Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.746
Filtrar
1.
J Transl Med ; 22(1): 626, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965561

RESUMEN

The persistence of coronavirus disease 2019 (COVID-19)-related hospitalization severely threatens medical systems worldwide and has increased the need for reliable detection of acute status and prediction of mortality. We applied a systems biology approach to discover acute-stage biomarkers that could predict mortality. A total 247 plasma samples were collected from 103 COVID-19 (52 surviving COVID-19 patients and 51 COVID-19 patients with mortality), 51 patients with other infectious diseases (IDCs) and 41 healthy controls (HCs). Paired plasma samples were obtained from survival COVID-19 patients within 1 day after hospital admission and 1-3 days before discharge. There were clear differences between COVID-19 patients and controls, as well as substantial differences between the acute and recovery phases of COVID-19. Samples from patients in the acute phase showed suppressed immunity and decreased steroid hormone biosynthesis, as well as elevated inflammation and proteasome activation. These findings were validated by enzyme-linked immunosorbent assays and metabolomic analyses in a larger cohort. Moreover, excessive proteasome activity was a prominent signature in the acute phase among patients with mortality, indicating that it may be a key cause of poor prognosis. Based on these features, we constructed a machine learning panel, including four proteins [C-reactive protein (CRP), proteasome subunit alpha type (PSMA)1, PSMA7, and proteasome subunit beta type (PSMB)1)] and one metabolite (urocortisone), to predict mortality among COVID-19 patients (area under the receiver operating characteristic curve: 0.976) on the first day of hospitalization. Our systematic analysis provides a novel method for the early prediction of mortality in hospitalized COVID-19 patients.


Asunto(s)
Biomarcadores , COVID-19 , Complejo de la Endopetidasa Proteasomal , Humanos , COVID-19/mortalidad , COVID-19/sangre , Masculino , Femenino , Complejo de la Endopetidasa Proteasomal/metabolismo , Persona de Mediana Edad , Biomarcadores/sangre , Anciano , SARS-CoV-2 , Pronóstico , Adulto , Esteroides/biosíntesis , Esteroides/sangre , Enfermedad Aguda , Estudios de Casos y Controles , Aprendizaje Automático
2.
Signal Transduct Target Ther ; 9(1): 181, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992067

RESUMEN

Mitotic catastrophe (MC), which occurs under dysregulated mitosis, represents a fascinating tactic to specifically eradicate tumor cells. Whether pyroptosis can be a death form of MC remains unknown. Proteasome-mediated protein degradation is crucial for M-phase. Bortezomib (BTZ), which inhibits the 20S catalytic particle of proteasome, is approved to treat multiple myeloma and mantle cell lymphoma, but not solid tumors due to primary resistance. To date, whether and how proteasome inhibitor affected the fates of cells in M-phase remains unexplored. Here, we show that BTZ treatment, or silencing of PSMC5, a subunit of 19S regulatory particle of proteasome, causes G2- and M-phase arrest, multi-polar spindle formation, and consequent caspase-3/GSDME-mediated pyroptosis in M-phase (designated as mitotic pyroptosis). Further investigations reveal that inhibitor of WEE1/PKMYT1 (PD0166285), but not inhibitor of ATR, CHK1 or CHK2, abrogates the BTZ-induced G2-phase arrest, thus exacerbates the BTZ-induced mitotic arrest and pyroptosis. Combined BTZ and PD0166285 treatment (named BP-Combo) selectively kills various types of solid tumor cells, and significantly lessens the IC50 of both BTZ and PD0166285 compared to BTZ or PD0166285 monotreatment. Studies using various mouse models show that BP-Combo has much stronger inhibition on tumor growth and metastasis than BTZ or PD0166285 monotreatment, and no obvious toxicity is observed in BP-Combo-treated mice. These findings disclose the effect of proteasome inhibitors in inducing pyroptosis in M-phase, characterize pyroptosis as a new death form of mitotic catastrophe, and identify dual inhibition of proteasome and WEE family kinases as a promising anti-cancer strategy to selectively kill solid tumor cells.


