Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.349
Filtrar
1.
Physiol Rep ; 12(16): e70012, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39169429

RESUMEN

Aging is associated with cardiac contractile abnormalities, but the etiology of these contractile deficits is unclear. We hypothesized that cardiac contractile and regulatory protein expression is altered during aging. To investigate this possibility, left ventricular (LV) lysates were prepared from young (6 months) and old (24 months) Fischer344 rats. There are no age-related changes in SERCA2 expression or phospholamban phosphorylation. Additionally, neither titin isoform expression nor phosphorylation differed. However, there is a significant increase in ß-isoform of the myosin heavy chain (MyHC) expression and phosphorylation of TnI and MyBP-C during aging. In permeabilized strips of papillary muscle, force and Ca2+ sensitivity are reduced during aging, consistent with the increase in ß-MyHC expression and TnI phosphorylation. However, the increase in MyBP-C phosphorylation during aging may represent a mechanism to compensate for age-related contractile deficits. In isolated cardiomyocytes loaded with Fura-2, the peak of the Ca2+ transient is reduced, but the kinetics of the Ca2+ transient are not altered. Furthermore, the extent of shortening and the rates of both sarcomere shortening and re-lengthening are reduced. These results demonstrate that aging is associated with changes in contractile and regulatory protein expression and phosphorylation, which affect the mechanical properties of cardiac muscle.


Asunto(s)
Envejecimiento , Contracción Miocárdica , Miocitos Cardíacos , Ratas Endogámicas F344 , Animales , Masculino , Contracción Miocárdica/fisiología , Envejecimiento/metabolismo , Envejecimiento/fisiología , Ratas , Fosforilación , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Proteínas de Unión al Calcio/metabolismo , Conectina/metabolismo , Troponina I/metabolismo , Calcio/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Proteínas Portadoras
2.
Nat Cardiovasc Res ; 3(8): 899-906, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39196037

RESUMEN

High-proportion spliced-in (hiPSI) titin truncating variant (TTNtv) carriers have a higher risk of atrial fibrillation and heart failure1. However, the role of cardiovascular risk factors in modifying the risk of atrial fibrillation and heart failure attributed to hiPSI TTNtv carriers is unknown. Here, we investigate the role of cardiovascular risk, quantified using the pooled cohort equations (PCEs), in influencing the hazard of outcomes attributed to hiPSI TTNtvs among UK Biobank participants without baseline cardiovascular disease. The cohort was stratified based on hiPSI TTNtv carrier status and cardiovascular risk (low: <5%, intermediate: 5.0-7.5% and high: >7.5%). The primary outcome was a composite of atrial fibrillation, heart failure or death. TTNtv noncarriers with low cardiovascular risk were used as the reference group for all analyses. Among 179,752 participants (median age: 56 (49, 62) years; 57.5% female), the risk of the primary outcome was lower in hiPSI TTNtv carriers with low cardiovascular risk (adjusted hazard ratio: 2.23 (95% confidence interval: 1.62-3.07)) than those with high cardiovascular risk (adjusted hazard ratio: 8.21 (95% confidence interval: 6.63-10.18)). A favorable cardiovascular risk factor profile may partially offset the risk of clinical outcomes among hiPSI TTNtv carriers.


Asunto(s)
Fibrilación Atrial , Conectina , Factores de Riesgo de Enfermedad Cardiaca , Insuficiencia Cardíaca , Humanos , Conectina/genética , Fibrilación Atrial/genética , Fibrilación Atrial/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/epidemiología , Reino Unido/epidemiología , Medición de Riesgo , Predisposición Genética a la Enfermedad , Fenotipo , Pronóstico , Factores de Riesgo
3.
Nat Cardiovasc Res ; 3(2): 140-144, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39196186

RESUMEN

High-proportion spliced-in titin truncating variants (hiPSI TTNtvs) have been associated with an increased risk of atrial fibrillation, dilated cardiomyopathy (DCM) and heart failure in individuals of European ancestry1. However, similar data in individuals of African ancestry are lacking. Here we examined the association of hiPSI TTNtvs with atrial fibrillation, DCM and heart failure in individuals of African ancestry using data from the All of Us Research Program. Among 38,154 individuals of African ancestry, 169 (0.4%) individuals carried a hiPSI TTNtv. hiPSI TTNtv carriers were at a higher risk of developing atrial fibrillation (adjusted hazard ratio (HRadj) 2.42, 95% confidence interval (CI) 1.52-3.85), DCM (HRadj 2.82, 95% CI 1.81-4.39) and heart failure (HRadj 2.07, 95% CI 1.43-3.00) compared with noncarriers. The association of hiPSI TTNtvs with atrial fibrillation, DCM and heart failure was similar in individuals of African ancestry and those of European ancestry. Therefore, genetic testing for hiPSI TTNtvs may permit early identification of carriers and support preventive measures to reduce the likelihood of heart failure development both in individuals of European ancestry and in individuals of African ancestry.


