Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
Cancer Med ; 13(16): e70111, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39189437

RESUMEN

INTRODUCTION: Peritumoral brain edema (PTBE) has been widely reported with many brain tumors, especially with glioma. Since the blood-brain barrier (BBB) is essential for maintaining minimal permeability, any alteration in the interaction of BBB components, specifically in astrocytes and tight junctions (TJ), can result in disrupting the homeostasis of the BBB and making it severely leaky, which subsequently generates edema. OBJECTIVE: This study aimed to evaluate the functional gliovascular unit of the BBB by examining changes in the expression of claudin (CLDN) genes and the expression of transient receptor potential (TRP) membrane channels, additionally to define the correlation between their expressions. The evaluation was conducted using in vitro spheroid swelling models and tumor samples from glioma patients with PTBE. RESULTS: The results of the spheroid model showed that the genes TRPC3, TRPC4, TRPC5, and TRPV1 were upregulated in glioma cells either wild-type isocitrate dehydrogenase 1 (IDH1) or the IDH1 R132H mutant, with or without NaCl treatment. Furthermore, TRP genes appeared to adversely correlate with the up regulation of CLDN1, CLDN3, and CLDN5 genes. Besides, the upregulation of TRPC1 and TRPC4 in IDH1mt-R132H glioma cells. On the other hand, the correlation analysis revealed different correlations between different proteins in PTBE. CLDN1 exhibits a slight positive correlation with CLDN3. Similarly, TRPV1 displays a slight positive correlation with TRPC1. In contrast, TRPC4 shows a slight negative correlation with TRPC5. On the other hand, TRPC3 demonstrates a slight positive correlation with TRPC5, while the non-PTBE analysis highlights a moderate positive correlation between CLDN1 and TRPM4 while CLDN3 exhibits a moderate negative correlation with TRPC4. Additionally, CLDN5 demonstrates a slight negative correlation with TRPC4 but a moderate positive correlation with TRPC3. Furthermore, TRPC1 have a slight negative correlation with TRPV1, TRPC3 exhibiting a slight positive correlation with TRPC4, and TRPV1 showing a slight negative correlation with TRPC5. CONCLUSION: As a conclusion, the current study provided evidence of a slight negative correlation between TRPs and CLDN gene expression in PTBE patients and confirmatory results with some of the genes in cell model of edema.


Asunto(s)
Edema Encefálico , Neoplasias Encefálicas , Claudina-5 , Glioma , Humanos , Edema Encefálico/genética , Edema Encefálico/metabolismo , Edema Encefálico/patología , Glioma/genética , Glioma/metabolismo , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Claudina-5/genética , Claudina-5/metabolismo , Regulación Neoplásica de la Expresión Génica , Claudina-3/genética , Claudina-3/metabolismo , Barrera Hematoencefálica/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Línea Celular Tumoral , Claudina-1/genética , Claudina-1/metabolismo , Claudinas/genética , Claudinas/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Masculino
2.
Arch Dermatol Res ; 316(7): 476, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023797

RESUMEN

Increased intestinal permeability and gut dysbiosis are important factors in the pathophysiology of psoriasis and its associated conditions. Claudin-3 is a protein that is found in tight junctions and may be used to assess the integrity of the gut barrier. The aim of this study was to investigate serum concentration of Claudin- 3 (CLDN3) in patients with psoriasis. Exploring its possible relations with patients' demographic, clinical and laboratory findings was another objective. Fifty psoriatic patients and thirty-five age- and sex-matched healthy volunteers served as the study's control group in this case-control, hospital-based research. The amount of serum CLDN3 was determined by means of an enzyme-linked immunosorbent test (ELISA). Concentration of serum CLDN3 was found to be significantly higher in patients with psoriasis. (p = 0.002). There was no statistically significant correlation between CLDN3 and patient's clinical & laboratory variables. We demonstrated that gut permeability is dysfunctional in patients with psoriasis as indicated by reduction of serum CLDN3. Further investigations are needed to determine whether modulation of gut barrier may represent a new therapeutic approach for psoriasis.


Asunto(s)
Biomarcadores , Claudina-3 , Psoriasis , Piel , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Biomarcadores/sangre , Estudios de Casos y Controles , Claudina-3/sangre , Disbiosis/diagnóstico , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Permeabilidad , Psoriasis/sangre , Psoriasis/diagnóstico , Piel/patología , Uniones Estrechas/metabolismo
3.
Transpl Int ; 37: 11336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962471

