Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.397
Filtrar
1.
J Environ Sci (China) ; 149: 209-220, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181635

RESUMEN

Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages, such as fine building block size together with high specific surface area, abundant pore structure, etc. Additionally, monolithic aerogels possess a unique monolithic macrostructure that sets them apart from aerogel powders and nanoparticles in practical environmental clean-up applications. This review delves into the available synthesis strategies and atmospheric environmental applications of monolithic aerogels, covering types of monolithic aerogels including SiO2, graphene, metal oxides and their combinations, along with their preparation methods. In particular, recent developments for VOC adsorption, CO2 capture, catalytic oxidation of VOCs and catalytic reduction of CO2 are highlighted. Finally, challenges and future opportunities for monolithic aerogels in the atmospheric environmental purification field are proposed. This review provides valuable insights for designing and utilizing monolithic aerogel-based functional materials.


Asunto(s)
Contaminantes Atmosféricos , Geles , Contaminantes Atmosféricos/química , Geles/química , Atmósfera/química , Adsorción , Dióxido de Carbono/química , Restauración y Remediación Ambiental/métodos , Dióxido de Silicio/química
2.
J Environ Sci (China) ; 149: 200-208, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181634

RESUMEN

The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health. We recently developed a novel and facile water-probe-based method for directly measuring of the pH for micrometer-size droplets, providing a promising technique to better understand aerosol acidity in the atmosphere. The complex chemical composition of fine particles in the ambient air, however, poses certain challenges to using a water-probe for pH measurement, including interference from interactions between compositions and the influence of similar compositions on water structure. To explore the universality of our method, it was employed to measure the pH of ammonium, nitrate, carbonate, sulfate, and chloride particles. The pH of particles covering a broad range (0-14) were accurately determined, thereby demonstrating that our method can be generally applied, even to alkaline particles. Furthermore, a standard spectral library was developed by integrating the standard spectra of common hydrated ions extracted through the water-probe. The library can be employed to identify particle composition and overcome the spectral overlap problem resulting from similar effects. Using the spectral library, all ions were identified and their concentrations were determined, in turn allowing successful pH measurement of multicomponent (ammonium-sulfate-nitrate-chloride) particles. Insights into the synergistic effect of Cl-, NO3-, and NH4+ depletion obtained with our approach revealed the interplay between pH and volatile partitioning. Given the ubiquity of component partitioning and pH variation in particles, the water probe may provide a new perspective on the underlying mechanisms of aerosol aging and aerosol-cloud interaction.


Asunto(s)
Aerosoles , Monitoreo del Ambiente , Espectrometría Raman , Agua , Concentración de Iones de Hidrógeno , Espectrometría Raman/métodos , Agua/química , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Atmósfera/química , Material Particulado/análisis
3.
J Environ Sci (China) ; 149: 268-277, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181641

RESUMEN

Sulfur trioxide (SO3) as a condensable particle matter has a significant influence on atmospheric visibility, which easily arouses formation of haze. It is imperative to control the SO3 emission from the industrial flue gas. Three commonly used basic absorbents, including Ca(OH)2, MgO and NaHCO3 were selected to explore the effects of temperature, SO2 concentration on the SO3 absorption, and the reaction mechanism of SO3 absorption was further illustrated. The suitable reaction temperature for various absorbents were proposed, Ca(OH)2 at the high temperatures above 500°C, MgO at the low temperatures below 320°C, and NaHCO3 at the temperature range of 320-500°C. The competitive absorption between SO2 and SO3 was found that the addition of SO2 reduced the SO3 absorption on Ca(OH)2 and NaHCO3, while had no effect on MgO. The order of the absorption selectivity of SO3 follows MgO, NaHCO3 and Ca(OH)2 under the given conditions in this work. The absorption process of SO3 on NaHCO3 follows the shrinking core model, thus the absorption reaction continues until NaHCO3 was exhausted with the utilization rate of nearly 100%. The absorption process of SO3 on Ca(OH)2 and MgO follows the grain model, and the dense product layer hinders the further absorption reaction, resulting in low utilization of about 50% for Ca(OH)2 and MgO. The research provides a favorable support for the selection of alkaline absorbent for SO3 removal in application.