Asunto(s)
Fibrilación Atrial , Cardiomiopatía Dilatada , Conectina , Predisposición Genética a la Enfermedad , Insuficiencia Cardíaca , Población Blanca , Humanos , Conectina/genética , Población Blanca/genética , Masculino , Fibrilación Atrial/genética , Femenino , Persona de Mediana Edad , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/etnología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/etnología , Predisposición Genética a la Enfermedad/genética , Estados Unidos/epidemiología , Factores de Riesgo , Negro o Afroamericano/genética , Adulto , Anciano , Fenotipo , Medición de Riesgo , Empalme del ARN/genética
4.
Medicine (Baltimore) ; 103(29): e38979, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029079

RESUMEN

Gastric cancer (GC) is a prevalent form of cancer worldwide, and TTN (titin) mutations are frequently observed in GC. However, the association between TTN mutations and immunotherapy for GC remains unclear, necessitating the development of novel prognostic models. The prognostic value and potential mechanisms of TTN in stomach adenocarcinoma were evaluated by TCGA (The Cancer Genome Atlas)-stomach adenocarcinoma cohort analysis, and an immune prognostic model was constructed based on TTN status. We validated it using the GSE84433 dataset. We performed Gene Set Enrichment Analysis and screened for differentially expressed genes, and used lasso (least absolute shrinkage and selection operator) regression analysis to screen for survival genes to construct a multifactorial survival model. In addition, we evaluated the relative proportions of 22 immune cells using the CIBERSORT algorithm for immunogenicity analysis. Finally, we constructed the nomogram integrating immune prognostic model and other clinical factors. GESA showed enrichment of immune-related phenotypes in patients with TTN mutations. We constructed an immune prognostic model based on 16 genes could identify gastric cancer patients with higher risk of poor prognosis. Immuno-microenvironmental analysis showed increased infiltration of naive B cells, plasma cells, and monocyte in high-risk patients. In addition, Nomo plots predicted the probability of 1-year, 3-year, and 5-year OS (overall survival) in GC patients, showing good predictive performance. In this study, we identified that TTN gene may be a potential clinical biomarker for GC and TTN mutations may be a predictor of immunotherapy in patients. We constructed and validated a new model for prognosis of GC patients based on immune characteristics associated with TTN mutations. This study may provide potential therapeutic strategies for gastric cancer.


Asunto(s)
Conectina , Mutación , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Pronóstico , Conectina/genética , Femenino , Masculino , Nomogramas , Biomarcadores de Tumor/genética , Persona de Mediana Edad , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Anciano
5.
Circ Res ; 135(4): 474-487, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38962864

RESUMEN

BACKGROUND: How the sarcomeric complex is continuously turned over in long-living cardiomyocytes is unclear. According to the prevailing model of sarcomere maintenance, sarcomeres are maintained by cytoplasmic soluble protein pools with free recycling between pools and sarcomeres. METHODS: We imaged and quantified the turnover of expressed and endogenous sarcomeric proteins, including the giant protein titin, in cardiomyocytes in culture and in vivo, at the single cell and at the single sarcomere level using pulse-chase labeling of Halo-tagged proteins with covalent ligands. RESULTS: We disprove the prevailing protein pool model and instead show an ordered mechanism in which only newly translated proteins enter the sarcomeric complex while older ones are removed and degraded. We also show that degradation is independent of protein age and that proteolytic extraction is a rate-limiting step in the turnover. We show that replacement of sarcomeric proteins occurs at a similar rate within cells and across the heart and is slower in adult cells. CONCLUSIONS: Our findings establish a unidirectional replacement model for cardiac sarcomeres subunit replacement and identify their turnover principles.