Asunto(s)
Bortezomib , Proteínas de Ciclo Celular , Mitosis , Complejo de la Endopetidasa Proteasomal , Proteínas Tirosina Quinasas , Piroptosis , Piroptosis/efectos de los fármacos , Humanos , Ratones , Animales , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Mitosis/efectos de los fármacos , Mitosis/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Bortezomib/farmacología , Línea Celular Tumoral , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Inhibidores de Proteasoma/farmacología , Pirimidinas/farmacología , Pirazoles/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Gasderminas , Pirimidinonas
3.
Methods Mol Biol ; 2780: 345-359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38987477

RESUMEN

Chemical protein knockdown technology using proteolysis-targeting chimeras (PROTACs) to hijack the endogenous ubiquitin-proteasome system is a powerful strategy to degrade disease-related proteins. This chapter describes in silico design of a hematopoietic prostaglandin D synthase (H-PGDS) degrader, PROTAC(H-PGDS), using a docking simulation of the ternary complex of H-PGDS/PROTAC/E3 ligase as well as the synthesis of the designed PROTAC(H-PGDS)s and evaluation of their H-PGDS degradation activity.


Asunto(s)
Oxidorreductasas Intramoleculares , Lipocalinas , Simulación del Acoplamiento Molecular , Proteolisis , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Humanos , Lipocalinas/metabolismo , Lipocalinas/química , Simulación por Computador , Diseño de Fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química
4.
ACS Chem Neurosci ; 15(14): 2532-2544, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38970802

RESUMEN

It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Complejo de la Endopetidasa Proteasomal , Microglía/metabolismo , Microglía/efectos de los fármacos , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inmunología , Animales , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Inflamación/metabolismo , Inflamación/inmunología
5.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2282-2293, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39044591

RESUMEN

The ubiquitin/proteasome system (UPS) plays a crucial role in maintaining cellular protein homeostasis. The catalytic activity of proteasome in the UPS is regulated by ß1 (PSMB6), ß2 (PSMB7), and ß5 (PSMB5) subunits. Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, inflammation, and oxidative stress can induce the replacement of ß1, ß2, and ß5 with their respective immuno-subunits ß1i (PSMB9), ß2i (PSMB10), and ß5i (PSMB8), which can be assembled into the immunoproteasome. Compared with the standard proteasome, the immunoproteasome exerts enhanced regulatory effects on immune responses, such as processing and presenting MHC class Ⅰ antigens, production of pro-inflammatory cytokines, and T cell differentiation and proliferation. Abnormal aggregation of immunoproteasomes can cause neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. To explore the function of PSMB9 after bacterial infection, we constructed a lentivirus plasmid overexpressing PSMB9-eGFP-His and transfected the plasmid into HEK293T cells for packaging by using a triple-plasmid system in this study. After screening with puromycin, we obtained a stable human leukemia monocytic THP-1 cell line expressing the fusion protein of PSMB9. Western blotting (WB) and fluorescence microscopy verified the expression of the fusion protein in the stable THP-1 cells. Quantitative PCR (qPCR) was employed to measure the copies of PSMB9-eGFP in THP-1 cells. Immunofluorescence results found that eGFP-His did not affect the subcellular localization of PSMB9. The purification with nickel affinity chromatography confirmed that the fusion protein could be assembled into the 20S immunoproteasome and exhibited cleaving activity for fluorescent peptide substrates. These results indicated that the PSMB9-eGFP fusion gene was integrated into the chromosome, and could be stably expressed in the constructed THP-1 cell line. This cell line can be utilized for the research on subcellular localization, dynamic expression, and activity of PSMB9 in live cells at different infection conditions and disease stages. It also provides a model for the stable cell lines construction of other immunoproteasome subunits PSMB8 and PSMB10.


Asunto(s)
Proteínas Fluorescentes Verdes , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células THP-1 , Lentivirus/genética , Proteínas Recombinantes de Fusión/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo
6.
PLoS Biol ; 22(7): e3002720, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991033

