Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2127: 227-244, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32112326

RESUMEN

Cryo-electron microscopy (cryo-EM) is a powerful tool for investigating the structure of macromolecules under near-native conditions. Especially in the context of membrane proteins, this technique has allowed researchers to obtain structural information at a previously unattainable level of detail. Specimen preparation remains the bottleneck of most cryo-EM research projects, with membrane proteins representing particularly challenging targets of investigation due to their universal requirement for detergents or other solubilizing agents. Here we describe preparation of negative staining and cryo-EM grids and downstream data collection of membrane proteins in detergent, by far the most common solubilization agent. This protocol outlines a quick and straightforward procedure for screening and determining the structure of a membrane protein of interest under biologically relevant conditions.


Asunto(s)
Microscopía por Crioelectrón/métodos , Recolección de Datos/métodos , Detergentes/farmacología , Proteínas de la Membrana/química , Animales , Calibración , Sistemas de Computación/normas , Microscopía por Crioelectrón/instrumentación , Microscopía por Crioelectrón/normas , Recolección de Datos/normas , Detergentes/química , Humanos , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/aislamiento & purificación , Microscopía Electrónica de Transmisión/instrumentación , Microscopía Electrónica de Transmisión/métodos , Microscopía Electrónica de Transmisión/normas , Coloración Negativa/instrumentación , Coloración Negativa/métodos , Coloración Negativa/normas , Desnaturalización Proteica/efectos de los fármacos , Manejo de Especímenes/instrumentación , Manejo de Especímenes/métodos
2.
Methods Mol Biol ; 955: 273-96, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23132066

RESUMEN

Membrane proteins play a tremendously important role in cell physiology and serve as a target for an increasing number of drugs. Structural information is key to understanding their function and for developing new strategies for combating disease. However, the complex physical chemistry associated with membrane proteins has made them more difficult to study than their soluble cousins. Electron crystallography has historically been a successful method for solving membrane protein structures and has the advantage of providing a native lipid environment for these proteins. Specifically, when membrane proteins form two-dimensional arrays within a lipid bilayer, electron microscopy can be used to collect images and diffraction and the corresponding data can be combined to produce a three-dimensional reconstruction, which under favorable conditions can extend to atomic resolution. Like X-ray crystallography, the quality of the structures are very much dependent on the order and size of the crystals. However, unlike X-ray crystallography, high-throughput methods for screening crystallization trials for electron crystallography are not in general use. In this chapter, we describe two alternative methods for high-throughput screening of membrane protein crystallization within the lipid bilayer. The first method relies on the conventional use of dialysis for removing detergent and thus reconstituting the bilayer; an array of dialysis wells in the standard 96-well format allows the use of a liquid-handling robot and greatly increases throughput. The second method relies on titration of cyclodextrin as a chelating agent for detergent; a specialized pipetting robot has been designed not only to add cyclodextrin in a systematic way, but to use light scattering to monitor the reconstitution process. In addition, the use of liquid-handling robots for making negatively stained grids and methods for automatically imaging samples in the electron microscope are described.


Asunto(s)
Microscopía por Crioelectrón/métodos , Cristalografía/métodos , Proteínas de la Membrana/química , Microscopía por Crioelectrón/instrumentación , Cristalización/instrumentación , Cristalización/métodos , Cristalografía/instrumentación , Detergentes , Diálisis/métodos , Lípidos/química , Coloración Negativa/instrumentación , Coloración Negativa/métodos , Soluciones
3.
Methods Cell Biol ; 96: 529-64, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20869537

RESUMEN

In non-muscle cells, the actin cytoskeleton plays a key role by providing a scaffold contributing to the definition of cell shape, force for driving cell motility, cytokinesis, endocytosis, and propulsion of pathogens, as well as tracks for intracellular transport. A thorough understanding of these processes requires insight into the spatial and temporal organisation of actin filaments into diverse higher-order structures, such as networks, parallel bundles, and contractile arrays. Transmission and scanning electron microscopy can be used to visualise the actin cytoskeleton, but due to the delicate nature of actin filaments, they are easily affected by standard preparation protocols, yielding variable degrees of ultrastructural preservation. In this chapter, we describe different conventional and cryo-approaches to visualise the actin cytoskeleton using transmission electron microscopy and discuss their specific advantages and drawbacks. In the first part, we present three different whole mount techniques, which allow visualisation of actin in the peripheral, thinly spread parts of cells grown in monolayers. In the second part, we describe specific issues concerning the visualisation of actin in thin sections. Techniques for three-dimensional visualisation of actin, protein localisation, and correlative light and electron microscopy are also included.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Citoesqueleto/ultraestructura , Animales , Microscopía por Crioelectrón/instrumentación , Microscopía por Crioelectrón/métodos , Citoesqueleto/química , Tomografía con Microscopio Electrónico/instrumentación , Tomografía con Microscopio Electrónico/métodos , Coloración Negativa/instrumentación , Coloración Negativa/métodos
4.
J Struct Biol ; 160(3): 305-12, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17561414

RESUMEN

Lipid monolayers provide a convenient vehicle for the crystallization of biological macromolecules for 3-D electron microscopy. Although numerous examples of 3-D images from 2-D protein arrays have been described from negatively stained specimens, only six structures have been done from frozen-hydrated specimens. We describe here a method that makes high quality frozen-hydrated specimens of lipid monolayer arrays for cryoelectron microscopy. The method uses holey carbon films with patterned holes for monolayer recovery, blotting and plunge freezing to produce thin aqueous films which cover >90% of the available grid area. With this method, even specimens with relatively infrequent crystals can be screened using automated data collection techniques. Though developed for microscopic examination of 2-D arrays, the method may have wider application to the preparation of single particle specimens for 3-D image reconstruction.


Asunto(s)
Microscopía por Crioelectrón/métodos , Cristalización/métodos , Cristalografía/métodos , Lípidos/química , Proteínas/ultraestructura , Manejo de Especímenes/métodos , Actinina/química , Actinina/ultraestructura , Animales , Carbono , Pollos , Cristalización/instrumentación , Cristalografía/instrumentación , Congelación , Interacciones Hidrofóbicas e Hidrofílicas , Coloración Negativa/instrumentación , Coloración Negativa/métodos , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA