Sci Rep ; 14(1): 2730, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302620

RESUMEN

In Uganda, the challenge of generating and timely reporting essential antimicrobial resistance (AMR) data has led to overreliance on empirical antibiotic therapy, exacerbating the AMR crisis. To address this issue, this study aimed to adapt a one-step AMR testing protocol alongside an SMS (Short Message Service) result relay system (SRRS), with the potential to reduce the turnaround time for AMR testing and result communication from 4 days or more to 1 day in Ugandan clinical microbiology laboratories. Out of the 377 samples examined, 54 isolates were obtained. Notably, E. coli (61%) and K. pneumoniae (33%) were the most frequently identified, majority testing positive for ESBL. Evaluation of three AMR testing protocols revealed varying sensitivity and specificity, with Protocol A (ChromID ESBL-based) demonstrating high sensitivity (100%) but no calculable specificity, Protocol B (ceftazidime-based) showing high sensitivity (100%) and relatively low specificity (7.1%), and Protocol C (cefotaxime-based) exhibiting high sensitivity (97.8%) but no calculable specificity. ESBL positivity strongly correlated with resistance to specific antibiotics, including cefotaxime, ampicillin, and aztreonam (100%), cefuroxime (96%), ceftriaxone (93%), and trimethoprim sulfamethoxazole (87%). The potential of integrating an SRRS underscored the crucial role this could have in enabling efficient healthcare communication in AMR management. This study underscores the substantial potential of the tested protocols for accurately detecting ESBL production in clinical samples, potentially, providing a critical foundation for predicting and reporting AMR patterns. Although considerations related to specificity warrant careful assessment before widespread clinical adoption.


Asunto(s)
Enterobacteriaceae , Escherichia coli , Humanos , Uganda , beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Klebsiella pneumoniae , Cefotaxima , Pruebas de Sensibilidad Microbiana
15.
Acta Anaesthesiol Scand ; 68(4): 530-537, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407447

RESUMEN

INTRODUCTION: Antibiotic concentration target attainment is known to be poor in critically ill patients. Dose adjustment is recommended in patients with altered clearance, obesity and those with bacterial species with intermediate susceptibility. The aim of this study was to investigate the variation of antibiotic concentration in critically ill patients with standard or adjusted dosing regimens. METHODS: The concentration of three beta-lactam antibiotics used in the intensive care unit (ICU) setting, cefotaxime, piperacillin/tazobactam, and meropenem, was measured in patients with confirmed or suspected infection. Mid-dose and trough values were collected during a single dosing interval. The pharmacokinetic endpoints were a free antibiotic concentration that, during the whole dosing interval, was above MIC (100% ƒT > MIC, primary endpoint) or above four times MIC (100% ƒT > 4MIC, secondary endpoint). Non-species related MIC breakpoints were used (1 mg/L for cefotaxime, 8 mg/L for piperacillin/tazobactam, and 2 mg/L for meropenem). RESULTS: We included 102 patients (38 cefotaxime, 30 piperacillin/tazobactam, and 34 meropenem) at a single ICU, with a median age of 66 years. In total, 73% were males, 40% were obese (BMI ≥30) and the median SAPS 3 score was 63 points. Of all patients, 78 patients (76%) reached the primary endpoint (100%ƒT > MIC), with 74% for cefotaxime, 67% for piperacillin/tazobactam and 88% for meropenem. Target attainment for 100% ƒT > 4MIC was achieved in 40 (39%) patients, overall, with 34% for cefotaxime, 30% for piperacillin/tazobactam and 53% for meropenem. In patients with standard dose 71% attained 100%ƒT > MIC and 37% for 100%ƒT > 4MIC. All patients with reduced dose attained 100%ƒT > MIC and 27% attained 100% ƒT > 4MIC. In patients with increased dose 79% attained 100%ƒT > MIC and 48% 100%ƒT > 4MIC respectively. CONCLUSIONS: Beta-lactam antibiotics concentration vary widely in critically ill patients. The current standard dosing regimens employed during the study were not sufficient to reach 100% ƒT > MIC in approximately a quarter of the patients. In patients where dose adjustment was performed, the group with increased dose also had low target attainment, as opposed to patients with dose reduction, who all reached target. This suggests the need for further individualization of dosing where therapeutic drug monitoring can be an alternative to further increase target attainment.