RESUMEN

The conserved SKN-1A/Nrf1 transcription factor regulates the expression of proteasome subunit genes and is essential for maintenance of adequate proteasome function in animal development, aging, and stress responses. Unusual among transcription factors, SKN-1A/Nrf1 is a glycoprotein synthesized in the endoplasmic reticulum (ER). N-glycosylated SKN-1A/Nrf1 exits the ER and is deglycosylated in the cytosol by the PNG-1/NGLY1 peptide:N-glycanase. Deglycosylation edits the protein sequence of SKN-1A/Nrf1 by converting N-glycosylated asparagine residues to aspartate, which is necessary for SKN-1A/Nrf1 transcriptional activation of proteasome subunit genes. Homozygous loss-of-function mutations in the peptide:N-glycanase (NGLY1) gene cause NGLY1 deficiency, a congenital disorder of deglycosylation. There are no effective treatments for NGLY1 deficiency. Since SKN-1A/Nrf1 is a major client of NGLY1, the resulting proteasome deficit contributes to NGLY1 disease. We sought to identify targets for mitigation of proteasome dysfunction in NGLY1 deficiency that might indicate new avenues for treatment. We isolated mutations that suppress the sensitivity to proteasome inhibitors caused by inactivation of the NGLY1 ortholog PNG-1 in Caenorhabditis elegans. We identified multiple suppressor mutations affecting 3 conserved genes: rsks-1, tald-1, and ent-4. We show that the suppressors act through a SKN-1/Nrf-independent mechanism and confer proteostasis benefits consistent with amelioration of proteasome dysfunction. ent-4 encodes an intestinal nucleoside/nucleotide transporter, and we show that restriction of nucleotide availability is beneficial, whereas a nucleotide-rich diet exacerbates proteasome dysfunction in PNG-1/NGLY1-deficient C. elegans. Our findings suggest that dietary or pharmacological interventions altering nucleotide availability have the potential to mitigate proteasome insufficiency in NGLY1 deficiency and other diseases associated with proteasome dysfunction.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mutación , Complejo de la Endopetidasa Proteasomal , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Glicosilación , Nucleótidos/metabolismo , Nucleótidos/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
7.
Sci Rep ; 14(1): 16731, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39030250

RESUMEN

We investigate the therapeutic potential of Aloin A and Aloin B, two natural compounds derived from Aloe vera leaves, focusing on their neuroprotective and anticancer properties. The structural differences between these two epimers suggest that they may exhibit distinct pharmacological properties. Our investigations revealed that both epimers are not stable in aqueous solution and tend to degrade rapidly, with their concentration decreasing by over 50% within approximately 12 h. These results underscore the importance of addressing issues such as the need for encapsulation into effective drug delivery systems to enhance stability. ThT fluorescence experiments showed that neither compound was able to inhibit Aß amyloid aggregation, indicating that other mechanisms may be responsible for their neuroprotective effects. Next, an equimolar mixture of Aloin A and Aloin B demonstrated an ability to inhibit proteasome in tube tests, which is suggestive of potential anticancer properties, in accordance with antiproliferative effects observed in neuroblastoma SH-SY5Y and HeLa cell lines. Higher water stability and increased antiproliferative activity were observed by encapsulation in carbon dot nanoparticles, suggesting a promising potential for further in vivo studies.


Asunto(s)
Emodina , Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Emodina/farmacología , Emodina/análogos & derivados , Emodina/química , Células HeLa , Línea Celular Tumoral , Estabilidad de Medicamentos , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Péptidos beta-Amiloides/metabolismo , Nanopartículas/química , Aloe/química , Complejo de la Endopetidasa Proteasomal/metabolismo
8.
Protein Sci ; 33(8): e5123, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39041895

RESUMEN

Homocystinuria (HCU) due to cystathionine beta-synthase (CBS) deficiency is the most common inborn error of sulfur amino acid metabolism. Recent work suggests that missense pathogenic mutations-regardless of their topology-cause instability of the C-terminal regulatory domain, which likely translates into CBS misfolding, impaired assembly, and loss of function. However, it is unknown how instability of the regulatory domain translates into cellular CBS turnover and which degradation pathways are involved in CBS proteostasis. Here, we developed a human HEK293-based cellular model lacking intrinsic CBS and stably overexpressing wild-type (WT) CBS or its 10 most common missense HCU mutants. We found that HCU mutants, except the I278T variant, expressed similarly or better than CBS WT, with some of them showing impaired oligomerization, activity and response to allosteric activator S-adenosylmethionine. Cellular stability of all HCU mutants, except P49L and A114V, was significantly lower than the stability of CBS WT, suggesting their increased degradation. Ubiquitination analysis of CBS WT and two representative CBS mutants (T191M and I278T) showed that proteasomal degradation is the major pathway for CBS disposal, with a minor involvement of lysosomal-autophagic and endoplasmic reticulum-associated degradation (ERAD) pathways for HCU mutants. Proteasomal inhibition significantly increased the half-life and activity of T191M and I278T CBS mutants. Lysosomal and ERAD inhibition had only a minor impact on CBS turnover, but ERAD inhibition rescued the activity of T191M and I278T CBS mutants similarly as proteasomal inhibition. In conclusion, the present study provides new insights into proteostasis of CBS in HCU.