Asunto(s)
Conectina , Miocitos Cardíacos , Sarcómeros , Sarcómeros/metabolismo , Animales , Miocitos Cardíacos/metabolismo , Conectina/metabolismo , Células Cultivadas , Proteolisis , Ratones , Biosíntesis de Proteínas , Proteínas Musculares/metabolismo , Ratas , Masculino , Ratones Endogámicos C57BL
6.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063061

RESUMEN

(1) Heart transplantation (HTX) improves the overall survival and functional status of end-stage heart failure patients with cardiomyopathies (CMPs). The majority of CMPs have genetic causes, and the overlap between CMPs and inherited myopathies is well documented. However, the long-term outcome in skeletal muscle function and possibility of an undiagnosed underlying genetic cause of both a cardiac and skeletal pathology remain unknown. (2) Thirty-nine patients were assessed using open and standardized interviews on muscle function, a quality-of-life (EuroQol EQ-5D-3L) questionnaire, and a physical examination (Medical Research Council Muscle scale). Whole-exome sequencing was completed in three stages for those with skeletal muscle weakness. (3) Seven patients (17.9%) reported new-onset muscle weakness and motor limitations. Objective muscle weakness in the upper and lower extremities was seen in four patients. In three of them, exome sequencing revealed pathogenic/likely pathogenic variants in the genes encoding nexilin, myosin heavy chain, titin, and SPG7. (4) Our findings support a positive long-term outcome of skeletal muscle function in HTX patients. However, 10% of patients showed clinical signs of myopathy due to a possible genetic cause. The integration of genetic testing and standardized neurological assessment of motor function during the peri-HTX period should be considered.


Asunto(s)
Trasplante de Corazón , Enfermedades Neuromusculares , Humanos , Trasplante de Corazón/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Enfermedades Neuromusculares/genética , Adulto , Calidad de Vida , Secuenciación del Exoma , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Anciano , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/cirugía , Insuficiencia Cardíaca/etiología , Cardiomiopatías/genética , Cardiomiopatías/etiología , Debilidad Muscular/etiología , Debilidad Muscular/genética , Conectina/genética
7.
ACS Sens ; 9(7): 3489-3495, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38973210

RESUMEN

The ability of proteins to sense and transmit mechanical forces underlies many biological processes, but characterizing these forces in biological systems remains a challenge. Existing genetically encoded force sensors typically rely on fluorescence or bioluminescence resonance energy transfer (FRET or BRET) to visualize tension. However, these force sensing modules are relatively large, and interpreting measurements requires specialized image analysis and careful control experiments. Here, we report a compact molecular tension sensor that generates a bioluminescent signal in response to tension. This sensor (termed PILATeS) makes use of the split NanoLuc luciferase and consists of the H. sapiens titin I10 domain with the insertion of a 10-15 amino acid tag derived from the C-terminal ß-strand of NanoLuc. Mechanical load across PILATeS mediates exposure of this tag to recruit the complementary split NanoLuc fragment, resulting in force-dependent bioluminescence. We demonstrate the ability of PILATeS to report biologically meaningful forces by visualizing forces at the interface between integrins and extracellular matrix substrates. We further use PILATeS as a genetically encoded sensor of tension experienced by the mechanosensing protein vinculin. We anticipate that PILATeS will provide an accessible means of visualizing molecular-scale forces in biological systems.


Asunto(s)
Técnicas Biosensibles , Luciferasas , Mediciones Luminiscentes , Humanos , Luciferasas/química , Luciferasas/metabolismo , Luciferasas/genética , Técnicas Biosensibles/métodos , Mediciones Luminiscentes/métodos , Conectina/química , Conectina/metabolismo , Vinculina/metabolismo , Vinculina/química
8.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928324

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.


Asunto(s)
Conectina , Diafragma , Modelos Animales de Enfermedad , Insuficiencia Cardíaca , Músculo Esquelético , Animales , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/patología , Ratas , Diafragma/metabolismo , Diafragma/fisiopatología , Diafragma/patología , Conectina/metabolismo , Fosforilación , Femenino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Músculo Esquelético/patología , Volumen Sistólico , Contracción Muscular , Condicionamiento Físico Animal , Proteínas Musculares/metabolismo
9.
Neoplasia ; 54: 101013, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850835