Asunto(s)
Contaminantes Atmosféricos , Dióxido de Azufre , Dióxido de Azufre/química , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/análisis , Óxidos de Azufre/química , Modelos Químicos , Óxido de Magnesio/química , Hidróxido de Calcio/química
4.
J Environ Sci (China) ; 149: 456-464, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181657

RESUMEN

Nitrogen-containing organic compounds (NOCs) may potentially contribute to aqueous secondary organic aerosols, yet the different formation of NOCs in aerosol particles and cloud droplets remains unclear. With the in-situ measurements performed at a mountain site (1690 m a.s.l.) in southern China, we investigated the formation of NOCs in the cloud droplets and the cloud-free particles, based on their mixing state information of NOCs-containing particles by single particle mass spectrometry. The relative abundance of NOCs in the cloud-free particles was significantly higher than those in cloud residual (cloud RES) particles. NOCs were highly correlated with carbonyl compounds (including glyoxalate and methylglyoxal) in the cloud-free particles, however, limited correlation was observed for cloud RES particles. Analysis of their mixing state and temporal variations highlights that NOCs was mainly formed from the carbonyl compounds and ammonium in the cloud-free particles, rather than in the cloud RES particles. The results support that the formation of NOCs from carbonyl compounds is facilitated in concentrated solutions in wet aerosols, rather than cloud droplets. In addition, we have identified the transport of biomass burning particles that facilitate the formation of NOCs, and that the observed NOCs is most likely contributed to the light absorption. These findings have implications for the evaluation of NOCs formation and their contribution to light absorption.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , Nitrógeno , Compuestos Orgánicos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Nitrógeno/química , Nitrógeno/análisis , Compuestos Orgánicos/química , China , Atmósfera/química , Material Particulado/análisis , Material Particulado/química
5.
J Environ Sci (China) ; 149: 444-455, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181656

RESUMEN

Oxidation of organic amines (OAs) or aromatic hydrocarbons (AHs) produces carbonyls, which further react with OAs to form carbonyl-amine condensation products, threatening environmental quality and human health. However, there is still a lack of systematic understanding of the carbonyl-amine condensation reaction processes of OAs or between OAs and AHs, and subsequent environmental health impact. This work systematically investigated the carbonyl-amine condensation coupled ozonolysis kinetics, reaction mechanism, secondary organic aerosol (SOA) formation and cytotoxicity from the mixture of dipropylamine (DPA) and styrene (STY) by a combined method of product mass spectrometry identification, particle property analysis and cell exposure evaluation. The results from ozonolysis of DPA and STY mixture revealed that STY inhibited the ozonolysis of DPA to different degrees to accelerate its own decay rate. The barycenter of carbonyl-amine condensation reactions was shifted from inside of DPA to between DPA and STY, which accelerated STY ozonolysis, but slowed down DPA ozonolysis. For the first time, ozonolysis of DPA and STY mixture to complex carbonyl-amine condensation products through the reactions of DPA with its carbonyl products, DPA with STY's carbonyl products and DPA's bond breakage product with STY's carbonyl products was confirmed. These condensation products significantly contributed to the formation and growth of SOA. The SOA containing particulate carbonyl-amine condensation products showed definite cytotoxicity. These findings are helpful to deeply and comprehensively understand the transformation, fate and environmental health effects of mixed organics in atmospheric environment.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Aminas , Ozono , Estireno , Ozono/química , Aminas/química , Aminas/toxicidad , Cinética , Estireno/química , Estireno/toxicidad , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/toxicidad , Humanos , Oxidación-Reducción , Modelos Químicos
6.
J Environ Sci (China) ; 149: 476-487, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181660