RESUMEN

Segmental grafts from living donors have advantages over grafts from deceased donors when used for small intestine transplantation. However, storage time for small intestine grafts can be extremely short and optimal graft preservation conditions for short-term storage remain undetermined. Secreted factors from mesenchymal stem cells (MSCs) that allow direct activation of preserved small intestine grafts. Freshly excised Luc-Tg LEW rat tissues were incubated in preservation solutions containing MSC-conditioned medium (MSC-CM). Preserved Luc-Tg rat-derived grafts were then transplanted to wild-type recipients, after which survival, injury score, and tight junction protein expression were examined. Luminance for each graft was determined using in vivo imaging. The findings indicated that 30-100 and 3-10 kDa fractions of MSC-CM have superior activating effects for small intestine preservation. Expression of the tight-junction proteins claudin-3, and zonula occludens-1 preserved for 24 h in University of Wisconsin (UW) solution containing MSC-CM with 50-100 kDa, as shown by immunostaining, also indicated effectiveness. Reflecting the improved graft preservation, MSC-CM preloading of grafts increased survival rate from 0% to 87%. This is the first report of successful transplantation of small intestine grafts preserved for more than 24 h using a rodent model to evaluate graft preservation conditions that mimic clinical conditions.


Asunto(s)
Intestino Delgado , Células Madre Mesenquimatosas , Preservación de Órganos , Ratas Endogámicas Lew , Animales , Intestino Delgado/trasplante , Ratas , Preservación de Órganos/métodos , Masculino , Soluciones Preservantes de Órganos , Supervivencia de Injerto , Medios de Cultivo Condicionados , Proteína de la Zonula Occludens-1/metabolismo , Claudina-3/metabolismo , Ratas Transgénicas , Glutatión , Rafinosa , Alopurinol , Insulina , Adenosina
4.
Arch Med Res ; 55(5): 103025, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879906

RESUMEN

PURPOSE: Sarcopenia or age-associated muscle loss is common in patients with Alzheimer's disease (AD). We have previously demonstrated the contribution of a leaky gut to sarcopenia in AD. Here, we asked whether resistant exercise (RE) reduces the sarcopenia phenotype by repairing intestinal leakage in patients with AD. METHOD: A prospective, single-center study of older adults, including healthy controls and patients with AD (n = 44-51/group), was conducted to measure plasma zonulin and claudin-3 (markers of intestinal leakage), handgrip strength (HGS), and short physical performance battery (SPPB) as a measure of functional capacity. Measurements in patients with AD were performed at baseline and after 12 weeks of RE. RESULTS: At baseline, patients with AD had higher plasma zonulin and claudin-3 and lower HGS, gait speed, and SPPB scores than controls. RE reduced plasma zonulin and claudin-3 levels and improved HGS, SPPB scores, and gait speed. Regression analysis revealed robust relationships between changes in plasma zonulin and claudin-3 with HGS. Plasma zonulin was also positively associated with SPPB scores. In addition, RE downregulated plasma markers of inflammation and oxidative stress. However, the prevalence of sarcopenia based on low HGS and muscle atrophy or low SPPB was not affected by RE. CONCLUSION: Taken together, disruption of the intestinal mucosal barrier may contribute to functional decline and sarcopenia in AD, which is incompletely recovered by RE. Circulating levels of zonulin and claudin-3 may be valuable in predicting sarcopenia and functional capacity in older adults with AD.


Asunto(s)
Enfermedad de Alzheimer , Claudina-3 , Fuerza de la Mano , Haptoglobinas , Entrenamiento de Fuerza , Sarcopenia , Humanos , Sarcopenia/etiología , Sarcopenia/fisiopatología , Sarcopenia/prevención & control , Sarcopenia/sangre , Masculino , Femenino , Anciano , Estudios Prospectivos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/fisiopatología , Haptoglobinas/metabolismo , Claudina-3/sangre , Precursores de Proteínas/sangre , Anciano de 80 o más Años , Estudios de Casos y Controles , Biomarcadores/sangre
5.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928261

