Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73.809
Filtrar
1.
J Environ Sci (China) ; 147: 200-216, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003040

RESUMEN

Microplastics (MPs) are ubiquitous in the environment, continuously undergo aging processes and release toxic chemical substances. Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk. Generalized two-dimensional correlation spectroscopy (2D-COS) is a powerful tool for MPs studies, which can dig more comprehensive information hiding in the conventional one-dimensional spectra, such as infrared (IR) and Raman spectra. The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment, including their aging processes, and interactions with natural organic matter (NOM) or other chemical substances, were summarized systematically. The main requirements and limitations of current approaches for exploring these processes are discussed, and the corresponding strategies to address these limitations and drawbacks are proposed as well. Finally, new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Microplásticos/análisis , Monitoreo del Ambiente/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Contaminantes Químicos del Agua/análisis
2.
J Environ Sci (China) ; 147: 189-199, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003039

RESUMEN

China's lowland rural rivers are facing severe eutrophication problems due to excessive phosphorus (P) from anthropogenic activities. However, quantifying P dynamics in a lowland rural river is challenging due to its complex interaction with surrounding areas. A P dynamic model (River-P) was specifically designed for lowland rural rivers to address this challenge. This model was coupled with the Environmental Fluid Dynamics Code (EFDC) and the Phosphorus Dynamic Model for lowland Polder systems (PDP) to characterize P dynamics under the impact of dredging in a lowland rural river. Based on a two-year (2020-2021) dataset from a representative lowland rural river in the Lake Taihu Basin, China, the coupled model was calibrated and achieved a model performance (R2>0.59, RMSE<0.04 mg/L) for total P (TP) concentrations. Our research in the study river revealed that (1) the time scale for the effectiveness of sediment dredging for P control was ∼300 days, with an increase in P retention capacity by 74.8 kg/year and a decrease in TP concentrations of 23% after dredging. (2) Dredging significantly reduced P release from sediment by 98%, while increased P resuspension and settling capacities by 16% and 46%, respectively. (3) The sediment-water interface (SWI) plays a critical role in P transfer within the river, as resuspension accounts for 16% of TP imports, and settling accounts for 47% of TP exports. Given the large P retention capacity of lowland rural rivers, drainage ditches and ponds with macrophytes are promising approaches to enhance P retention capacity. Our study provides valuable insights for local environmental departments, allowing a comprehensive understanding of P dynamics in lowland rural rivers. This enable the evaluation of the efficacy of sediment dredging in P control and the implementation of corresponding P control measures.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Fósforo , Ríos , Contaminantes Químicos del Agua , Fósforo/análisis , Ríos/química , Sedimentos Geológicos/química , China , Contaminantes Químicos del Agua/análisis , Eutrofización
3.
J Environ Sci (China) ; 147: 114-130, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003034

RESUMEN

Fenton and Fenton-like processes, which could produce highly reactive species to degrade organic contaminants, have been widely used in the field of wastewater treatment. Therein, the chemistry of Fenton process including the nature of active oxidants, the complicated reactions involved, and the behind reason for its strongly pH-dependent performance, is the basis for the application of Fenton and Fenton-like processes in wastewater treatment. Nevertheless, the conflicting views still exist about the mechanism of the Fenton process. For instance, reaching a unanimous consensus on the nature of active oxidants (hydroxyl radical or tetravalent iron) in this process remains challenging. This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants, reactions involved in the Fenton process, and the behind reason for the pH-dependent degradation of contaminants in the Fenton process. Then, we summarized several strategies that promote the Fe(II)/Fe(III) cycle, reduce the competitive consumption of active oxidants by side reactions, and replace the Fenton reagent, thus improving the performance of the Fenton process. Furthermore, advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.


Asunto(s)
Peróxido de Hidrógeno , Hierro , Eliminación de Residuos Líquidos , Hierro/química , Peróxido de Hidrógeno/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Oxidación-Reducción , Radical Hidroxilo/química
4.
J Environ Sci (China) ; 147: 462-473, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003062

RESUMEN

Lake Baiyangdian is one of China's largest macrophyte - derived lakes, facing severe challenges related to water quality maintenance and eutrophication prevention. Dissolved organic matter (DOM) was a huge carbon pool and its abundance, property, and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems. In this study, Lake Baiyangdian was divided into four distinct areas: Unartificial Area (UA), Village Area (VA), Tourism Area (TA), and Breeding Area (BA). We examined the diversity of DOM properties and sources across these functional areas. Our findings reveal that DOM in this lake is predominantly composed of protein - like substances, as determined by excitation - emission matrix and parallel factor analysis (EEM - PARAFAC). Notably, the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA. Ultrahigh - resolution mass spectrometry (FT - ICR MS) unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds, suggesting that macrophytes significantly influence the material structure of DOM. DOM properties exhibited specific associations with water quality indicators in various functional areas, as indicated by the Mantel test. The connections between DOM properties and NO3N and NH3N were more pronounced in VA and BA than in UA and TA. Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.