RESUMEN

Herein, three supported catalysts, CuO/Al2O3, CeO2/Al2O3, and CuO-CeO2/Al2O3, were synthesized by the convenient impregnation method to reveal the effect of CeO2 addition on catalytic performance and reaction mechanism for toluene oxidation. Compared with CuO/Al2O3, the T50 and T90 (the temperatures at 50% and 90% toluene conversion, respectively) of CuO-CeO2/Al2O3 were reduced by 33 and 39 °C, respectively. N2 adsorption-desorption experiment, XRD, SEM, EDS mapping, Raman, EPR, H2-TPR, O2-TPD, XPS, NH3-TPD, Toluene-TPD, and in-situ DRIFTS were conducted to characterize these catalysts. The excellent catalytic performance of CuO-CeO2/Al2O3 could be attributed to its strong copper-cerium interaction and high oxygen vacancies concentration. Moreover, in-situ DRIFTS proved that CuO-CeO2/Al2O3 promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene. This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds.


Asunto(s)
Cerio , Cobre , Oxidación-Reducción , Tolueno , Tolueno/química , Catálisis , Cobre/química , Cerio/química , Modelos Químicos , Contaminantes Atmosféricos/química
7.
J Environ Sci (China) ; 149: 574-584, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181669

RESUMEN

The formation of oligomeric hydrogen peroxide triggered by Criegee intermediate maybe contributes significantly to the formation and growth of secondary organic aerosol (SOA). However, to date, the reactivity of C2 Criegee intermediates (CH3CHOO) in areas contaminated with acidic gas remains poorly understood. Herein, high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations are used to explore the reaction of CH3CHOO and H2SO4 both in the gas phase and at the air-water interface. In the gas phase, the addition reaction of CH3CHOO with H2SO4 to generate CH3HC(OOH)OSO3H (HPES) is near-barrierless, regardless of the presence of water molecules. BOMD simulations show that the reaction at the air-water interface is even faster than that in the gas phase. Further calculations reveal that the HPES has a tendency to aggregate with sulfuric acids, ammonias, and water molecules to form stable clusters, meanwhile the oligomerization reaction of CH3CHOO with HPES in the gas phase is both thermochemically and kinetically favored. Also, it is noted that the interfacial HPES- ion can attract H2SO4, NH3, (COOH)2 and HNO3 for particle formation from the gas phase to the water surface. Thus, the results of this work not only elucidate the high atmospheric reactivity of C2 Criegee intermediates in polluted regions, but also deepen our understanding of the formation process of atmospheric SOA induced by Criegee intermediates.


Asunto(s)
Ácidos Sulfúricos , Ácidos Sulfúricos/química , Aerosoles , Modelos Químicos , Contaminantes Atmosféricos/química , Simulación de Dinámica Molecular , Atmósfera/química
8.
J Environ Sci (China) ; 148: 174-187, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095155

RESUMEN

Cost-effective CO2 adsorbents are gaining increasing attention as viable solutions for mitigating climate change. In this study, composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate (CuBTC). Among the different composites synthesized, the ratio of 1:1 between biochar and CuBTC (B 1:1) demonstrated the highest CO2 adsorption capacity. Under controlled laboratory conditions (0°C, 1 bar, without the influence of ambient moisture or CO2 diffusion limitations), B 1:1 achieved a CO2 adsorption capacity of 9.8 mmol/g, while under industrial-like conditions (25°C, 1 bar, taking into account the impact of ambient moisture and CO2 diffusion limitations within a bed of adsorbent), it reached 6.2 mmol/g. These values surpassed those reported for various advanced CO2 adsorbents investigated in previous studies. The superior performance of the B 1:1 composite can be attributed to the optimization of the number of active sites, porosity, and the preservation of the full physical and chemical surface properties of both parent materials. Furthermore, the composite exhibited a notable CO2/N2 selectivity and improved stability under moisture conditions. These favorable characteristics make B 1:1 a promising candidate for industrial applications.