RESUMEN

Consumption of a high-fat diet (HFD) has been suggested as a contributing factor behind increased intestinal permeability in obesity, leading to increased plasma levels of microbial endotoxins and, thereby, increased systemic inflammation. We and others have shown that HFD can induce jejunal expression of the ketogenic rate-limiting enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS). HMGCS is activated via the free fatty acid binding nuclear receptor PPAR-α, and it is a key enzyme in ketone body synthesis that was earlier believed to be expressed exclusively in the liver. The function of intestinal ketogenesis is unknown but has been described in suckling rats and mice pups, possibly in order to allow large molecules, such as immunoglobulins, to pass over the intestinal barrier. Therefore, we hypothesized that ketone bodies could regulate intestinal barrier function, e.g., via regulation of tight junction proteins. The primary aim was to compare the effects of HFD that can induce intestinal ketogenesis to an equicaloric carbohydrate diet on inflammatory responses, nutrition sensing, and intestinal permeability in human jejunal mucosa. Fifteen healthy volunteers receiving a 2-week HFD diet compared to a high-carbohydrate diet were compared. Blood samples and mixed meal tests were performed at the end of each dietary period to examine inflammation markers and postprandial endotoxemia. Jejunal biopsies were assessed for protein expression using Western blotting, immunohistochemistry, and morphometric characteristics of tight junctions by electron microscopy. Functional analyses of permeability and ketogenesis were performed in Caco-2 cells, mice, and human enteroids. Ussing chambers were used to analyze permeability. CRP and ALP values were within normal ranges and postprandial endotoxemia levels were low and did not differ between the two diets. The PPARα receptor was ketone body-dependently reduced after HFD. None of the tight junction proteins studied, nor the basal electrical parameters, were different between the two diets. However, the ketone body inhibitor hymeglusin increased resistance in mucosal biopsies. In addition, the tight junction protein claudin-3 was increased by ketone inhibition in human enteroids. The ketone body ß-Hydroxybutyrate (ßHB) did not, however, change the mucosal transition of the large-size molecular FD4-probe or LPS in Caco-2 and mouse experiments. We found that PPARα expression was inhibited by the ketone body ßHB. As PPARα regulates HMGCS expression, the ketone bodies thus exert negative feedback signaling on their own production. Furthermore, ketone bodies were involved in the regulation of permeability on intestinal mucosal cells in vitro and ex vivo. We were not, however, able to reproduce these effects on intestinal permeability in vivo in humans when comparing two weeks of high-fat with high-carbohydrate diet in healthy volunteers. Further, neither the expression of inflammation markers nor the aggregate tight junction proteins were changed. Thus, it seems that not only HFD but also other factors are needed to permit increased intestinal permeability in vivo. This indicates that the healthy gut can adapt to extremes of macro-nutrients and increased levels of intestinally produced ketone bodies, at least during a shorter dietary challenge.


Asunto(s)
Dieta Alta en Grasa , Mucosa Intestinal , Yeyuno , Cuerpos Cetónicos , Permeabilidad , Humanos , Masculino , Mucosa Intestinal/metabolismo , Dieta Alta en Grasa/efectos adversos , Cuerpos Cetónicos/metabolismo , Adulto , Yeyuno/metabolismo , Hidroximetilglutaril-CoA Sintasa/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Femenino , Animales , Ratones , Claudina-3/metabolismo
6.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542338

RESUMEN

Claudins are one of the major components of tight junctions (TJs) that polymerize within the cell membrane and form interactions between cells. Some claudins seal the paracellular space, limiting paracellular flux, while others form selectively permeable ion channels that control the paracellular permeability of small ions. Claudin strands are known to be dynamic and reshape within TJs to accommodate large-scale movements and rearrangements of epithelial tissues. Here, we summarize the recent computational and modeling studies on claudin assembly into tetrameric ion channels and their polymerization into µm long strands within the membrane. Computational studies ranging from all-atom molecular dynamics, coarse-grained simulations, and hybrid-resolution simulations elucidate the molecular nature of claudin assembly and function and provide a framework that describes the lateral flexibility of claudin strands.


Asunto(s)
Claudinas , Uniones Estrechas , Claudinas/metabolismo , Uniones Estrechas/metabolismo , Canales Iónicos/metabolismo , Simulación de Dinámica Molecular , Epitelio/metabolismo , Claudina-3/metabolismo
7.
J Ethnopharmacol ; 328: 117998, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38484956

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: According to ancient literature, Prunella vulgaris L. (P vulgaris) alleviates mastitis and has been used in China for many years; however, there are no relevant reports that confirm this or the mechanism of its efficacy. AIM OF THE STUDY: To explore the anti-acute mastitis effect and potential mechanism of P vulgaris extract. MATERIALS AND METHODS: First, the active ingredients and targets of P vulgaris against mastitis were predicted using network pharmacology. Next, the relevant active ingredients were enriched using macroporous resins and verified using UV and UPLC-Q-TOF-MS/MS. Lastly, a mouse model of acute mastitis was established by injecting lipopolysaccharides into the mammary gland and administering P vulgaris extract by oral gavage. The pathological changes in mammary tissue were observed by HE staining. Serum and tissue inflammatory factors were measured by ELISA method. MPO activity in mammary tissue was measured using colorimetry and MPO expression was detected by immunohistochemistry. The expression of tight junction proteins (ZO-1, claudin-3, and occludin) in mammary tissue was detected by immunofluorescence and Western blot. iNOS and COX-2 in mammary tissue were detected by Western blot. MAPK pathway and NF-κB pathway related proteins were also detected by Western blot. RESULTS: Network pharmacology predicted that phenolic acids and flavonoids in P vulgaris had anti-mastitis effects. The contents of total flavonoids and total phenolic acids in P vulgaris extract were 64.5% and 29.4%, respectively. UPLC-Q-TOF-MS/MS confirmed that P vulgaris extract contained phenolic acids and flavonoids. The results of animal experiments showed that P vulgaris extract reduced lipopolysaccharide-induced inflammatory edema, inflammatory cell infiltration, and interstitial congestion of mammary tissue. It also reduced the levels of serum and tissue inflammatory factors TNF-α, IL-6, and IL-1ß, and inhibited the activation of MPO. Furthermore, it downregulated the expression of MAPK and NF-κB pathway-related proteins. The expressions of ZO-1, occludin, and claudin-3 in mammary gland tissues were upregulated. CONCLUSIONS: P vulgaris extract can maintain the integrity of mammary connective tissue and reduce its inflammatory response to prevent acute mastitis. Its mechanism probably involves regulating NF-κB and MAPK pathways.


Asunto(s)
Mastitis , Prunella , Humanos , Animales , Femenino , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Transducción de Señal , Leche/metabolismo , Ocludina/metabolismo , Claudina-3/metabolismo , Espectrometría de Masas en Tándem , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mastitis/inducido químicamente , Mastitis/tratamiento farmacológico , Mastitis/metabolismo , Flavonoides/farmacología
8.
Bull Exp Biol Med ; 176(4): 442-446, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38488962

RESUMEN

We performed a comparative study of the effects of X-ray irradiation and bleomycin on the mRNA levels of E-cadherin and tight junction proteins (claudin-3, claudin-4, claudin-18, ZO-2, and occludin) in an alveolar epithelial cell line L2. Irradiation decreased claudin-4 levels and increased occludin levels, while the levels of other mRNAs remained unchanged. Bleomycin increased the expression levels of all proteins examined except claudin-3. Irradiation and bleomycin have different effects on the expression level of intercellular junction proteins, indicating different reactions triggered in alveolar epithelial cells and a great prospects of further comparative studies.


Asunto(s)
Células Epiteliales Alveolares , Uniones Estrechas , Células Epiteliales Alveolares/metabolismo , Uniones Estrechas/metabolismo , Ocludina/genética , Ocludina/metabolismo , Claudina-4/metabolismo , Claudina-3/metabolismo , Bleomicina/farmacología , Bleomicina/metabolismo , Uniones Intercelulares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Células Epiteliales
9.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338705

RESUMEN

This study investigates the intricate composition and spatial distribution of tight junction complex proteins during early mouse neurulation. The analyses focused on the cranial neural tube, which gives rise to all head structures. Neurulation brings about significant changes in the neuronal and non-neuronal ectoderm at a cellular and tissue level. During this process, precise coordination of both epithelial integrity and epithelial dynamics is essential for accurate tissue morphogenesis. Tight junctions are pivotal for epithelial integrity, yet their complex composition in this context remains poorly understood. Our examination of various tight junction proteins in the forebrain region of mouse embryos revealed distinct patterns in the neuronal and non-neuronal ectoderm, as well as mesoderm-derived mesenchymal cells. While claudin-4 exhibited exclusive expression in the non-neuronal ectoderm, we demonstrated a neuronal ectoderm specific localization for claudin-12 in the developing cranial neural tube. Claudin-5 was uniquely present in mesenchymal cells. Regarding the subcellular localization, canonical tight junction localization in the apical junctions was predominant for most tight junction complex proteins. ZO-1 (zona occludens protein-1), claudin-1, claudin-4, claudin-12, and occludin were detected at the apical junction. However, claudin-1 and occludin also appeared in basolateral domains. Intriguingly, claudin-3 displayed a non-canonical localization, overlapping with a nuclear lamina marker. These findings highlight the diverse tissue and subcellular distribution of tight junction proteins and emphasize the need for their precise regulation during the dynamic processes of forebrain development. The study can thereby contribute to a better understanding of the role of tight junction complex proteins in forebrain development.


Asunto(s)
Proteínas de Uniones Estrechas , Uniones Estrechas , Ratones , Animales , Proteínas de Uniones Estrechas/metabolismo , Claudina-4/metabolismo , Claudina-1/metabolismo , Ocludina/metabolismo , Claudina-3/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Claudinas/metabolismo
10.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396668

RESUMEN

Our aim was to study the association of endothelial dysfunction biomarkers with cirrhosis manifestations, bacterial translocation, and gut microbiota taxa. The fecal microbiome was assessed using 16S rRNA gene sequencing. Plasma levels of nitrite, big endothelin-1, asymmetric dimethylarginine (ADMA), presepsin, and claudin were measured as biomarkers of endothelial dysfunction, bacterial translocation, and intestinal barrier dysfunction. An echocardiography with simultaneous determination of blood pressure and heart rate was performed to evaluate hemodynamic parameters. Presepsin, claudin 3, nitrite, and ADMA levels were higher in cirrhosis patients than in controls. Elevated nitrite levels were associated with high levels of presepsin and claudin 3, the development of hemodynamic circulation, hypoalbuminemia, grade 2-3 ascites, overt hepatic encephalopathy, high mean pulmonary artery pressure, increased abundance of Proteobacteria and Erysipelatoclostridium, and decreased abundance of Oscillospiraceae, Subdoligranulum, Rikenellaceae, Acidaminococcaceae, Christensenellaceae, and Anaerovoracaceae. Elevated ADMA levels were associated with higher Child-Pugh scores, lower serum sodium levels, hypoalbuminemia, grade 2-3 ascites, milder esophageal varices, overt hepatic encephalopathy, lower mean pulmonary artery pressure, and low abundance of Erysipelotrichia and Erysipelatoclostridiaceae. High big endothelin-1 levels were associated with high levels of presepsin and sodium, low levels of fibrinogen and cholesterol, hypocoagulation, increased Bilophila and Coprobacillus abundances, and decreased Alloprevotella abundance.