Asunto(s)
Monitoreo del Ambiente , Lagos , Lagos/química , China , Monitoreo del Ambiente/métodos , Eutrofización , Sustancias Húmicas/análisis , Calidad del Agua , Espectrometría de Masas/métodos , Contaminantes Químicos del Agua/análisis , Ecosistema
5.
J Environ Sci (China) ; 147: 370-381, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003055

RESUMEN

Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened. The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II) and Mn(II) by Pseudomonas taiwanensis (marked as P4) and Pseudomonas plecoglossicida (marked as G1) contains rich reactive oxygen functional groups, which play critical roles in the removal efficiency and immobilization of heavy metal(loid)s in co-contamination system. The isolated strains P4 and G1 can grow well in the following environments: pH 5-9, NaCl 0-4%, and temperature 20-30°C. The removal efficiencies of Fe, Pb, As, Zn, Cd, Cu, and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system (the initial concentrations of heavy metal(loid) were 1 mg/L), approximately reaching 96%, 92%, 85%, 67%, 70%, 54% and 15%, respectively. The exchangeable and carbonate bound As, Cd, Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil, thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s. This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes del Suelo/metabolismo , Oxidación-Reducción , Pseudomonas/metabolismo , Manganeso , Hierro/química , Hierro/metabolismo , Suelo/química , Biodegradación Ambiental , Microbiología del Suelo
6.
J Environ Sci (China) ; 147: 50-61, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003066

RESUMEN

With the increasing severity of arsenic (As) pollution, quantifying the environmental behavior of pollutant based on numerical model has become an important approach to determine the potential impacts and finalize the precise control strategies. Taking the industrial-intensive Jinsha River Basin as typical area, a two-dimensional hydrodynamic water quality model coupled with Soil and Water Assessment Tool (SWAT) model was developed to accurately simulate the watershed-scale distribution and transport of As in the terrestrial and aquatic environment at high spatial and temporal resolution. The effects of hydro-climate change, hydropower station construction and non-point source emissions on As were quantified based on the coupled model. The result indicated that higher As concentration areas mainly centralized in urban districts and concentration slowly decreased from upstream to downstream. Due to the enhanced rainfall, the As concentration was significantly higher during the rainy season than the dry season. Hydro-climate change and the construction of hydropower station not only affected the dissolved As concentration, but also affected the adsorption and desorption of As in sediment. Furthermore, As concentration increased with the input of non-point source pollution, with the maximum increase about 30%, resulting that non-point sources contributed important pollutant impacts to waterways. The coupled model used in pollutant behavior analysis is general with high potential application to predict and mitigate water pollution.


Asunto(s)
Arsénico , Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Arsénico/análisis , China , Contaminantes Químicos del Agua/análisis , Ríos/química , Monitoreo del Ambiente/métodos , Modelos Químicos , Modelos Teóricos
7.
J Environ Sci (China) ; 147: 607-616, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003075

RESUMEN

This study embarks on an explorative investigation into the effects of typical concentrations and varying particle sizes of fine grits (FG, the involatile portion of suspended solids) and fine debris (FD, the volatile yet unbiodegradable fraction of suspended solids) within the influent on the mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio of an activated sludge system. Through meticulous experimentation, it was discerned that the addition of FG or FD, the particle size of FG, and the concentration of FD bore no substantial impact on the pollutant removal efficiency (denoted by the removal rate of COD and ammonia nitrogen) under constant operational conditions. However, a notable decrease in the MLVSS/MLSS ratio was observed with a typical FG concentration of 20 mg/L, with smaller FG particle sizes exacerbating this reduction. Additionally, variations in FD concentrations influenced both MLSS and MLVSS/MLSS ratios; a higher FD concentration led to an increased MLSS and a reduced MLVSS/MLSS ratio, indicating FD accumulation in the system. A predictive model for MLVSS/MLSS was constructed based on quality balance calculations, offering a tool for foreseeing the MLVSS/MLSS ratio under stable long-term influent conditions of FG and FD. This model, validated using data from the BXH wastewater treatment plant (WWTP), showcased remarkable accuracy.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Tamaño de la Partícula , Contaminantes Químicos del Agua/análisis
8.
J Environ Sci (China) ; 147: 677-687, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003082

RESUMEN

Due to their resistance to degradation, wide distribution, easy diffusion and potential uptake by organisms, microplastics (MPs) pollution has become a major environmental concern. In this study, PEG-modified Fe3O4 magnetic nanoparticles demonstrated superior adsorption efficiency against polyethylene (PE) microspheres compared to other adsorbents (bare Fe3O4, PEI/Fe3O4 and CA/Fe3O4). The maximum adsorption capacity of PE was found to be 2203 mg/g by adsorption isotherm analysis. PEG/Fe3O4 maintained a high adsorption capacity even at low temperature (5°C, 2163 mg/g), while neutral pH was favorable for MP adsorption. The presence of anions (Cl-, SO42-, HCO3-, NO3-) and of humic acids inhibited the adsorption of MPs. It is proposed that the adsorption process was mainly driven by intermolecular hydrogen bonding. Overall, the study demonstrated that PEG/Fe3O4 can potentially be used as an efficient control against MPs, thus improving the quality of the aquatic environment and of our water resources.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Cinética , Adsorción , Polietileno/química , Nanopartículas de Magnetita/química , Polietilenglicoles/química , Modelos Químicos
9.
J Environ Sci (China) ; 147: 83-92, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003086

RESUMEN

The environmental threat posed by stibnite is an important geoenvironmental issue of current concern. To better understand stibnite oxidation pathways, aerobic abiotic batch experiments were conducted in aqueous solution with varying δ18OH2O value at initial neutral pH for different lengths of time (15-300 days). The sulfate oxygen and sulfur isotope compositions as well as concentrations of sulfur and antimony species were determined. The sulfur isotope fractionation factor (Δ34SSO4-stibnite) values decreased from 0.8‰ to -2.1‰ during the first 90 days, and increased to 2.6‰ at the 180 days, indicating the dominated intermediate sulfur species such as S2O32-, S0, and H2S (g) involved in Sb2S3 oxidation processes. The incorporation of O into sulfate derived from O2 (∼100%) indicated that the dissociated O2 was only directly adsorbed on the stibnite-S sites in the initial stage (0-90 days). The proportion of O incorporation into sulfate from water (27%-52%) increased in the late stage (90-300 days), which suggested the oxidation mechanism changed to hydroxyl attack on stibnite-S sites promoted by nearby adsorbed O2 on stibnite-Sb sites. The exchange of oxygen between sulfite and water may also contributed to the increase of water derived O into SO42-. The new insight of stibnite oxidation pathway contributes to the understanding of sulfide oxidation mechanism and helps to interpret field data.


Asunto(s)
Oxidación-Reducción , Isótopos de Oxígeno , Sulfatos , Isótopos de Azufre , Isótopos de Azufre/análisis , Sulfatos/química , Isótopos de Oxígeno/análisis , Antimonio/química , Modelos Químicos , Aerobiosis , Oxígeno/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Óxidos
10.
J Environ Sci (China) ; 147: 93-100, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003087

RESUMEN

Polybromodiphenyl ethers (PBDEs), the widely used flame retardants, are common contaminants in surface soils at e-waste recycling sites. The association of PBDEs with soil colloids has been observed, indicating the potential risk to groundwater due to colloid-facilitated transport. However, the extent to which soil colloids may enhance the spreading of PBDEs in groundwater is largely unknown. Herein, we report the co-transport of decabromodiphenyl ester (BDE-209) and soil colloids in saturated porous media. The colloids released from a soil sample collected at an e-waste recycling site in Tianjin, China, contain high concentration of PBDEs, with BDE-209 being the most abundant conger (320 ± 30 mg/kg). The colloids exhibit relatively high mobility in saturated sand columns, under conditions commonly observed in groundwater environments. Notably, under all the tested conditions (i.e., varying flow velocity, pH, ionic species and ionic strength), the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids, even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved. Additionally, the mass of BDE-209 retained in the columns also correlates strongly with the mass of retained colloids. Apparently, the PBDEs remain bound to soil colloids during transport in porous media. Findings in this study indicate that soil colloids may significantly promote the transport of PBDEs in groundwater by serving as an effective carrier. This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.


Asunto(s)
Coloides , Retardadores de Llama , Agua Subterránea , Éteres Difenilos Halogenados , Contaminantes del Suelo , Suelo , Contaminantes Químicos del Agua , Éteres Difenilos Halogenados/análisis , Coloides/química , Agua Subterránea/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Suelo/química , Contaminantes Químicos del Agua/análisis , China , Retardadores de Llama/análisis , Monitoreo del Ambiente , Modelos Químicos
11.
Environ Geochem Health ; 46(8): 267, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954229

RESUMEN

This study examines the levels of heavy metals in polyculture fish (Labeo rohita, Cyprinus carpio, and Catla catla), water, and sediment in Tanda Dam, Kohat, Pakistan, aiming to understand environmental and health risks. Samples of fish, water, and sediment were collected from 3 fish farms, and heavy metal concentrations were measured using a Flame Atomic Absorption Spectrophotometer (AAS). Results reveal that C. catla exhibited significantly higher (p < 0.05) levels of Zn than other fish species. Conversely, C. carpio showed significantly higher (p < 0.05) concentrations of Pb, Cd, Cr, Mn, Cu, As, and Ni than other species. The heavy metal hierarchy in C. carpio was found to be Zn > Cu > Pb > Cr > Cd > Mn > As > Ni. While heavy metal levels in L. rohita and C. catla generally fell within reference ranges, exceptions were noted for Zn, Pb, and Cd. Conversely, in C. carpio, all metals exceeded reference ranges except for Cu and Ni. Principal Component Analysis (PCA) indicated a close relationship between water and sediment. Additionally, cluster analysis suggested that C. catla formed a distinct cluster from L. rohita and C. carpio, implying different responses to the environment. Despite concerns raised by the Geoaccumulation Index (Igeo) and Contamination Factor (CF), particularly for Cd, which exhibited a high CF. Furthermore, Hazard Index (HI) values for all three fish species were below 1, suggesting low health risks. However, elevated Igeo and CF values for Cd suggest significant pollution originating from anthropogenic sources. This study underscores the importance of monitoring heavy metals in water for both environmental preservation and human health protection. Future research efforts should prioritize pollution control measures to ensure ecosystem and public health safety.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Animales , Contaminantes Químicos del Agua/análisis , Humanos , Medición de Riesgo , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Pakistán , Ecosistema , Carpas/metabolismo , Peces/metabolismo , Análisis de Componente Principal , Acuicultura
12.
Environ Geochem Health ; 46(8): 278, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958772

RESUMEN

Miyun Reservoir plays a vital role as a source of drinking water for Beijing, however it grapples with nitrogen contamination issues that have been poorly understood in terms of their distribution, source, and associated health risks. This study addresses this knowledge gap by employing data on nitrate nitrogen (NO3--N), chloride (Cl-), dual isotopic compositions of NO3- (δ15N-NO3- and δ18O-NO3-) data in water ecosystems, systematically exploring the distribution, source and health risk of nitrogen contaminants in Miyun reservoir watersheds. The results showed that over the past 30 years, surface water runoff has exhibited a notable decrease and periodic fluctuations due to the combined influence of climate and anthropogenic activities, while the total nitrogen (TN) concentration in aquatic ecosystems presented an annual fluctuating upward trend. The TN concentration in the wet season was predominantly elevated because a large amount of nitrogen contaminants migrated into water ecosystems through heavy rainfall or river erosion. The concentration of NO3--N, the main contaminant of the water ecosystems, showed distinct variations across different watersheds, followed as rivers over the Miyun reservoir. Moreover, NO3--N levels gradually increased from upstream to downstream in different basins. NO3--N in surface water was mainly derived from the mixture of agricultural ammonia fertilizer and sewage and manure, with a minority of samples potentially undergoing denitrification. Comparatively, the main sources of NO3--N in groundwater were soil N and sewage and manure, while the denitrification process was inactive. The carcinogenic risks caused by NO3--N in groundwater were deemed either nonexistent or minimal, while the focus should predominantly be on potential non-carcinogenic risks, particularly for infants and children. Therefore, it is crucial to perform proactive measures aimed at safeguarding water ecosystems, guided by an understanding of the distribution, sources, and associated risks of nitrogen contamination.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Nitrógeno , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , China , Nitrógeno/análisis , Abastecimiento de Agua , Nitratos/análisis , Humanos
13.
Environ Geochem Health ; 46(8): 274, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958770

RESUMEN

Fluoride-enriched groundwater is a serious threat for groundwater supply around the world. The medium-low temperature fluoride-enriched geothermal groundwater resource is widely distributed in the circum-Wugongshan area. And the fluoride concentration of all geothermal samples exceeds the WHO permissible limit of 1.5 mg/L. The Self-Organizing Map method, hydrochemical and isotopic analysis are used to decipher the driving factors and genetic mechanism of fluoride-enriched geothermal groundwater. A total of 19 samples collected from the circum-Wugongshan geothermal belt are divided into four clusters by the self-organizing map. Cluster I, Cluster II, Cluster III, and Cluster IV represent the geothermal groundwater with the different degree of fluoride concentration pollution, the different hydrochemical type, and the physicochemical characteristic. The high F- concentration geothermal groundwater is characterized by HCO3-Na with alkalinity environment. The δD and δ18O values indicate that the geothermal groundwater origins from the atmospheric precipitation with the recharge elevation of 1000-2100 m. The dissolution of fluoride-bearing minerals is the main source of fluoride ions in geothermal water. Moreover, groundwater fluoride enrichment is also facilitated by water-rock interaction, cation exchange and alkaline environment. Additionally, the health risk assessment result reveals that the fluorine-enriched geothermal groundwater in the western part of Wugongshan area poses a more serious threat to human health than that of eastern part. The fluoride health risks of geothermal groundwater for different group show differentiation, 100% for children, 94.74% for adult females, and 68.42% for adult males, respectively. Compared with adult females and adult males, children faced the greatest health risks. The results of this study provide scientific evaluation for the utilization of geothermal groundwater and the protection of human health around the Wugongshan area.


Asunto(s)
Fluoruros , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Fluoruros/análisis , China , Humanos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Femenino , Masculino , Niño , Monitoreo del Ambiente , Adulto , Preescolar , Adolescente , Adulto Joven , Lactante , Frío , Manantiales de Aguas Termales/química
14.
Environ Monit Assess ; 196(8): 686, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958830

RESUMEN

Environmental contamination by chromium represents a serious public health problem. Therefore, it is crucial to develop and optimize remediation technologies to reduce its concentration in the environment. The aims of this study were to evaluate the uptake of chromium by live and complete microbial mats in experimental mesocosms under different pH and salinity conditions to understand how these factors affect the microphytobenthic community and, consequently, how chromium removal process is influenced. Microbial mats from the estuarine environment were exposed to 15 mg Cr/L under different pH (2, 4, and 8) and salinity (2, 15, and 33) conditions. Salinity, redox potential, and pH were measured throughout the trial in solutions and in microbial mats, while total Cr determinations were performed at the end of the assay. The results demonstrated that the removal efficiency of Cr by microbial mats was significantly improved in solutions at pH 2, remaining unaffected by variations in salinity. Notably, both cyanobacteria and diatoms showed remarkable resistance to Cr exposure under all conditions tested, highlighting their exceptional adaptability. Microbial mats have proved to be effective filters for reducing the concentration of chromium in aqueous solutions with varying pH and salinity levels.


Asunto(s)
Cromo , Salinidad , Contaminantes Químicos del Agua , Cromo/análisis , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis , Cianobacterias , Diatomeas , Biodegradación Ambiental
15.
Environ Monit Assess ; 196(8): 687, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958826

RESUMEN

Fluvial sediment analysis and water quality assessment are useful to identify anthropic and natural sources of pollution in rivers. Currently, there is a lack of information about water quality in the Pixquiac basin (Veracruz state, Mexico), and this scarcity of data prevents authorities to take adequate measures to protect water resources. The basin is a crucial territory for Xalapa, the capital city of Veracruz state, as it gets 39% of its drinkable water from it. This research analyzed 10 physicochemical parameters and 12 metal concentrations in various rivers and sources during two seasons. Dissolved metals presented average concentrations (µg/L): Al (456.25) > Fe (199.4) > Mn (16.86) > Ba (13.8) > Zn (7.6) > Cu (1.03) > Pb (0.27) > As (0.12) > Ni (0.118) (Cd, Cr and Hg undetectable). Metals in sediment recorded average concentrations (ppm): Fe (38575) > Al (38425) > Mn (460) > Ba (206.2) > Zn (65.1) > Cr (29.8) > Ni (20.9) > Cu (16.4) > Pb (4.8) > As (2.1) (Cd and Hg undetectable). During the rainy season, Water Quality Index (WAWQI) classified stations P17 and P18's water as "unsuitable for drinking" with values of 110.4 and 117.6. Enrichment factor (EF) recorded a "moderate enrichment" of Pb in sediment in P24. Pollution was mainly explained by wastewater discharges in rivers but also because of erosion and rainfall events. Statistical analysis presented strong relationships between trace and major metals which could explain a common natural origin for metals in water and sediment: rock lixiviation.