RESUMEN

In invasive lung adenocarcinoma (LUAD), patients with micropapillary (MIP) or solid (SOL) components had a significantly poorer prognosis than those with only lepidic (LEP), acinar (ACI) or papillary (PAP) components. It is interesting to explore the genetic features of different histologic subtypes, especially the highly aggressive components. Based on a cohort of 5,933 patients, this study observed that in different tumor size groups, LUAD with MIP/SOL components showed a different prevalence, and patients with ALK alteration or TP53 mutations had a higher probability of developing MIP/SOL components. To control individual differences, this research used spatial whole-exome sequencing (WES) via laser-capture microdissection of five patients harboring these five coexistent components and identified genetic features among different histologic components of the same tumor. In tracing the evolution of components, we found that titin (TTN) mutation might serve as a crucial intratumor potential driver for MIP/SOL components, which was validated by a cohort of 146 LUAD patients undergoing bulk WES. Functional analysis revealed that TTN mutations enriched the complement and coagulation cascades, which correlated with the pathway of cell adhesion, migration, and proliferation. Collectively, the histologic subtypes of invasive LUAD were genetically different, and certain trunk genotypes might synergize with branching TTN mutation to develop highly aggressive components.


Asunto(s)
Adenocarcinoma del Pulmón , Secuenciación del Exoma , Neoplasias Pulmonares , Mutación , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Biomarcadores de Tumor/genética , Masculino , Femenino , Conectina/genética , Pronóstico , Persona de Mediana Edad
10.
BMC Med Genomics ; 17(1): 170, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937733

RESUMEN

BACKGROUND: TTN is a complex gene with large genomic size and highly repetitive structure. Pathogenic variants in TTN have been reported to cause a range of skeletal muscle and cardiac disorders. Homozygous or compound heterozygous mutations tend to cause a wide spectrum of phenotypes with congenital or childhood onset. The onset and severity of the features were considered to be correlated with the types and location of the TTN variants. METHODS: Whole-exome sequencing was performed on three unrelated families presenting with fetal akinesia deformation sequence (FADS), mainly characterized by reduced fetal movements and limb contractures. Sanger sequencing was performed to confirm the variants. RT-PCR analysis was performed. RESULTS: TTN c.38,876-2 A > C, a meta transcript-only variant, with a second pathogenic or likely pathogenic variant in trans, was observed in five affected fetuses from the three families. Sanger sequencing showed that all the fetal variants were inherited from the parents. RT-PCR analysis showed two kinds of abnormal splicing, including intron 199 extension and skipping of 8 bases. CONCLUSIONS: Here we report on three unrelated families presenting with FADS caused by four TTN variants. In addition, our study demonstrates that pathogenic meta transcript-only TTN variant can lead to defects which is recognizable prenatally in a recessive manner.


Asunto(s)
Conectina , Linaje , Humanos , Femenino , Conectina/genética , Masculino , Secuenciación del Exoma , Artrogriposis/genética , Contractura/genética , Mutación , Embarazo , Feto , Adulto
11.
Sci Rep ; 14(1): 13727, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877142

RESUMEN

Connectin (also known as titin) is a giant striated muscle protein that functions as a molecular spring by providing elasticity to the sarcomere. Novex-3 is a short splice variant of connectin whose physiological function remains unknown. We have recently demonstrated using in vitro analyses that in addition to sarcomere expression, novex-3 was also expressed in cardiomyocyte nuclei exclusively during fetal life, where it provides elasticity/compliance to cardiomyocyte nuclei and promotes cardiomyocyte proliferation in the fetus, suggesting a non-sarcomeric function. Here, we analyzed novex-3 knockout mice to assess the involvement of this function in cardiac pathophysiology in vivo. Deficiency of novex-3 compromised fetal cardiomyocyte proliferation and induced the enlargement of individual cardiomyocytes in neonates. In adults, novex-3 deficiency resulted in chamber dilation and systolic dysfunction, associated with Ca2+ dysregulation, resulting in a reduced life span. Mechanistic analyses revealed a possible association between impaired proliferation and abnormal nuclear mechanics, including stiffer nuclei positioned peripherally with stabilized circumnuclear microtubules in knockout cardiomyocytes. Although the underlying causal relationships were not fully elucidated, these data show that novex-3 has a vital non-sarcomeric function in cardiac pathophysiology and serves as an early contributor to cardiomyocyte proliferation.