Asunto(s)
Cistationina betasintasa , Homocistinuria , Mutación Missense , Proteolisis , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Cistationina betasintasa/química , Humanos , Homocistinuria/genética , Homocistinuria/metabolismo , Células HEK293 , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitinación , Degradación Asociada con el Retículo Endoplásmico
9.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977311

RESUMEN

The ubiquitin-like modifier FAT10 is upregulated under pro-inflammatory conditions, targets its substrates for proteasomal degradation and functions as a negative regulator of the type-I IFN response. Influenza A virus infection upregulates the production of type-I IFN and the expression of the E3 ligase TRIM21, which regulates type-I IFN production in a positive feedback manner. In this study, we show that FAT10 becomes covalently conjugated to TRIM21 and that this targets TRIM21 for proteasomal degradation. We further show that the coiled-coil and PRYSPRY domains of TRIM21 and the C-terminal diglycine motif of FAT10 are important for the TRIM21-FAT10 interaction. Moreover, upon influenza A virus infection and in the presence of FAT10 the total ubiquitination of TRIM21 is reduced and our data reveal that the FAT10-mediated degradation of TRIM21 diminishes IFNß production. Overall, this study provides strong evidence that FAT10 down-regulates the antiviral type-I IFN production by modulating additional molecules of the RIG-I signaling pathway besides the already published OTUB1. In addition, we elucidate a novel mechanism of FAT10-mediated proteasomal degradation of TRIM21 that regulates its stability.


Asunto(s)
Interferón Tipo I , Complejo de la Endopetidasa Proteasomal , Ribonucleoproteínas , Ubiquitinación , Ubiquitinas , Humanos , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Interferón Tipo I/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Regulación hacia Abajo , Células HEK293 , Transducción de Señal , Virus de la Influenza A/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteolisis , Animales
10.
ACS Chem Biol ; 19(7): 1604-1615, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38980123

RESUMEN

Targeted protein degradation (TPD) is a therapeutic approach that leverages the cell's natural machinery to degrade targets instead of inhibiting them. This is accomplished by using mono- or bifunctional small molecules designed to induce the proximity of target proteins and E3 ubiquitin ligases, leading to ubiquitination and subsequent proteasome-dependent degradation of the target. One of the most significant attributes of the TPD approach is its proposed catalytic mechanism of action, which permits substoichiometric exposure to achieve the desired pharmacological effects. However, apart from one in vitro study, studies supporting the catalytic mechanism of degraders are largely inferred based on potency. A more comprehensive understanding of the degrader catalytic mechanism of action can help aspects of compound development. To address this knowledge gap, we developed a workflow for the quantitative measurement of the catalytic rate of degraders in cells. Comparing a selective and promiscuous BTK degrader, we demonstrate that both compounds function as efficient catalysts of BTK degradation, with the promiscuous degrader exhibiting faster rates due to its ability to induce more favorable ternary complexes. By leveraging computational modeling, we show that the catalytic rate is highly dynamic as the target is depleted from cells. Further investigation of the promiscuous kinase degrader revealed that the catalytic rate is a better predictor of optimal degrader activity toward a specific target compared to degradation magnitude alone. In summary, we present a versatile method for mapping the catalytic activity of any degrader for TPD in cells.


Asunto(s)
Proteolisis , Humanos , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Complejo de la Endopetidasa Proteasomal/metabolismo
11.
Clin Transl Med ; 14(7): e1769, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39021054

RESUMEN

Recently, there is a rise in studies that recognize the importance of targeting ubiquitin and related molecular machinery in various therapeutic contexts. Here we briefly discuss the history of ubiquitin, its biological roles in protein degradation and beyond, as well as the current state of ubiquitin-targeting therapeutics across diseases. We conclude that targeting ubiquitin machinery is approaching a renaissance, and tapping its full potential will require embracing a wholistic perspective of ubiquitin's multifaceted roles.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Ubiquitina/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis
12.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000579