Asunto(s)
Enfermedad Crítica , Piperacilina , Masculino , Humanos , Anciano , Femenino , Meropenem/farmacocinética , Piperacilina/farmacocinética , Enfermedad Crítica/terapia , Antibacterianos/uso terapéutico , Combinación Piperacilina y Tazobactam , Monobactamas , Cefotaxima , Antibióticos Betalactámicos
16.
Medicine (Baltimore) ; 103(3): e36938, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241533

RESUMEN

BACKGROUND: Multidrug-resistant Escherichia coli infections are a global health challenge, notably in North America, Europe, Asia, and Africa. This systematic review and meta-analysis evaluates the effectiveness and safety of cefotaxime combined with avibactam, aiming to mitigate these infections' impact and lessen their burden on healthcare systems worldwide. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and PICO frameworks, we conducted a comprehensive literature search across 4 primary databases on May 6, 2023. Studies evaluating the efficacy and safety of cefotaxime and avibactam were included. Key outcomes included treatment success, adverse effects, and microbiological eradication. Quality assessment utilized the Cochrane Collaboration Risk of Bias instrument. Heterogeneity was analyzed using chi-square statistics and the I2 index. Both fixed- and random-effects models were applied as appropriate. Publication bias was rigorously evaluated using Egger linear regression test and funnel plot analysis, ensuring the study's integrity and reliability. RESULTS: The clinical cure rate derived from 8 studies showed no significant difference between the treatment groups (odds ratio [OR] = 1.97, 95% CI: 0.69 to 1.36, P = .86). Analysis of the bacterial clearance rate from the 5 studies also indicated no significant difference (OR = 0.97, 95% CI: 0.42 to 2.25, P = .36). Notably, a reduced mortality rate favoring the experimental group was observed in 6 studies (OR = 0.64, 95% CI: 0.44 to 0.92, P = .012). Comprehensive sensitivity analyses and the assessment of publication bias strengthened the reliability of the results. CONCLUSIONS: Ceftazidime combined with avibactam significantly reduced mortality among patients with multidrug-resistant Escherichia coli infections, indicating its potential as a therapeutic option, especially for carbapenem-resistant Enterobacteriaceae. However, extensive large-scale clinical trials are required to validate these findings.


Asunto(s)
Antibacterianos , Infecciones por Escherichia coli , Humanos , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Compuestos de Azabiciclo/efectos adversos , Compuestos de Azabiciclo/uso terapéutico , Cefotaxima/efectos adversos , Cefotaxima/uso terapéutico , Ceftazidima/efectos adversos , Ceftazidima/uso terapéutico , Combinación de Medicamentos , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Reproducibilidad de los Resultados
17.
J Hosp Infect ; 145: 165-173, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286237

RESUMEN

BACKGROUND: Population-based sewage surveillance has emerged as a promising approach for studying the prevalence of antibiotic resistance in pathogens. AIM: To determine the temporal prevalence of cefotaxime-resistant Escherichia coli in sewage from five sewage treatment plants located in Bergen city, to determine whether ESBL- and carbapenemase-producing E. coli are consistently disseminated in the receiving environment through sewage. METHOD: A total of 569 cefotaxime-resistant E. coli were isolated over a period of 19 months (August 2020 to February 2022) using ECC CHROMagar™ plates from 82 samples, antibiotic sensitivity profiles were determined, using Sensititre™ plates. The draft genome sequences were determined, using Illumina MiSeq-based sequencing. Complete genome sequences were determined, using Oxford Nanopore-based sequencing. FINDINGS: All 569 strains obtained from influent (N=461) and effluent (N=108) were multi-drug resistant. Most of the sequenced strains (52 of 61) carried blaCTX-M-15 (38.5%) and blaCTX-M-27 (34.6%). The most prevalent sequence types (STs) for ESBL-carrying strains were ST131 (32.8%) and ST38 (21.3%). All CTX-M-27-carrying ST131 strains belonged to clade A or C1, while CTX-M-15-harbouring strains were present in all the clades. Five OXA-244-producing ST38 strains, genetically similar to epidemic-causing strains from Western Norway, France and the Netherlands, were isolated only from raw and treated sewage of the treatment plant receiving hospital sewage. CONCLUSION: This is the first study showing persistent dissemination of OXA-244-producing ST38 clones through sewage in Norway, demonstrating that hospital sewage is the likely source of OXA-244-producing ST38 clones reaching the receiving environment.


Asunto(s)
Proteínas Bacterianas , Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Escherichia coli , Humanos , Escherichia coli/genética , Aguas del Alcantarillado , Infecciones por Escherichia coli/epidemiología , beta-Lactamasas/genética , Antibacterianos , Cefotaxima , Hospitales , Pruebas de Sensibilidad Microbiana
18.
Pediatr Infect Dis J ; 43(4): 351-354, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241650

RESUMEN

INTRODUCTION: The persistent patency of the ductus arteriosus frequently occurs in premature neonates and can cause infective endocarditis (IE) or ductal endarteritis (DE) during sepsis. Even though neonatal IE and DE are believed to be a rare eventuality, their incidence has been increasing in the last decades due to the improved survival of even more preterm babies, favored by highly invasive procedures and therapies. In parallel, antimicrobial resistance is another rising problem in neonatal intensive care units, which frequently compels to treat infections with broad-spectrum or last generation antibiotics. CASE PRESENTATION: We report the case of a preterm neonate affected by patent ductus arteriosus-associated DE that followed an episode of sepsis caused by a high-level aminoglycoside-resistant enterococcus. The neonate was successfully treated with the synergistic combination of ampicillin and cefotaxime. DISCUSSION: IE and patent ductus arteriosus-associated DE are rising inside neonatal intensive care units and neonatologists should be aware of these conditions. Enterococcal IE and patent ductus arteriosus-associated DE sustained by high-level aminoglycoside-resistant strains can be successfully treated with the synergistic combination of ampicillin and cefotaxime even in preterm neonates.