Asunto(s)
Núcleo Celular , Proliferación Celular , Conectina , Ratones Noqueados , Miocitos Cardíacos , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones , Núcleo Celular/metabolismo , Conectina/genética , Conectina/metabolismo , Sarcómeros/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/deficiencia , Calcio/metabolismo
12.
Nat Commun ; 15(1): 4496, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802383

RESUMEN

Titin N2B unique sequence (N2B-us) is a 572 amino acid sequence that acts as an elastic spring to regulate muscle passive elasticity. It is thought to lack stable tertiary structures and is a force-bearing region that is regulated by mechanical stretching. In this study, the conformation of N2B-us and its interaction with four-and-a-half LIM domain protein 2 (FHL2) are investigated using AlphaFold2 predictions and single-molecule experimental validation. Surprisingly, a stable alpha/beta structural domain is predicted and confirmed in N2B-us that can be mechanically unfolded at forces of a few piconewtons. Additionally, more than twenty FHL2 LIM domain binding sites are predicted to spread throughout N2B-us. Single-molecule manipulation experiments reveals the force-dependent binding of FHL2 to the N2B-us structural domain. These findings provide insights into the mechano-sensing functions of N2B-us and its interactions with FHL2.


Asunto(s)
Conectina , Proteínas con Homeodominio LIM , Unión Proteica , Dominios Proteicos , Factores de Transcripción , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/química , Proteínas con Homeodominio LIM/genética , Conectina/metabolismo , Conectina/química , Conectina/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Sitios de Unión , Humanos , Animales , Proteínas Musculares/metabolismo , Proteínas Musculares/química , Proteínas Musculares/genética , Secuencia de Aminoácidos
13.
J Physiol ; 602(12): 2751-2762, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38695322

RESUMEN

There is a growing appreciation that regulation of muscle contraction requires both thin filament and thick filament activation in order to fully activate the sarcomere. The prevailing mechano-sensing model for thick filament activation was derived from experiments on fast-twitch muscle. We address the question whether, or to what extent, this mechanism can be extrapolated to the slow muscle in the hearts of large mammals, including humans. We investigated the similarities and differences in structural signatures of thick filament activation in porcine myocardium as compared to fast rat extensor digitorum longus (EDL) skeletal muscle under relaxed conditions and sub-maximal contraction using small angle X-ray diffraction. Thick and thin filaments were found to adopt different structural configurations under relaxing conditions, and myosin heads showed different changes in configuration upon sub-maximal activation, when comparing the two muscle types. Titin was found to have an X-ray diffraction signature distinct from those of the overall thick filament backbone, and its spacing change appeared to be positively correlated to the force exerted on the thick filament. Structural changes in fast EDL muscle were found to be consistent with the mechano-sensing model. In porcine myocardium, however, the structural basis of mechano-sensing is blunted suggesting the need for additional activation mechanism(s) in slow cardiac muscle. These differences in thick filament regulation can be related to their different physiological roles where fast muscle is optimized for rapid, burst-like, contractions, and the slow cardiac muscle in large mammalian hearts adopts a more finely tuned, graded response to allow for their substantial functional reserve. KEY POINTS: Both thin filament and thick filament activation are required to fully activate the sarcomere. Thick and thin filaments adopt different structural configurations under relaxing conditions, and myosin heads show different changes in configuration upon sub-maximal activation in fast extensor digitorum longus muscle and slow porcine cardiac muscle. Titin has an X-ray diffraction signature distinct from those of the overall thick filament backbone and this titin reflection spacing change appeared to be directly proportional to the force exerted on the thick filament. Mechano-sensing is blunted in porcine myocardium suggesting the need for additional activation mechanism(s) in slow cardiac muscle. Fast skeletal muscle is optimized for rapid, burst-like contractions, and the slow cardiac muscle in large mammalian hearts adopts a more finely tuned graded response to allow for their substantial functional reserve.


Asunto(s)
Miocardio , Animales , Porcinos , Miocardio/metabolismo , Conectina/metabolismo , Ratas , Masculino , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Rápida/metabolismo , Sarcómeros/fisiología , Sarcómeros/metabolismo , Fibras Musculares de Contracción Lenta/fisiología , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Difracción de Rayos X , Contracción Muscular/fisiología , Miosinas/metabolismo , Miosinas/fisiología
14.
Circ Genom Precis Med ; 17(3): e004320, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38804128