RESUMEN

Botulinum neurotoxins are some of the most potent natural toxins known; they cause flaccid paralysis by inhibiting synaptic vesicle release. Some serotypes, notably serotype A and B, can cause persistent paralysis lasting for several months. Because of their potency and persistence, botulinum neurotoxins are now used to manage several clinical conditions, and there is interest in expanding their clinical applications using engineered toxins with novel substrate specificities. It will also be beneficial to engineer toxins with tunable persistence. We have investigated the potential use of small-molecule proteolysis-targeting chimeras (PROTACs) to vary the persistence of modified recombinant botulinum neurotoxins. We also describe a complementary approach that has potential relevance for botulism treatment. This second approach uses a camelid heavy chain antibody directed against botulinum neurotoxin that is modified to bind the PROTAC. These strategies provide proof of principle for the use of two different approaches to fine tune the persistence of botulinum neurotoxins by selectively targeting their catalytic light chains for proteasomal degradation.


Asunto(s)
Toxinas Botulínicas , Proteolisis , Toxinas Botulínicas/química , Toxinas Botulínicas/metabolismo , Humanos , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Quimera Dirigida a la Proteólisis
13.
J Cell Sci ; 137(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949052

RESUMEN

When stressed, cells need to adapt their proteome to maintain protein homeostasis. This requires increased proteasome assembly. Increased proteasome assembly is dependent on increased production of proteasome assembly chaperones. In Saccharomyces cerevisiae, inhibition of the growth-promoting kinase complex TORC1 causes increased proteasome assembly chaperone translation, including that of Adc17. This is dependent upon activation of the mitogen-activated protein kinase (MAPK) Mpk1 and relocalisation of assembly chaperone mRNA to patches of dense actin. We show here that TORC1 inhibition alters cell wall properties to induce these changes by activating the cell wall integrity pathway through the Wsc1, Wsc3 and Wsc4 sensor proteins. We demonstrate that, in isolation, these signals are insufficient to drive protein expression. We identify that the TORC1-activated S6 kinase Sch9 must be inhibited as well. This work expands our knowledge on the signalling pathways that regulate proteasome assembly chaperone production.


Asunto(s)
Chaperonas Moleculares , Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transducción de Señal , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pared Celular/metabolismo , Regulación Fúngica de la Expresión Génica
14.
Sci Rep ; 14(1): 16091, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997273

RESUMEN

Accumulation of α-synuclein (α-Syn) has been implicated in proteasome and autophagy dysfunction in Parkinson's disease (PD). High frequency electrical stimulation (HFS) mimicking clinical parameters used for deep brain stimulation (DBS) in vitro or DBS in vivo in preclinical models of PD have been found to reduce levels of α-Syn and, in certain cases, provide possible neuroprotection. However, the mechanisms by which this reduction in α-Syn improves cellular dysfunction associated with α-Syn accumulation remains elusive. Using HFS parameters that recapitulate DBS in vitro, we found that HFS led to a reduction of mutant α-Syn and thereby limited proteasome and autophagy impairments due to α-Syn. Additionally, we observed that HFS modulates via the ATP6V0C subunit of V-ATPase and mitigates α-Syn mediated autophagic dysfunction. This study highlights a role for autophagy in reduction of α-Syn due to HFS which may prove to be a viable approach to decrease pathological protein accumulation in neurodegeneration.


Asunto(s)
Autofagia , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Animales , Estimulación Eléctrica/métodos , Estimulación Encefálica Profunda/métodos , Complejo de la Endopetidasa Proteasomal/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Ratones
15.
Biol Aujourdhui ; 218(1-2): 41-54, 2024.
Artículo en Francés | MEDLINE | ID: mdl-39007776

RESUMEN

The review is focused on recent drug discovery advances based on targeted protein degradation strategies. This new area of research has exploded leading to the development of potential drugs useful in a large variety of human diseases. They first target disease relevant proteins difficult to counteract with other classical strategies and extend now to aggregates, organelles, nucleic acids or lipidic droplets. These degraders engaged either the ubiquitin-proteasome system for PROTACs and molecular glues (first generation), or the lysosomal system via endosome-lysosome degradation (LYTACs) and autophagy-lysosome degradation (ATTEC, AUTAC, AUTOTAC) (following generations of degraders). PROTACs have expanded from the orthodox heterobifunctional ones to new derivatives such as homo-PROTACs, pro-PROTACs, CLIPTACs, HaloPROTACs, PHOTOTACs, Bac-PROTACs, AbTACs, ARN-PROTACs. The small molecular-weight molecular glues induce the formation of new ternary complexes which implicate the targeted protein and an ubiquitin ligase E3 allowing the protein ubiquinitation followed by its proteasomal degradation. Lysosomal degraders (LYTAC, ATTEC, AUTAC, AUTOTAC) specifically recognize extracellular and membrane proteins or dysfunctional organelles and transport them into lysosomes where they are degraded. They overcome the limitations observed with proteasomal degradations induced by PROTAC and molecular glues and demonstrate their potential to treat human diseases, especially neurodegenerative ones. Pharmaceutical companies are engaged at the world level to develop these new potential drugs targeting cancers, immuno-inflammatory and neurodegenerative diseases as well as a variety of other ones. Efficiency and risks for these novel therapeutic strategies are discussed.