Asunto(s)
Microbioma Gastrointestinal , Encefalopatía Hepática , Hipoalbuminemia , Humanos , Ascitis , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S , Claudina-3 , Endotelina-1 , Nitritos , Cirrosis Hepática/complicaciones , Biomarcadores , Sodio , Disbiosis/complicaciones , Fragmentos de Péptidos , Receptores de Lipopolisacáridos
11.
Exp Cell Res ; 436(1): 113944, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38296017

RESUMEN

In lactating mammary glands, tight junctions (TJs) prevent blood from mixing with milk and maintain epithelial cell polarity, which is important for milk production. This study aimed to investigate the effect of sodium acetate and sodium butyrate (SB) stimulation direction on the TJ barrier function, which is measured with regard to transepithelial electrical resistance and fluorescein flux, in goat mammary epithelial cells. The expression and localization of the TJ proteins claudin-3 and claudin-4 were examined using Western blotting and immunofluorescence. SB treatment in the lower chamber of cell culture inserts adversely affected the TJ barrier function, whereas sodium acetate barely had any effect, regardless of stimulation direction. In addition, SB treatment in the lower chamber significantly upregulated claudin-3 and claudin-4, whereas TJ proteins showed intermittent localization. Moreover, SB induced endoplasmic reticulum (ER) stress. ARC155858, a monocarboxylate transporter-1 inhibitor, alleviated the adverse impact of SB on TJs and the associated ER stress. Interestingly, sodium ß-hydroxybutyrate, a butyrate metabolite, did not affect the TJ barrier function. Our findings indicate that sodium acetate and SB influence the TJ barrier function differently, and excessive cellular uptake of SB can disrupt TJs and induce ER stress.


Asunto(s)
Cabras , Uniones Estrechas , Animales , Femenino , Ácido Butírico/farmacología , Claudina-3 , Claudina-4/genética , Lactancia , Acetato de Sodio , Células Epiteliales , Proteínas de Transporte de Membrana
12.
Laryngoscope ; 134(2): 552-561, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37345652

RESUMEN

OBJECTIVES: As a critical component of the epithelial barrier, tight junctions (TJs) are essential in nasal mucosa against pathogen invasion. However, the function of TJs has rarely been reported in nasal inverted papilloma (NIP). This study aims to investigate the potential factors of TJs' abnormality in NIP. METHODS: We assessed the expression of ZO-1, occludin, claudin-1, claudin-3, and claudin-7 in healthy controls and NIP by real-time quantitative polymerase chain reaction and immunofluorescent staining. The correlation between TJs expression and neutrophil count, TH 1/TH 2/TH 17 and regulatory T cell biomarkers, and the proportion of nasal epithelial cells was investigated. RESULTS: Upregulation of ZO-1, occludin, claudin-1, and claudin-7, along with downregulation of claudin-3, was found in NIP compared to control (all p < 0.05). An abnormal proportion with a lower number of ciliated cells (control vs. NIP: 37.60 vs. 8.67) and goblet cells (12.52 vs. 0.33) together with a higher number of basal cells (45.58 vs. 124.00) in NIP. Meanwhile, claudin-3 was positively correlated with ciliated and goblet cells (all p < 0.01). Additionally, neutrophils were excessively infiltrated in NIP, negatively correlated with ZO-1, but positively with claudin-3 (all p < 0.05). Furthermore, FOXP3, IL-10, TGF-ß1, IL-5, IL-13, and IL-22 levels were induced in NIP (all p < 0.01). Occludin level was negatively correlated with IL-10, IL-5, IL-13, and IL-22, whereas ZO-1 was positively with TGF-ß1 (all p < 0.05). CONCLUSION: Nasal epithelial barrier dysfunction with TJs anomalies is commonly associated with abnormal proliferation and differentiation of epithelial cells and imbalance of immune and inflammatory patterns in NIP. LEVEL OF EVIDENCE: NA Laryngoscope, 134:552-561, 2024.