Asunto(s)
Dióxido de Carbono , Estructuras Metalorgánicas , Dióxido de Carbono/química , Adsorción , Estructuras Metalorgánicas/química , Contaminantes Atmosféricos/química , Carbón Orgánico/química
9.
J Environ Sci (China) ; 148: 210-220, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095158

RESUMEN

Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol (SOA) and plays an important role in controlling the abundance, properties, as well as climate and health impacts of aerosols. However, our knowledge on this heterogeneous chemistry remains inadequate. In this study, the heterogeneous oxidation of α-pinene ozonolysis SOA by hydroxyl (OH) radicals was investigated under both low and high relative humidity (RH) conditions, with an emphasis on the evolution of molecular composition of SOA and its RH dependence. It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60% at 25% RH and 95% at 90% RH. The heterogeneous oxidation strongly changes the molecular composition of SOA. The dimer-to-monomer signal ratios increase dramatically with rising OH exposure, in particular under high RH conditions, suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers. In addition, the typical SOA tracer compounds such as pinic acid, pinonic acid, hydroxy pinonic acid and dimer esters (e.g., C17H26O8 and C19H28O7) have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions, which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods. Our study sheds lights on the heterogeneous oxidation chemistry of monoterpene SOA and would help to understand their evolution and impacts in the atmosphere.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Monoterpenos Bicíclicos , Humedad , Radical Hidroxilo , Oxidación-Reducción , Aerosoles/química , Radical Hidroxilo/química , Monoterpenos Bicíclicos/química , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/análisis , Ozono/química , Modelos Químicos , Atmósfera/química , Monoterpenos/química
10.
J Environ Sci (China) ; 148: 420-436, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095177

RESUMEN

Mercury (Hg) pollution has been a global concern in recent decades, posing a significant threat to entire ecosystems and human health due to its cumulative toxicity, persistence, and transport in the atmosphere. The intense interaction between mercury and selenium has opened up a new field for studying mercury removal from industrial flue gas pollutants. Besides the advantages of good Hg° capture performance and low secondary pollution of the mineral selenium compounds, the most noteworthy is the relatively low regeneration temperature, allowing adsorbent regeneration with low energy consumption, thus reducing the utilization cost and enabling recovery of mercury resources. This paper reviews the recent progress of mineral selenium compounds in flue gas mercury removal, introduces in detail the different types of mineral selenium compounds studied in the field of mercury removal, reviews the adsorption performance of various mineral selenium compounds adsorbents on mercury and the influence of flue gas components, such as reaction temperature, air velocity, and other factors, and summarizes the adsorption mechanism of different fugitive forms of selenium species. Based on the current research progress, future studies should focus on the economic performance and the performance of different carriers and sizes of adsorbents for the removal of Hg0 and the correlation between the gas-particle flow characteristics and gas phase mass transfer with the performance of Hg0 removal in practical industrial applications. In addition, it remains a challenge to distinguish the oxidation and adsorption of Hg0 quantitatively.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/química , Adsorción , Contaminantes Atmosféricos/química , Selenio/química , Gases/química , Compuestos de Selenio/química
11.
J Environ Sci (China) ; 148: 46-56, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095180

RESUMEN

Thermodynamic modeling is still the most widely used method to characterize aerosol acidity, a critical physicochemical property of atmospheric aerosols. However, it remains unclear whether gas-aerosol partitioning should be incorporated when thermodynamic models are employed to estimate the acidity of coarse particles. In this work, field measurements were conducted at a coastal city in northern China across three seasons, and covered wide ranges of temperature, relative humidity and NH3 concentrations. We examined the performance of different modes of ISORROPIA-II (a widely used aerosol thermodynamic model) in estimating aerosol acidity of coarse and fine particles. The M0 mode, which incorporates gas-phase data and runs the model in the forward mode, provided reasonable estimation of aerosol acidity for coarse and fine particles. Compared to M0, the M1 mode, which runs the model in the forward mode but does not include gas-phase data, may capture the general trend of aerosol acidity but underestimates pH for both coarse and fine particles; M2, which runs the model in the reverse mode, results in large errors in estimated aerosol pH for both coarse and fine particles and should not be used for aerosol acidity calculations. However, M1 significantly underestimates liquid water contents for both fine and coarse particles, while M2 provides reliable estimation of liquid water contents. In summary, our work highlights the importance of incorporating gas-aerosol partitioning when estimating coarse particle acidity, and thus may help improve our understanding of acidity of coarse particles.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Modelos Químicos , Termodinámica , Aerosoles/análisis , Aerosoles/química , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente/métodos , Material Particulado/química , Material Particulado/análisis , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
12.
J Environ Sci (China) ; 148: 476-488, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095182