Asunto(s)
Agua Potable , Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes Químicos del Agua , Calidad del Agua , Abastecimiento de Agua , México , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Agua Potable/química , Ríos/química , Metales Pesados/análisis , Metales/análisis
16.
Environ Sci Technol ; 58(26): 11675-11684, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952298

RESUMEN

Excessive anthropogenic phosphorus (P) emissions put constant pressure on aquatic ecosystems. This pressure can be quantified as the freshwater eutrophication potential (FEP) by linking P emissions, P fate in environmental compartments, and the potentially disappeared fraction of species due to increase of P concentrations in freshwater. However, previous fate modeling on global and regional scales is mainly based on the eight-direction algorithm without distinguishing pollution sources. The algorithm fails to characterize the fate paths of point-source emissions via subsurface pipelines and wastewater treatment infrastructure, and exhibits suboptimal performance in accounting for multidirectional paths caused by river bifurcations, especially in flat terrains. Here we aim to improve the fate modeling by incorporating various fate paths and addressing multidirectional scenarios. We also update the P estimates by complementing potential untreated point-source emissions (PSu). The improved method is examined in a rapidly urbanizing area in Taihu Lake Basin, China in 2017 at a spatial resolution of 100 m × 100 m. Results show that the contribution of PSu on FEP (62.6%) is greater than that on P emissions (58.5%). The FEP is more spatially widely distributed with the improved fate modeling, facilitating targeted regulatory strategies tailored to local conditions.


Asunto(s)
Eutrofización , Agua Dulce , Fósforo , Agua Dulce/química , Modelos Teóricos , Monitoreo del Ambiente , China , Contaminantes Químicos del Agua/análisis , Ecosistema
17.
Environ Geochem Health ; 46(8): 280, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963449

RESUMEN

The chlor-alkali industry (CAI) is crucial for global chemical production; however, its operation has led to widespread heavy metal (HM) contamination at numerous sites, which has not been thoroughly investigated. This study analysed 122 soil and groundwater samples from a typical CAI site in Kaifeng, China. Our aim was to assess the ecological and health risks, identify the sources, and examine the migration characteristics of HMs at this site using Monte Carlo simulation, absolute principal component score-multiple linear regression (APCS-MLR), and the potential environmental risk index (Ei). Our findings revealed that the exceedance rates for Cd, Pb, Hg, and Ni were 71.96%, 45.79%, 49.59%, and 65.42%, respectively. Mercury (Hg) displayed the greatest coefficient of variation across all the soil layers, indicating a significant anthropogenic influence. Cd and Hg were identified as having high and extremely high potential environmental risk levels, respectively. The spatial distributions of the improved Nemerow index (INI), total ecological risk (Ri), and HM content varied considerably, with the most contaminated areas typically associated with the storage of raw and auxiliary materials. Surface aggregation and significant vertical transport were noted for HMs; As and Ni showed substantial accumulation in subsoil layers, severely contaminating the groundwater. Self-organizing maps categorized the samples into two different groups, showing strong positive correlations between Cd, Pb, and Hg. The APCS-MLR model suggested that industrial emissions were the main contributors, accounting for 60.3% of the total HM input. Elevated hazard quotient values for Hg posed significant noncarcinogenic risks, whereas acceptable levels of carcinogenic risk were observed for both adults (96.60%) and children (97.83%). This study significantly enhances historical CAI pollution data and offers valuable insights into ongoing environmental and health challenges.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Metales Pesados/análisis , China , Agua Subterránea/química , Contaminantes del Suelo/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Humanos , Industria Química
18.
Environ Health ; 23(1): 61, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961410