Asunto(s)
Papiloma Invertido , Uniones Estrechas , Humanos , Interleucina-10/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ocludina/metabolismo , Interleucina-13/metabolismo , Claudina-1/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Interleucina-5/metabolismo , Células Epiteliales/metabolismo
13.
Radiat Res ; 201(1): 77-86, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38044712

RESUMEN

Inflammatory response is one of the essential parts of various pathogenic mechanisms of radiation-induced salivary dysfunction. The effect of decreasing the levels of inflammatory cytokines on alleviating submandibular gland injuries after irradiation is unclear. This study aimed to explore the effect of the antibody against tumor necrosis factor-alpha, infliximab, on radiation-induced submandibular gland dysfunction in rats. Male Wistar rats received a single 20 Gy dose to the right submandibular gland region or sham irradiated. Meanwhile, the irradiated group was divided into infliximab treatment groups or untreated groups. Animals were euthanized at 1, 6, and 12 weeks postirradiation, and the irradiated submandibular gland was dissected for subsequent detection. Submandibular gland exposure caused obvious pathological changes. The increased levels of inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1ß, and interleukin-6, represent an aggravated inflammatory response. The results of the western blot, reverse transcription-quantitative polymerase chain reaction, and immunofluorescence staining showed upregulated levels of claudin-1, claudin-3, and aquaporin 5 and downregulated levels of claudin-4. Moreover, nuclear factor kappa-B phosphorylation levels were also up-regulated. In subsequent experiments, we found that infliximab alleviated inflammatory response, up-regulated tumor necrosis factor-alpha, interleukin-1ß, and interleukin-6 levels, and improved claudin-1, claudin-3, claudin-4, and aquaporin 5 expression. Our results indicate that infliximab might improve the para-cellular pathway and trans-cellular pathway destruction by reducing the inflammatory.


Asunto(s)
Glándula Submandibular , Factor de Necrosis Tumoral alfa , Ratas , Masculino , Animales , Ratas Wistar , Infliximab/farmacología , Infliximab/uso terapéutico , Infliximab/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Glándula Submandibular/metabolismo , Glándula Submandibular/patología , Acuaporina 5/metabolismo , Claudina-3/metabolismo , Claudina-1/metabolismo , Claudina-4/metabolismo , Interleucina-1beta , Interleucina-6
14.
Dev Biol ; 507: 20-33, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38154769

RESUMEN

The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure. Claudins are transmembrane proteins, localized in apical tight junctions within epithelial cells where they are essential for regulation of paracellular permeability, strongly involved in apical-basal polarity, cell-cell adhesion, and bridging the tight junction to cytoplasmic proteins. Here we explored the role of Claudin-3 (Cldn3), which is specifically expressed in the non-neural ectoderm. We discovered that depletion of Cldn3 causes folic acid-insensitive primarily spinal neural tube defects due to a failure in neural fold fusion. Apical cell surface morphology of Cldn3-depleted non-neural ectodermal cells exhibited increased membrane blebbing and smaller apical surfaces. Although apical-basal polarity was retained, we observed altered Par3 and Pals1 protein localization patterns within the apical domain of the non-neural ectodermal cells in Cldn3-depleted embryos. Furthermore, F-actin signal was reduced at apical junctions. Our data presents a model of spina bifida, and the role that Cldn3 is playing in regulating essential apical cell processes in the non-neural ectoderm required for neural fold fusion.


Asunto(s)
Ectodermo , Cresta Neural , Embrión de Pollo , Animales , Ectodermo/metabolismo , Cresta Neural/metabolismo , Pollos/metabolismo , Claudina-3/metabolismo , Tubo Neural , Claudinas/genética , Claudinas/metabolismo , Uniones Estrechas/metabolismo
15.
Gut Microbes ; 15(2): 2282789, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010872

RESUMEN

Dysregulation of both the gut barrier and microbiota (dysbiosis) promotes susceptibility to and severity of Inflammatory Bowel Diseases (IBD). Leaky gut and dysbiosis often coexist; however, potential interdependence and molecular regulation are not well understood. Robust expression of claudin-3 (CLDN3) characterizes the gut epithelium, and studies have demonstrated a positive association between CLDN3 expression and gut barrier maturity and integrity, including in response to probiotics. However, the exact status and causal role of CLDN3 in IBD and regulation of gut dysbiosis remain unknown. Analysis of mouse and human IBD cohorts helped examine CLDN3 expression in IBD. The causal role was determined by modeling CLDN3 loss of expression during experimental colitis. 16S sequencing and in silico analysis helped examine gut microbiota diversity between Cldn3KO and WT mice and potential host metabolic responses. Fecal microbiota transplant (FMT) studies were performed to assess the role of gut dysbiosis in the increased susceptibility of Cldn3KO mice to colitis. A significant decrease in CLDN3 expression characterized IBD and CLDN3 loss of expression promoted colitis. 16S sequencing analysis suggested gut microbiota changes in Cldn3KO mice that were capable of modulating fatty acid metabolism and oxidative stress response. FMT from naïve Cldn3KO mice promoted colitis susceptibility in recipient germ-free mice (GFM) compared with GFM-receiving microbiota from WT mice. Our data demonstrate a critical role of CLDN3 in maintaining normal gut microbiota and inflammatory responses, which can be harnessed to develop novel therapeutic opportunities for patients with IBD.