RESUMEN

In this study, non-thermal plasma (NTP) was employed to modify the Cu/TiO2 adsorbent to efficiently purify H2S in low-temperature and micro-oxygen environments. The effects of Cu loading amounts and atmospheres of NTP treatment on the adsorption-oxidation performance of the adsorbents were investigated. The NTP modification successfully boosted the H2S removal capacity to varying degrees, and the optimized adsorbent treated by air plasma (Cu/TiO2-Air) attained the best H2S breakthrough capacity of 113.29 mg H2S/gadsorbent, which was almost 5 times higher than that of the adsorbent without NTP modification. Further studies demonstrated that the superior performance of Cu/TiO2-Air was attributed to increased mesoporous volume, more exposure of active sites (CuO) and functional groups (amino groups and hydroxyl groups), enhanced Ti-O-Cu interaction, and the favorable ratio of active oxygen species. Additionally, the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicated the main reason for the deactivation was the consumption of the active components (CuO) and the agglomeration of reaction products (CuS and SO42-) occupying the active sites on the surface and the inner pores of the adsorbents.


Asunto(s)
Cobre , Sulfuro de Hidrógeno , Oxidación-Reducción , Titanio , Titanio/química , Adsorción , Cobre/química , Sulfuro de Hidrógeno/química , Contaminantes Atmosféricos/química , Gases em Plasma/química , Modelos Químicos
13.
J Environ Sci (China) ; 148: 451-467, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095179

RESUMEN

After the ultralow emission transformation of coal-fired power plants, cement production became China's leading industrial emission source of nitrogen oxides. Flue gas dust contents at the outlet of cement kiln preheaters were as high as 80-100 g/m3, and the calcium oxide content in the dust exceeded 60%. Commercial V2O5(-WO3)/TiO2 catalysts suitable for coal-fired flue gas suffer from alkaline earth metal Ca poisoning of cement kiln flue gas. Recent studies have also identified the poisoning of cement kiln selective catalytic reaction (SCR) catalysts by the heavy metals lead and thallium. Investigation of the poisoning process is the primary basis for analyzing the catalytic lifetime. This review summarizes and analyzes the SCR catalytic mechanism and chronicles the research progress concerning this poisoning mechanism. Based on the catalytic and toxification mechanisms, it can be inferred that improving the anti-poisoning performance of a catalyst enhances its acidity, surface redox performance-active catalytic sites, and shell layer protection. The data provide support in guiding engineering practice and reducing operating costs of SCR plants. Finally, future research directions for SCR denitrification catalysts in the cement industry are discussed. This study provides critical support for the development and optimization of poisoning-resistant SCR denitrification catalysts.


Asunto(s)
Materiales de Construcción , Catálisis , Contaminantes Atmosféricos/química , Centrales Eléctricas , China
14.
J Environ Sci (China) ; 148: 529-540, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095186

RESUMEN

Monolithic catalysts with excellent O3 catalytic decomposition performance were prepared by in situ loading of Co-doped KMn8O16 on the surface of nickel foam. The triple-layer structure with Co-doped KMn8O16/Ni6MnO8/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO4 to Co(NO3)2·6H2O precursors. Importantly, the formed Ni6MnO8 structure between KMn8O16 and nickel foam during in situ synthesis process effectively protected nickel foam from further etching, which significantly enhanced the reaction stability of catalyst. The optimum amount of Co doping in KMn8O16 was available when the molar ratio of Mn to Co species in the precursor solution was 2:1. And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity, thus creating outstanding O3 decomposition activity. The O3 conversion under dry conditions and relative humidity of 65%, 90% over a period of 5 hr was 100%, 94% and 80% with the space velocity of 28,000 hr-1, respectively. The in situ constructed Co-doped KMn8O16/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process, which provided an opportunity for the design of monolithic catalyst for O3 catalytic decomposition.