Title: Induction de proximité et dégradation de cibles thérapeutiques par les nouveaux dégradeurs : quels concepts, quels développements, quel futur ? Abstract: La recherche dans le domaine de la dégradation ciblée des protéines s'est considérablement développée conduisant à l'élaboration de nouveaux outils chimiques à visée thérapeutique, les dégradeurs, potentiellement utiles dans diverses pathologies. Une grande variété d'objets à dégrader appartenant à divers compartiments intra- ou extracellulaires (protéines, complexes ou agrégats, organelles, acides nucléiques, gouttelettes lipidiques) a été ciblée à l'aide de ligands déjà existants, d'autres restent à découvrir. Les molécules de première génération, PROTAC et colles moléculaires, utilisent le système ubiquitine-protéasome pour détruire spécifiquement des protéines pathogéniques, certaines considérées jusqu'à présent comme inaccessibles en tant que cibles thérapeutiques. Au cours des cinq dernières années, ont été développés de nouveaux types de PROTAC hétéro-bifonctionnels comme les homo-PROTAC, pro-PROTAC, CLIPTAC, HaloPROTAC, PHOTOTAC, Bac-PROTAC, mais aussi des PROTAC macromoléculaires comme les AbTAC et ARN-PROTAC. Du fait de la grande diversité des substrats dégradés par les lysosomes, de nouveaux dégradeurs impliquant deux voies distinctes ont été ensuite produits : les chimères LYTAC pour la voie endosome-lysosome et les chimères ATTEC, AUTAC et AUTOTAC pour la voie autophagie-lysosome, augmentant ainsi considérablement le champ d'action des dégradeurs. Ces nouvelles molécules reconnaissent spécifiquement des protéines et/ou des organelles et permettent leur transport dans les lysosomes où ils sont dégradés. Les succès obtenus, que ce soit par dégradation protéasomale ou lysosomale pour plusieurs dizaines de dégradeurs (preuves de concepts et études cliniques en cours), expliquent l'intérêt quasi mondial des industries pharmaceutiques pour ces nouvelles molécules. Les challenges posés par leur développement et leur utilisation en clinique sont discutés.


Asunto(s)
Lisosomas , Proteolisis , Humanos , Proteolisis/efectos de los fármacos , Lisosomas/metabolismo , Animales , Proteínas/metabolismo , Descubrimiento de Drogas/tendencias , Descubrimiento de Drogas/métodos , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Autofagia/fisiología
16.
Med Oncol ; 41(8): 207, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043895

RESUMEN

High-grade serous ovarian cancer (HGSC) is an aggressive disease with poor prognosis. The oncoprotein ZNF703 is implicated in driving HGSC pathogenesis, but factors regulating its abundance remain unclear. In this study, we aim to investigate the potential connection between ZNF703 dysregulation and ubiquitin-mediated protein degradation in HGSC. Bioinformatics prediction was performed using BioGRID database. HGSC representative cell lines were utilized for in vitro and in vivo studies. Results showed that ZNF703 protein was stabilized upon proteasome inhibition, suggesting a regulation via ubiquitination. The ubiquitin E3 ligase PARK2 was found to interact with ZNF703 in a dose-dependent manner, promoting its polyubiquitination and subsequent proteasomal degradation. Re-expression of PARK2 in HGSC cells led to reduced ZNF703 levels together with decreased Cyclin D1/E1 abundance and G1 cell cycle arrest. ZNF703 overexpression alone increased S phase cells, Cyclin D1/E1 levels, and xenograft tumor growth, while co-expression with PARK2 mitigated these oncogenic effects. Collectively, our findings identify ZNF703 as a bona fide substrate of PARK2, reveal a tumor suppressive function for PARK2 in attenuating ZNF703-mediated G1/S transition and HGSC growth through instigating its degradation. This study elucidates a pivotal PARK2-ZNF703 axis with therapeutic implications for targeted intervention in HGSC.