Asunto(s)
Claudina-3 , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Claudina-3/genética , Colitis/genética , Colitis/complicaciones , Disbiosis/complicaciones , Trasplante de Microbiota Fecal , Enfermedades Inflamatorias del Intestino/complicaciones , Animales , Ratones
16.
J Nutr ; 153(12): 3360-3372, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37806357

RESUMEN

BACKGROUND: Claudins (CLDNs), major components of tight junctions, control paracellular permeabilities of mineral ions and wastes. The absorption of nutrients including glucose and amino acids (AAs) is regulated by intestinal epithelial cells. However, the role of CLDNs is not fully understood. OBJECTIVES: The purpose of this study was to clarify the effect of AA deprivation on the expression of AA transporters and CLDNs, as well as the role of CLDNs in the regulation of paracellular AA fluxes. METHODS: The messenger RNA and protein expression of various CLDNs were examined by real-time quantitative polymerase chain reaction and Western blot analyses, respectively. The AA selectivity of CLDNs was estimated using liquid chromatography-tandem mass spectrometry (LC-MS) analysis. RESULTS: The expression levels of some AA transporters, CLDN4, and CLDN15 were increased by AA deprivation in normal mouse colon-derived MCE301 cells. The expression of AA transporters and CLDN15 in the mouse colon was positively correlated with aging but the expression of CLDN4 was not. The AA deprivation-induced elevation of CLDN4 expression was inhibited by MHY1485, a mammalian target of rapamycin (mTOR) activator. Furthermore, CLDN4 expression was increased by rapamycin, an mTOR inhibitor. mTOR may be involved in the transcriptional activation of CLDN4. The fluxes of AAs from the basal to apical compartments were decreased and increased by CLDN4 overexpression and silencing, respectively. LC-MS analysis showed that the fluxes of all AAs, especially Lys, His, and Arg, were enhanced by CLDN4 silencing. CONCLUSIONS: CLDN4 is suggested to form a paracellular barrier to AAs, especially alkaline AAs, which is attenuated with aging.


Asunto(s)
Aminoácidos , Claudinas , Animales , Ratones , Aminoácidos/metabolismo , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudinas/genética , Claudinas/metabolismo , Mamíferos/metabolismo , Uniones Estrechas , Serina-Treonina Quinasas TOR/metabolismo
17.
Transpl Int ; 36: 11595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745643

RESUMEN

Diagnosing acute rejection after intestinal transplantation currently heavily relies on histopathological analysis of graft biopsies. However, the invasive risks associated with ileoscopic examination and the inaccessibility for biopsy after ileostomy closure hinder real-time detection of rejection responses. Molecules comprising the intestinal barrier have been identified as physiological and molecular biomarkers for various bowel conditions and systemic diseases. To investigate the potential of barrier function-related molecules in diagnosing rejection after intestinal transplantation, plasma samples were collected longitudinally from transplant recipients. The samples were categorized into "indeterminate for rejection (IND)" and "acute rejection (AR)" groups based on clinical diagnoses at each time point. The longitudinal association between plasma levels of these barrier function-related molecules and acute rejection was analyzed using the generalized estimating equations (GEE) method. Logistic GEE models revealed that plasma levels of claudin-3, occludin, sIgA, and zonulin were independent variables correlated with the clinical diagnosis of acute rejection. The subsequent prediction model demonstrated moderate ability in discriminating between IND and AR samples, with a sensitivity of 76.0%, specificity of 89.2%, and accuracy of 84.6%. In conclusion, monitoring plasma levels of claudin-3, occludin, sIgA, and zonulin shows great potential in aiding the diagnosis of acute rejection after intestinal transplantation.


Asunto(s)
Rechazo de Injerto , Intestinos , Humanos , Claudina-3 , Ocludina , Rechazo de Injerto/diagnóstico , Inmunoglobulina A Secretora
18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(9): 801-806, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37732575

RESUMEN

Objective To investigate the effect of salidroside on intestinal mucosal immune status in rats under compound stress of hypoxia and training (HTCS) and the mechanism. Methods SD rats were randomly divided into HTCS model group (model), placebo group (placebo) and salidroside group (salidro). Model group received no intervention, and placebo and salidro group received intraperitoneal injection of normal saline and salidroside, respectively. Then, ileum tissue of rats were collected and the intestinal damage was assayed by HE staining and Chiu scores. Intestinal permeability indices, including serum D-diamine oxidase (DAO), D-lactic acid (DLA) and endotoxin (END) and secretory immunoglobulin A (sIgA) of intestinal tissue were detected by ELISA. T lymphocyte subsets of intestinal tissue were detected by flow cytometry. Expression of tight junction molecules, including ZO-1, Claudin-3, occluding, were detected by PCR and western blot. Activation of TLR4/NF-κB signaling pathway was detected by Western blot analysis. Results Compared with model group and placebo group, salidro group had the decreased intestinal mucosal injury and low Chiu score, and the level of intestinal permeability indices including serum DAO, DLA and END fell off. CD4+ T cell percentage, CD4+/CD8+ ratio and sIgA level were went up, while CD8+ T cell percentage was went down. mRNA and the level of protein expressions of ZO-1, claudin-3 and occludin increased, while activation of TLR4/NF-κB signaling pathway was inhibited. Conclusion Salidroside can alleviate the intestinal barrier injury and improve intestinal mucosal immune status of rats under compound stress of hypoxia and training via inhibiting TLR4/NF-κB signalling pathway.