Asunto(s)
Compuestos de Manganeso , Níquel , Óxidos , Ozono , Óxidos/química , Níquel/química , Compuestos de Manganeso/química , Ozono/química , Catálisis , Humedad , Cobalto/química , Modelos Químicos , Contaminantes Atmosféricos/química
15.
J Environ Sci (China) ; 148: 489-501, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095183

RESUMEN

The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process, which is the first step of new particle formation (NPF). In the present study, cycloaddition reaction mechanism of sulfur trioxide (SO3) to hydrogen sulfide (H2S) which is a typical air pollutant and toxic gas detrimental to the environment were comprehensively investigate through theoretical calculations and Atmospheric Cluster Dynamic Code simulations. Gas-phase stability and nucleation potential of the product thiosulfuric acid (H2S2O3, TSA) were further analyzed to evaluate its atmospheric impact. Without any catalysts, the H2S + SO3 reaction is infeasible with a barrier of 24.2 kcal/mol. Atmospheric nucleation precursors formic acid (FA), sulfuric acid (SA), and water (H2O) could effectively lower the reaction barriers as catalysts, even to a barrierless reaction with the efficiency of cis-SA > trans-FA > trans-SA > H2O. Subsequently, the gas-phase stability of TSA was investigated. A hydrolysis reaction barrier of up to 61.4 kcal/mol alone with an endothermic isomerization reaction barrier of 5.1 kcal/mol under the catalytic effect of SA demonstrates the sufficient stability of TSA. Furthermore, topological and kinetic analysis were conducted to determine the nucleation potential of TSA. Atmospheric clusters formed by TSA and atmospheric nucleation precursors (SA, ammonia NH3, and dimethylamine DMA) were thermodynamically stable. Moreover, the gradually decreasing evaporation coefficients for TSA-base clusters, particularly for TSA-DMA, suggests that TSA may participate in NPF where the concentration of base molecules are relatively higher. The present new reaction mechanism may contributes to a better understanding of atmospheric sulfur cycle and NPF.


Asunto(s)
Contaminantes Atmosféricos , Sulfuro de Hidrógeno , Modelos Químicos , Sulfuro de Hidrógeno/química , Contaminantes Atmosféricos/química , Reacción de Cicloadición , Atmósfera/química , Óxidos de Azufre/química , Cinética , Azufre/química
16.
J Environ Sci (China) ; 148: 57-68, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095190

RESUMEN

The expandable graphite (EG) modified TiO2 nanocomposites were prepared by the high shear method using the TiO2 nanoparticles (NPs) and EG as precursors, in which the amount of EG doped in TiO2 was 10 wt.%. Followed by the impregnation method, adjusting the pH of the solution to 10, and using the electrostatic adsorption to achieve spatial confinement, the Pt elements were mainly distributed on the exposed TiO2, thus generating the Pt/10EG-TiO2-10 catalyst. The best CO oxidation activity with the excellent resistance to H2O and SO2 was obtained over the Pt/10EG-TiO2-10 catalyst: CO conversion after 36 hr of the reaction was ca. 85% under the harsh condition of 10 vol.% H2O and 100 ppm SO2 at a high gaseous hourly space velocity (GHSV) of 400,000 hr-1. Physicochemical properties of the catalysts were characterized by various techniques. The results showed that the electrostatic adsorption, which riveted the Pt elements mainly on the exposed TiO2 of the support surface, reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs, hence significantly improving CO oxidation activity over the Pt/10EG-TiO2-10 catalyst. The 10 wt.% EG doped in TiO2 caused the TiO2 support to form a more hydrophobic surface, which reduced the adsorption of H2O and SO2 on the catalyst, greatly inhibited deposition of the TiOSO4 and formation of the PtSO4 species as well as suppressed the oxidation of SO2, thus resulting in an improvement in the resistance to H2O and SO2 of the Pt/10EG-TiO2-10 catalyst.