Asunto(s)
Proliferación Celular , Cistadenocarcinoma Seroso , Neoplasias Ováricas , Complejo de la Endopetidasa Proteasomal , Ubiquitina-Proteína Ligasas , Humanos , Femenino , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/genética , Línea Celular Tumoral , Animales , Ratones , Ubiquitinación , Ciclina D1/metabolismo , Ciclina D1/genética , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética , Ratones Desnudos , Proteolisis , Ciclina E/metabolismo , Ciclina E/genética , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica , Proteínas Portadoras
17.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891837

RESUMEN

The proteasome generates the majority of peptides presented on MHC class I molecules. The cleavage pattern of the proteasome has been shown to be changed via the proteasome activator (PA)28 alpha beta (PA28αß). In particular, several immunogenic peptides have been reported to be PA28αß-dependent. In contrast, we did not observe a major impact of PA28αß on the generation of different major histocompatibility complex (MHC) classI ligands. PA28αß-knockout mice infected with the lymphocytic choriomeningitis virus (LCMV) or vaccinia virus showed a normal cluster of differentiation (CD) 8 response and viral clearance. However, we observed that the adoptive transfer of wild-type cells into PA28αß-knockout mice led to graft rejection, but not vice versa. Depletion experiments showed that the observed rejection was mediated by CD8+ cytotoxic T cells. These data indicate that PA28αß might be involved in the development of the CD8+ T cell repertoire in the thymus. Taken together, our data suggest that PA28αß is a crucial factor determining T cell selection and, therefore, impacts graft acceptance.


Asunto(s)
Linfocitos T CD8-positivos , Rechazo de Injerto , Antígenos de Histocompatibilidad Clase I , Ratones Noqueados , Animales , Rechazo de Injerto/inmunología , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/inmunología , Ligandos , Ratones Endogámicos C57BL , Virus de la Coriomeningitis Linfocítica/inmunología , Virus Vaccinia/inmunología
18.
Int J Med Sci ; 21(8): 1575-1588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903918

RESUMEN

Gastric cancer (GC) is a prevalent malignancy characterized by significant morbidity and mortality, yet its underlying pathogenesis remains elusive. The etiology of GC is multifaceted, involving the activation of oncogenes and the inactivation of antioncogenes. The ubiquitin-proteasome system (UPS), responsible for protein degradation and the regulation of physiological and pathological processes, emerges as a pivotal player in GC development. Specifically, the F-box protein (FBP), an integral component of the SKP1-Cullin1-F-box protein (SCF) E3 ligase complex within the UPS, has garnered attention for its prominent role in carcinogenesis, tumor progression, and drug resistance. Dysregulation of several FBPs has recently been observed in GC, underscoring their significance in disease progression. This comprehensive review aims to elucidate the distinctive characteristics of FBPs involved in GC, encompassing their impact on cell proliferation, apoptosis, invasive metastasis, and chemoresistance. Furthermore, we delve into the emerging role of FBPs as downstream target proteins of non-coding RNAs(ncRNAs) in the regulation of gastric carcinogenesis, outlining the potential utility of FBPs as direct therapeutic targets or advanced therapies for GC.


Asunto(s)
Proteínas F-Box , Regulación Neoplásica de la Expresión Génica , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Humanos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Resistencia a Antineoplásicos/genética , Proliferación Celular/genética , Apoptosis/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Carcinogénesis/genética
19.
Genes (Basel) ; 15(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38927717