RESUMEN

BACKGROUND: Substantial data support a heritable basis for supraventricular tachycardias, but the genetic determinants and molecular mechanisms of these arrhythmias are poorly understood. We sought to identify genetic loci associated with atrioventricular nodal reentrant tachycardia (AVNRT) and atrioventricular accessory pathways or atrioventricular reciprocating tachycardia (AVAPs/AVRT). METHODS: We performed multiancestry meta-analyses of genome-wide association studies to identify genetic loci for AVNRT (4 studies) and AVAP/AVRT (7 studies). We assessed evidence supporting the potential causal effects of candidate genes by analyzing relations between associated variants and cardiac gene expression, performing transcriptome-wide analyses, and examining prior genome-wide association studies. RESULTS: Analyses comprised 2384 AVNRT cases and 106 489 referents, and 2811 AVAP/AVRT cases and 1,483 093 referents. We identified 2 significant loci for AVNRT, which implicate NKX2-5 and TTN as disease susceptibility genes. A transcriptome-wide association analysis supported an association between reduced predicted cardiac expression of NKX2-5 and AVNRT. We identified 3 significant loci for AVAP/AVRT, which implicate SCN5A, SCN10A, and TTN/CCDC141. Variant associations at several loci have been previously reported for cardiac phenotypes, including atrial fibrillation, stroke, Brugada syndrome, and electrocardiographic intervals. CONCLUSIONS: Our findings highlight gene regions associated with ion channel function (AVAP/AVRT), as well as cardiac development and the sarcomere (AVAP/AVRT and AVNRT) as important potential effectors of supraventricular tachycardia susceptibility.


Asunto(s)
Estudio de Asociación del Genoma Completo , Taquicardia Supraventricular , Humanos , Taquicardia Supraventricular/genética , Predisposición Genética a la Enfermedad , Taquicardia por Reentrada en el Nodo Atrioventricular/genética , Polimorfismo de Nucleótido Simple , Conectina/genética , Transcriptoma
15.
J Nanobiotechnology ; 22(1): 191, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637832

RESUMEN

BACKGROUND: Exosomes assume a pivotal role as essential mediators of intercellular communication within tumor microenvironments. Within this context, long noncoding RNAs (LncRNAs) have been observed to be preferentially sorted into exosomes, thus exerting regulatory control over the initiation and progression of cancer through diverse mechanisms. RESULTS: Exosomes were successfully isolated from cholangiocarcinoma (CCA) CTCs organoid and healthy human serum. Notably, the LncRNA titin-antisense RNA1 (TTN-AS1) exhibited a conspicuous up-regulation within CCA CTCs organoid derived exosomes. Furthermore, a significant elevation of TTN-AS1 expression was observed in tumor tissues, as well as in blood and serum exosomes from patients afflicted with CCA. Importantly, this hightened TTN-AS1 expression in serum exosomes of CCA patients manifested a strong correlation with both lymph node metastasis and TNM staging. Remarkably, both CCA CTCs organoid-derived exosomes and CCA cells-derived exosomes featuring pronounced TTN-AS1 expression demonstrated the capability to the proliferation and migratory potential of CCA cells. Validation of these outcomes was conducted in vivo experiments. CONCLUSIONS: In conclusion, our study elucidating that CCA CTCs-derived exosomes possess the capacity to bolster the metastasis tendencies of CCA cells by transporting TTN-AS1. These observations underscore the potential of TTN-AS1 within CTCs-derived exosomes to serve as a promising biomarker for the diagnosis and therapeutic management of CCA.


Asunto(s)
Colangiocarcinoma , Exosomas , MicroARNs , Células Neoplásicas Circulantes , ARN Bacteriano , ARN Largo no Codificante , Humanos , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Exosomas/metabolismo , Conectina/genética , Conectina/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Proliferación Celular , Movimiento Celular , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral
16.
J Am Coll Cardiol ; 83(17): 1640-1651, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38658103