Asunto(s)
Grafito , Oxidación-Reducción , Platino (Metal) , Dióxido de Azufre , Titanio , Titanio/química , Grafito/química , Dióxido de Azufre/química , Platino (Metal)/química , Catálisis , Monóxido de Carbono/química , Agua/química , Contaminantes Atmosféricos/química , Modelos Químicos
17.
J Environ Sci (China) ; 148: 88-106, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095204

RESUMEN

In this study, a string of Cr-Mn co-modified activated coke catalysts (XCryMn1-y/AC) were prepared to investigate toluene and Hg0 removal performance. Multifarious characterizations including XRD, TEM, SEM, in situ DRIFTS, BET, XPS and H2-TPR showed that 4%Cr0.5Mn0.5/AC had excellent physicochemical properties and exhibited the best toluene and Hg0 removal efficiency at 200℃. By varying the experimental gas components and conditions, it was found that too large weight hourly space velocity would reduce the removal efficiency of toluene and Hg0. Although O2 promoted the abatement of toluene and Hg0, the inhibitory role of H2O and SO2 offset the promoting effect of O2 to some extent. Toluene significantly inhibited Hg0 removal, resulting from that toluene was present at concentrations orders of magnitude greater than mercury's or the catalyst was more prone to adsorb toluene, while Hg0 almost exerted non-existent influence on toluene elimination. The mechanistic analysis showed that the forms of toluene and Hg0 removal included both adsorption and oxidation, where the high-valent metal cations and oxygen vacancy clusters promoted the redox cycle of Cr3+ + Mn3+/Mn4+ ↔ Cr6+ + Mn2+, which facilitated the conversion and replenishment of reactive oxygen species in the oxidation process, and even the CrMn1.5O4 spinel structure could provide a larger catalytic interface, thus enhancing the adsorption/oxidation of toluene and Hg0. Therefore, its excellent physicochemical properties make it a cost-effective potential industrial catalyst with outstanding synergistic toluene and Hg0 removal performance and preeminent resistance to H2O and SO2.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Óxidos , Tolueno , Tolueno/química , Óxidos/química , Contaminantes Atmosféricos/química , Mercurio/química , Coque , Catálisis , Cromo/química , Adsorción , Manganeso/química , Compuestos de Manganeso/química , Modelos Químicos
18.
J Environ Sci (China) ; 147: 617-629, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003076

RESUMEN

The manganese-cobalt mixed oxide nanorods were fabricated using a hydrothermal method with different metal precursors (KMnO4 and MnSO4·H2O for MnOx and Co(NO3)2⋅6H2O and CoCl2⋅6H2O for Co3O4). Bamboo-like MnO2⋅Co3O4 (B-MnO2⋅Co3O4 (S)) was derived from repeated hydrothermal treatments with Co3O4@MnO2 and MnSO4⋅H2O, whereas Co3O4@MnO2 nanorods were derived from hydrothermal treatment with Co3O4 nanorods and KMnO4. The study shows that manganese oxide was tetragonal, while the cobalt oxide was found to be cubic in the crystalline arrangement. Mn surface ions were present in multiple oxidation states (e.g., Mn4+ and Mn3+) and surface oxygen deficiencies. The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of B-MnO2⋅Co3O4 (S) > Co3O4@MnO2 > MnO2 > Co3O4, matching the changing trend in activity. Among all the samples, B-MnO2⋅Co3O4 (S) showed the preeminent catalytic performance for the oxidation of toluene (T10% = 187°C, T50% = 276°C, and T90% = 339°C). In addition, the B-MnO2⋅Co3O4 (S) sample also exhibited good H2O-, CO2-, and SO2-resistant performance. The good catalytic performance of B-MnO2⋅Co3O4 (S) is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature. Toluene oxidation over B-MnO2⋅Co3O4 (S) proceeds through the adsorption of O2 and toluene to form O*, OH*, and H2C(C6H5)* species, which then react to produce benzyl alcohol, benzoic acid, and benzaldehyde, ultimately converting to CO2 and H2O. The findings suggest that B-MnO2⋅Co3O4 (S) has promising potential for use as an effective catalyst in practical applications.