RESUMEN

We conducted transcriptome sequencing on salt-tolerant mutants X5 and X3, and a control (Ctr) strain of Gracilariopsis lemaneiformis after treatment with artificial seawater at varying salinities (30‱, 45‱, and 60‱) for 3 weeks. Differentially expressed genes were identified and a weighted co-expression network analysis was conducted. The blue, red, and tan modules were most closely associated with salinity, while the black, cyan, light cyan, and yellow modules showed a close correlation with strain attributes. KEGG enrichment of genes from the aforementioned modules revealed that the key enrichment pathways for salinity attributes included the proteasome and carbon fixation in photosynthesis, whereas the key pathways for strain attributes consisted of lipid metabolism, oxidative phosphorylation, soluble N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE) interactions in vesicular transport, and porphyrin and chlorophyll metabolism. Gene expression for the proteasome and carbon fixation in photosynthesis was higher in all strains at 60‱. In addition, gene expression in the proteasome pathway was higher in the X5-60 than Ctr-60 and X3-60. Based on the above data and relevant literature, we speculated that mutant X5 likely copes with high salt stress by upregulating genes related to lysosome and carbon fixation in photosynthesis. The proteasome may be reset to adjust the organism's proteome composition to adapt to high-salt environments, while carbon fixation may aid in maintaining material and energy metabolism for normal life activities by enhancing carbon dioxide uptake via photosynthesis. The differences between the X5-30 and Ctr-30 expression of genes involved in the synthesis of secondary metabolites, oxidative phosphorylation, and SNARE interactions in vesicular transport suggested that the X5-30 may differ from Ctr-30 in lipid metabolism, energy metabolism, and vesicular transport. Finally, among the key pathways with good correlation with salinity and strain traits, the key genes with significant correlation with salinity and strain traits were identified by correlation analysis.


Asunto(s)
Tolerancia a la Sal , Tolerancia a la Sal/genética , Transcriptoma , Redes Reguladoras de Genes , Salinidad , Fotosíntesis/genética , Presión Osmótica , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Perfilación de la Expresión Génica/métodos , Metabolismo de los Lípidos/genética
20.
Phytomedicine ; 131: 155790, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851099

RESUMEN

BACKGROUND: A balanced protein homeostasis network helps cholangiocarcinoma (CCA) maintain their oncogenic growth, and disrupting proteostasis therapeutically will induce proteotoxic stress. Phosphatase and tensin homolog (PTEN) have been reported to be involved in proteostasis, and PTEN-associated pathways are commonly altered in CCA. Celastrol, a triterpene from plants, exhibits cytotoxic effects in various types of cancer. However, the underlying mechanisms remain unclear. PURPOSE: We investigated the therapeutic effect of celastrol in CCA and identified the molecular characteristics of tumors that were sensitive to celastrol. The target of celastrol was explored. We then evaluated the candidate combination therapeutic strategy to increase the effectiveness of celastrol in celastrol-insensitive CCA tumors. METHODS: Various CCA cells were categorized as either celastrol-sensitive or celastrol-insensitive based on their response to celastrol. The molecular characteristics of cells from different groups were determined by RNA-seq. PTEN status and its role in proteasome activity in CCA cells were investigated. The CMAP analysis, molecular docking, and functional assay were performed to explore the effect of celastrol on proteasome activities. The correlation between PTEN status and clinical outcomes, as well as proteasomal activity, were measured in CCA patients. The synergistic therapeutic effect of autophagy inhibitors on celastrol-insensitive CCA cells were measured. RESULTS: Diverse responses to celastrol were observed in CCA cells. PTEN expression varied among different CCA cells, and its status could impact cell sensitivity to celastrol: PTENhigh tumor cells were resistant to celastrol, while PTENlow cells were more sensitive. Celastrol induced proteasomal dysregulation in CCA cells by directly targeting PSMB5. Cells with low PTEN status transcriptionally promoted proteasome subunit expression in an AKT-dependent manner, making these cells more reliant on proteasomal activities to maintain proteostasis. This caused the PTENlow CCA cells sensitive to celastrol. A negative correlation was found between PTEN levels and the proteasome signature in CCA patients. Moreover, celastrol treatment could induce autophagy in PTENhigh CCA cells. Disrupting the autophagic pathway in PTENhigh CCA cells enhanced the cytotoxic effect of celastrol. CONCLUSION: PTEN status in CCA cells determines their sensitivity to celastrol, and autophagy inhibitors could enhance the anti-tumor effect in PTENhigh CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Fosfohidrolasa PTEN , Triterpenos Pentacíclicos , Triterpenos , Colangiocarcinoma/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Fosfohidrolasa PTEN/metabolismo , Humanos , Línea Celular Tumoral , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Triterpenos/farmacología , Simulación del Acoplamiento Molecular , Tripterygium/química , Antineoplásicos Fitogénicos/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Autofagia/efectos de los fármacos , Bortezomib/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...