Asunto(s)
FN-kappa B , Receptor Toll-Like 4 , Animales , Ratas , Ratas Sprague-Dawley , Receptor Toll-Like 4/genética , Claudina-3 , Hipoxia , Inmunoglobulina A Secretora , Transducción de Señal
19.
Ecotoxicol Environ Saf ; 264: 115404, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625335

RESUMEN

Radiation therapy and unwanted radiological or nuclear exposure, such as nuclear plant accidents, terrorist attacks, and military conflicts, pose serious health issues to humans. Dysfunction of the intestinal epithelial barrier and the leakage of luminal antigens and bacteria across the barrier have been linked to various human diseases. Intestinal permeability is regulated by intercellular structures, termed tight junctions (TJs), which are disrupted after radiation exposure. In this study, we investigated radiation-induced alterations in TJ-related proteins in an intestinal epithelial cell model. Caco-2 cells were irradiated with 2, 5, and 10 Gy and harvested 1 and 24 h after X-ray exposure. The trypan blue assay revealed that cell viability was reduced in a dose-dependent manner 24 h after X-ray exposure compared to that of non-irradiated cells. However, the WST-8 assay revealed that cell proliferation was significantly reduced only 24 h after radiation exposure to 10 Gy compared to that of non-irradiated cells. In addition, a decreased growth rate and increased doubling time were observed in cells irradiated with X-rays. Intestinal permeability was significantly increased, and transepithelial electrical resistance values were remarkably reduced in Caco-2 cell monolayers irradiated with X-rays compared to non-irradiated cells. X-ray irradiation significantly decreased the mRNA and protein levels of ZO-1, occludin, claudin-3, and claudin-4, with ZO-1 and claudin-3 protein levels decreasing in a dose-dependent manner. Overall, the present study reveals that exposure to X-ray induces dysfunction of the human epithelial intestinal barrier and integrity via the downregulation of TJ-related genes, which may be a key factor contributing to intestinal barrier damage and increased intestinal permeability.


Asunto(s)
Enfermedades Intestinales , Mucosa Intestinal , Humanos , Células CACO-2 , Mucosa Intestinal/metabolismo , Rayos X , Claudina-3/genética , Claudina-3/metabolismo , Intestinos , Células Epiteliales/metabolismo , Enfermedades Intestinales/metabolismo , Permeabilidad
20.
Med Oncol ; 40(9): 268, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578554

RESUMEN

Glioblastoma multiforme (GBM) is a significantly malignant and lethal brain tumor with an average survival time of less than 12 months. Several researches had shown that Claudin-3 (CLDN3) is overexpressed in various cancers and might be important in their growth and spread. In this study, we used qRT-PCR, western blotting, immunohistochemistry, and immunofluorescence staining assays to investigate the expression levels of various proteins. To explore the proliferation abilities of GBM cells, we conducted the CCK-8 and EdU-DNA formation assays. Wound healing and transwell assays were used to investigate the capacities of invasion and migration of GBM cells. Additionally, we constructed an intracranial xenograft model of GBM to study the in vivo role of CLDN3. Our study devoted to investigate the function of CLDN3 in the pathogenesis and progression of GBM. Our study revealed that CLDN3 was upregulated in GBM and could stimulate tumor cell growth and epithelial-mesenchymal transition (EMT) in both laboratory and animal models. We also discovered that CLDN3 expression could be triggered by transforming growth factor-ß (TGF-ß) and reduced by specific inhibitors of the TGF-ß signaling pathway, such as ITD-1. Further analysis revealed that increased CLDN3 levels enhanced TGF-ß-induced growth and EMT in GBM cells, while reducing CLDN3 levels weakened these effects. Our study demonstrated the function of CLDN3 in facilitating GBM growth and metastasis and indicated its involvement in the tumorigenic effects of TGF-ß. Developing specific inhibitors of CLDN3 might, therefore, represent a promising new approach for treating this devastating disease.


Asunto(s)
Neoplasias Encefálicas , Claudina-3 , Glioblastoma , Animales , Humanos , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Claudina-3/genética , Claudina-3/metabolismo , Transición Epitelial-Mesenquimal , Glioblastoma/genética , Factor de Crecimiento Transformador beta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...