Asunto(s)
Cobalto , Compuestos de Manganeso , Oxidación-Reducción , Óxidos , Tolueno , Óxidos/química , Compuestos de Manganeso/química , Catálisis , Cobalto/química , Tolueno/química , Contaminantes Atmosféricos/química
19.
J Environ Sci (China) ; 147: 642-651, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003079

RESUMEN

Nowadays, it is still a challenge to prepared high efficiency and low cost formaldehyde (HCHO) removal catalysts in order to tackle the long-living indoor air pollution. Herein, δ-MnO2 is successfully synthesized by a facile ozonation strategy, where Mn2+ is oxidized by ozone (O3) bubble in an alkaline solution. It presents one of the best catalytic properties with a low 100% conversion temperature of 85°C for 50 ppm of HCHO under a GHSV of 48,000 mL/(g·hr). As a comparison, more than 6 times far longer oxidation time is needed if O3 is replaced by O2. Characterizations show that ozonation process generates a different intermediate of tetragonal ß-HMnO2, which would favor the quick transformation into the final product δ-MnO2, as compared with the relatively more thermodynamically stable monoclinic γ-HMnO2 in the O2 process. Finally, HCHO is found to be decomposed into CO2 via formate, dioxymethylene and carbonate species as identified by room temperature in-situ diffuse reflectance infrared fourier transform spectroscopy. All these results show great potency of this facile ozonation routine for the highly active δ-MnO2 synthesis in order to remove the HCHO contamination.


Asunto(s)
Formaldehído , Compuestos de Manganeso , Óxidos , Ozono , Ozono/química , Compuestos de Manganeso/química , Formaldehído/química , Óxidos/química , Contaminantes Atmosféricos/química , Oxidación-Reducción , Temperatura , Contaminación del Aire Interior/prevención & control , Catálisis
20.
Sci Rep ; 14(1): 19836, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191983

RESUMEN

The increasing use of hexavalent chromium (Cr(VI)) has exposed large populations to this environmental and occupational carcinogenic agent. Therefore, researchers have been interested in removing this substance through adsorbents. This study aimed to investigate the efficiency of natural zeolite in the direct adsorption of Cr(VI) from airflow and its adsorption modeling. In this study, a nebulizer device produced the Cr(VI) mist. The efficiency of natural zeolite in Cr(VI) adsorption from airflow, modeling of fixed column adsorption, and the effective parameters on adsorption efficiency including the initial concentration of chromium, airflow rate, and adsorption bed depth were studied. To facilitate the prediction of the performance of natural zeolite's adsorption column, Yoon-Nelson, Thomas, BDST, and Buhart-Adams models were used. The results showed that the adsorption capacity diminished with increased airflow rate and initial concentration, while it increased with elevated height of the adsorption bed. Yoon-Nelson, Thomas, and BDST models corresponded to experimental data with a correlation coefficient of 0.9933, but the information of the Buhart-Adams model had a lower correlation coefficient (around 0.6677). In conclusion, natural zeolite can be used as an efficient low-cost adsorbent for directly Cr(VI) removing from the airflow in a fixed bed column.


Asunto(s)
Cromo , Zeolitas , Zeolitas/química , Cromo/química , Cromo/aislamiento & purificación , Adsorción , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/aislamiento & purificación , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...