Asunto(s)
Conducto Arterioso Permeable , Endarteritis , Endocarditis Bacteriana , Endocarditis , Sepsis , Recién Nacido , Humanos , Conducto Arterioso Permeable/complicaciones , Conducto Arterioso Permeable/tratamiento farmacológico , Endocarditis Bacteriana/diagnóstico , Endocarditis Bacteriana/tratamiento farmacológico , Antibacterianos/uso terapéutico , Ampicilina/uso terapéutico , Cefotaxima , Aminoglicósidos
19.
Rev Esp Quimioter ; 37(2): 158-162, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38226580

RESUMEN

OBJECTIVE: We assessed the in vitro activity of delafloxacin and the synergy between cefotaxime and delafloxacin among cefotaxime non-susceptible invasive isolates of Streptococcus pneumoniae (CNSSP). METHODS: A total of 30 CNSSP (cefotaxime MIC > 0.5 mg/L) were studied. Serotyping was performed by the Pneumotest-Latex and Quellung reaction. Minimum inhibitory concentrations (MICs) of delafloxacin, levofloxacin, penicillin, cefotaxime, erythromycin and vancomycin were determined by gradient diffusion strips (GDS). Synergistic activity of delafloxacin plus cefotaxime against clinical S. pneumoniae isolates was evaluated by the GDS cross method. RESULTS: Delafloxacin showed a higher pneumococcal activity than its comparator levofloxacin (MIC50, 0.004 versus 0.75 mg/L and MIC90, 0.047 versus >32 mg/L). Resistance to delafloxacin was identified in 7/30 (23.3%) isolates, belonging to serotypes 14 and 9V. Synergy between delafloxacin and cefotaxime was detected in 2 strains (serotypes 19A and 9V). Antagonism was not observed. Addition of delafloxacin increased the activity of cefotaxime in all isolates. Delafloxacin susceptibility was restored in 5/7 (71.4%) strains. CONCLUSIONS: CNSSP showed a susceptibility to delafloxacin of 76.7%. Synergistic interactions between delafloxacin and cefotaxime were observed in vitro among CNSSP by GDS cross method.


Asunto(s)
Cefotaxima , Fluoroquinolonas , Infecciones Neumocócicas , Humanos , Cefotaxima/farmacología , Streptococcus pneumoniae , Antibacterianos/farmacología , Levofloxacino/farmacología , Pruebas de Sensibilidad Microbiana , Serotipificación
20.
Arch Microbiol ; 206(2): 67, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236396

RESUMEN

Antibiotics are commonly used in clinical practice to treat bacterial infections. Due to the abuse of antibiotics, the emergence of drug-resistant strains, such as cefotaxime sodium-resistant Escherichia coli (CSR-EC), has aggravated the treatment of diseases caused by bacterial infections in the clinic. Therefore, discovering new drug candidates with unique mechanisms of action is imperative. Chlorogenic acid (CGA) is an active component of Yinhua Pinggan Granule, which has antioxidant and anti-inflammatory effects. We chose the CGA to explore its effects on PANoptosis in cultured macrophages infected with CSR-EC. In this study, we explored the protective impact of CGA on macrophage cell damage generated by CSR-EC infection and the potential molecular mechanistic consequences of post-infection therapy with CGA on the PANoptosis pathway. Our findings demonstrated that during CSR-EC-induced macrophage infection, CGA dramatically increased cell survival. CGA can inhibit pro-inflammatory cytokine expression of IL-1ß, IL-18, TNF-α, and IL-6. CGA decreased ROS generation and increased Nrf-2 expression at the gene and protein levels to lessen the cell damage and death brought on by CSR-EC infection. Additionally, we discovered that the proteins Caspase-3, Caspase-7, Caspase-8, Caspase-1, GSDMD, NLRP-3, RIPK-3, and MLKL were all inhibited by CGA. In summary, our research suggests that CGA is a contender for reducing lesions brought on by CSR-EC infections and that it can work in concert with antibiotics to treat CSR-EC infections clinically. However, further research on its mechanism of action is still needed.


Asunto(s)
Infecciones Bacterianas , Cefotaxima , Humanos , Cefotaxima/farmacología , Ácido Clorogénico/farmacología , Antibacterianos/farmacología , Escherichia coli/genética , Macrófagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...