RESUMEN

BACKGROUND: Disease penetrance in genotype-positive (G+) relatives of families with dilated cardiomyopathy (DCM) and the characteristics associated with DCM onset in these individuals are unknown. OBJECTIVES: This study sought to determine the penetrance of new DCM diagnosis in G+ relatives and to identify factors associated with DCM development. METHODS: The authors evaluated 779 G+ patients (age 35.8 ± 17.3 years; 459 [59%] females; 367 [47%] with variants in TTN) without DCM followed at 25 Spanish centers. RESULTS: After a median follow-up of 37.1 months (Q1-Q3: 16.3-63.8 months), 85 individuals (10.9%) developed DCM (incidence rate of 2.9 per 100 person-years; 95% CI: 2.3-3.5 per 100 person-years). DCM penetrance and age at DCM onset was different according to underlying gene group (log-rank P = 0.015 and P <0.01, respectively). In a multivariable model excluding CMR parameters, independent predictors of DCM development were: older age (HR per 1-year increase: 1.02; 95% CI: 1.0-1.04), an abnormal electrocardiogram (HR: 2.13; 95% CI: 1.38-3.29); presence of variants in motor sarcomeric genes (HR: 1.92; 95% CI: 1.05-3.50); lower left ventricular ejection fraction (HR per 1% increase: 0.86; 95% CI: 0.82-0.90) and larger left ventricular end-diastolic diameter (HR per 1-mm increase: 1.10; 95% CI: 1.06-1.13). Multivariable analysis in individuals with cardiac magnetic resonance and late gadolinium enhancement assessment (n = 360, 45%) identified late gadolinium enhancement as an additional independent predictor of DCM development (HR: 2.52; 95% CI: 1.43-4.45). CONCLUSIONS: Following a first negative screening, approximately 11% of G+ relatives developed DCM during a median follow-up of 3 years. Older age, an abnormal electrocardiogram, lower left ventricular ejection fraction, increased left ventricular end-diastolic diameter, motor sarcomeric genetic variants, and late gadolinium enhancement are associated with a higher risk of developing DCM.


Asunto(s)
Cardiomiopatía Dilatada , Genotipo , Penetrancia , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Conectina/genética , Electrocardiografía , Estudios de Seguimiento , España/epidemiología , Estudios Retrospectivos
17.
Geroscience ; 46(5): 4543-4561, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38656649

RESUMEN

INTRODUCTION: The prevalence of heart failure with preserved ejection fraction (HFpEF) is continuously rising and predominantly affects older women often hypertensive and/or obese or diabetic. Indeed, there is evidence on sex differences in the development of HF. Hence, we studied cardiovascular performance dependent on sex and age as well as pathomechanisms on a cellular and molecular level. METHODS: We studied 15-week- and 1-year-old female and male hypertensive transgenic rats carrying the mouse Ren-2 renin gene (TG) and compared them to wild-type (WT) controls at the same age. We tracked blood pressure and cardiac function via echocardiography. After sacrificing the 1-year survivors we studied vascular smooth muscle and endothelial function. Isolated single skinned cardiomyocytes were used to determine passive stiffness and Ca2+-dependent force. In addition, Western blots were applied to analyse the phosphorylation status of sarcomeric regulatory proteins, titin and of protein kinases AMPK, PKG, CaMKII as well as their expression. Protein kinase activity assays were used to measure activities of CaMKII, PKG and angiotensin-converting enzyme (ACE). RESULTS: TG male rats showed significantly higher mortality at 1 year than females or WT male rats. Left ventricular (LV) ejection fraction was specifically reduced in male, but not in female TG rats, while LV diastolic dysfunction was evident in both TG sexes, but LV hypertrophy, increased LV ACE activity, and reduced AMPK activity as evident from AMPK hypophosphorylation were specific to male rats. Sex differences were also observed in vascular and cardiomyocyte function showing different response to acetylcholine and Ca2+-sensitivity of force production, respectively cardiomyocyte functional changes were associated with altered phosphorylation states of cardiac myosin binding protein C and cardiac troponin I phosphorylation in TG males only. Cardiomyocyte passive stiffness was increased in TG animals. On a molecular level titin phosphorylation pattern was altered, though alterations were sex-specific. Thus, also the reduction of PKG expression and activity was more pronounced in TG females. However, cardiomyocyte passive stiffness was restored by PKG and CaMKII treatments in both TG sexes. CONCLUSION: Here we demonstrated divergent sex-specific cardiovascular adaptation to the over-activation of the renin-angiotensin system in the rat. Higher mortality of male TG rats in contrast to female TG rats was observed as well as reduced LV systolic function, whereas females mainly developed HFpEF. Though both sexes developed increased myocardial stiffness to which an impaired titin function contributes to a sex-specific molecular mechanism. The functional derangements of titin are due to a sex-specific divergent regulation of PKG and CaMKII systems.


Asunto(s)
Insuficiencia Cardíaca , Hipertensión , Miocitos Cardíacos , Ratas Transgénicas , Remodelación Ventricular , Animales , Masculino , Femenino , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/metabolismo , Hipertensión/metabolismo , Hipertensión/fisiopatología , Ratas , Remodelación Ventricular/fisiología , Factores Sexuales , Miocitos Cardíacos/metabolismo , Conectina/metabolismo , Modelos Animales de Enfermedad , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ecocardiografía , Fosforilación , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología
18.
J Mol Cell Cardiol ; 191: 40-49, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604403

RESUMEN

The heart has the ability to detect and respond to changes in mechanical load through a process called mechanotransduction. In this study, we focused on investigating the role of the cardiac-specific N2B element within the spring region of titin, which has been proposed to function as a mechanosensor. To assess its significance, we conducted experiments using N2B knockout (KO) mice and wildtype (WT) mice, subjecting them to three different conditions: 1) cardiac pressure overload induced by transverse aortic constriction (TAC), 2) volume overload caused by aortocaval fistula (ACF), and 3) exercise-induced hypertrophy through swimming. Under conditions of pressure overload (TAC), both genotypes exhibited similar hypertrophic responses. In contrast, WT mice displayed robust left ventricular hypertrophy after one week of volume overload (ACF), while the KO mice failed to undergo hypertrophy and experienced a high mortality rate. Similarly, swim exercise-induced hypertrophy was significantly reduced in the KO mice. RNA-Seq analysis revealed an abnormal ß-adrenergic response to volume overload in the KO mice, as well as a diminished response to isoproterenol-induced hypertrophy. Because it is known that the N2B element interacts with the four-and-a-half LIM domains 1 and 2 (FHL1 and FHL2) proteins, both of which have been associated with mechanotransduction, we evaluated these proteins. Interestingly, while volume-overload resulted in FHL1 protein expression levels that were comparable between KO and WT mice, FHL2 protein levels were reduced by over 90% in the KO mice compared to WT. This suggests that in response to volume overload, FHL2 might act as a signaling mediator between the N2B element and downstream signaling pathways. Overall, our study highlights the importance of the N2B element in mechanosensing during volume overload, both in physiological and pathological settings.


Asunto(s)
Conectina , Mecanotransducción Celular , Ratones Noqueados , Animales , Ratones , Conectina/metabolismo , Conectina/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Miocardio/metabolismo , Miocardio/patología , Masculino , Condicionamiento Físico Animal , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/genética , Modelos Animales de Enfermedad , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas con Dominio LIM/metabolismo , Proteínas con Dominio LIM/genética , Proteínas Quinasas , Péptidos y Proteínas de Señalización Intracelular
19.
J Biol Chem ; 300(5): 107254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569934

RESUMEN

Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.


Asunto(s)
Conectina , Proteínas con Dominio LIM , Proteínas Musculares , Miocitos Cardíacos , Proteínas del Tejido Nervioso , Proteínas Nucleares , Sarcómeros , Animales , Humanos , Ratones , Ratas , Conectina/metabolismo , Conectina/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Homeodominio LIM , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Sarcómeros/metabolismo , Factores de Transcripción
20.
Cancer Invest ; 42(4): 297-308, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38666471

RESUMEN

Endometrioid endometrial carcinoma (EEC) stands as a prevalent gynecologic malignancy in developed regions. However, predicting relapse cases remains challenging, necessitating the identification of a novel biomarker for EEC relapse. The assessment of tumor mutational burden (TMB) is pivotal for immunotherapy in EEC patients. However, both whole-exome sequencing (WES) and targeted sequencing encountered application-related difficulties. In light of this, standardized and simplified techniques for TMB measurement are imperative. In this study, we employed WES on 25 EEC patients (12 relapsed cases and 13 non-relapsed cases) who accepted hysterectomy surgery (CHCAMS cohort). We additionally obtained a total of 391 tumor samples with clinicopathological features from TCGA website to broaden the study cohort. In the CHCAMS cohort, the TTN mutant group showed shorter progression-free survival (p < 0.001) and overall survival (p < 0.001) than TTN wild-type group. Additionally, we discovered that the number of TTN mutations per sample was significantly linked with TMB-WES in CHCAMS cohort and TCGA cohort (p < 0.05). And the number of TTN mutations per sample in POLE mutant group was greater than in the POLE wild-type group (p < 0.0001). In conclusion, TTN mutation may serve as a biomarker for EEC prognosis. TTN mutation is also associated with WES-TMB, and could be a simplified TMB measurement technique.


Asunto(s)
Carcinoma Endometrioide , Conectina , Neoplasias Endometriales , Mutación , Humanos , Femenino , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Neoplasias Endometriales/mortalidad , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patología , Carcinoma Endometrioide/mortalidad , Persona de Mediana Edad , Conectina/genética , Biomarcadores de Tumor/genética , Anciano , Pronóstico , Secuenciación del Exoma/métodos , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...