RESUMEN

BACKGROUND: Drinking water at U.S. Marine Corps Base (MCB) Camp Lejeune, North Carolina was contaminated with trichloroethylene and other industrial solvents from 1953 to 1985. METHODS: A cohort mortality study was conducted of Marines/Navy personnel who, between 1975 and 1985, began service and were stationed at Camp Lejeune (N = 159,128) or MCB Camp Pendleton, California (N = 168,406), and civilian workers employed at Camp Lejeune (N = 7,332) or Camp Pendleton (N = 6,677) between October 1972 and December 1985. Camp Pendleton's drinking water was not contaminated with industrial solvents. Mortality follow-up was between 1979 and 2018. Proportional hazards regression was used to calculate adjusted hazard ratios (aHRs) comparing mortality rates between Camp Lejeune and Camp Pendleton cohorts. The ratio of upper and lower 95% confidence interval (CI) limits, or CIR, was used to evaluate the precision of aHRs. The study focused on underlying causes of death with aHRs ≥ 1.20 and CIRs ≤ 3. RESULTS: Deaths among Camp Lejeune and Camp Pendleton Marines/Navy personnel totaled 19,250 and 21,134, respectively. Deaths among Camp Lejeune and Camp Pendleton civilian workers totaled 3,055 and 3,280, respectively. Compared to Camp Pendleton Marines/Navy personnel, Camp Lejeune had aHRs ≥ 1.20 with CIRs ≤ 3 for cancers of the kidney (aHR = 1.21, 95% CI: 0.95, 1.54), esophagus (aHR = 1.24, 95% CI: 1.00, 1.54) and female breast (aHR = 1.20, 95% CI: 0.73, 1.98). Causes of death with aHRs ≥ 1.20 and CIR > 3, included Parkinson disease, myelodysplastic syndrome and cancers of the testes, cervix and ovary. Compared to Camp Pendleton civilian workers, Camp Lejeune had aHRs ≥ 1.20 with CIRs ≤ 3 for chronic kidney disease (aHR = 1.88, 95% CI: 1.13, 3.11) and Parkinson disease (aHR = 1.21, 95% CI: 0.72, 2.04). Female breast cancer had an aHR of 1.19 (95% CI: 0.76, 1.88), and aHRs ≥ 1.20 with CIRs > 3 were observed for kidney and pharyngeal cancers, melanoma, Hodgkin lymphoma, and chronic myeloid leukemia. Quantitative bias analyses indicated that confounding due to smoking and alcohol consumption would not appreciably impact the findings. CONCLUSION: Marines/Navy personnel and civilian workers likely exposed to contaminated drinking water at Camp Lejeune had increased hazard ratios for several causes of death compared to Camp Pendleton.


Asunto(s)
Agua Potable , Personal Militar , Exposición Profesional , Humanos , Masculino , Personal Militar/estadística & datos numéricos , Adulto , Femenino , Estudios de Cohortes , North Carolina/epidemiología , Agua Potable/análisis , Exposición Profesional/efectos adversos , Persona de Mediana Edad , Adulto Joven , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/efectos adversos , Tricloroetileno/análisis , Mortalidad
19.
Arh Hig Rada Toksikol ; 75(2): 125-136, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963142

RESUMEN

Recent research has raised concern about the biocompatibility of iron oxide nanoparticles (IONPs), as they have been reported to induce oxidative stress and inflammatory responses, whilst prolonged exposure to high IONP concentrations may lead to cyto-/genotoxicity. Besides, there is concern about its environmental impact. The aim of our study was to investigate the effects of IONPs on the antioxidant defence system in freshwater fish Mozambique tilapia (Oreochromis mossambicus, Peters 1852). The fish were exposed to IONP concentration of 15 mg/L over 1, 3, 4, 15, 30, and 60 days and the findings compared to a control, unexposed group. In addition, we followed up the fish for 60 days after exposure had stopped to estimate the stability of oxidative stress induced by IONPs. Exposure affected the activity of antioxidant and marker enzymes and increased the levels of hydrogen peroxide and lipid peroxidation in the gill, liver, and brain tissues of the fish. Even after 60 days of depuration, adverse effects remained, indicating long-term nanotoxicity. Moreover, IONPs accumulated in the gill, liver, and brain tissues. Our findings underscore the potential health risks posed to non-target organisms in the environment, and it is imperative to establish appropriate guidelines for safe handling and disposal of IONPs to protect the aquatic environment.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Tilapia , Animales , Estrés Oxidativo/efectos de los fármacos , Tilapia/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Branquias/efectos de los fármacos , Branquias/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
20.
Anal Chim Acta ; 1316: 342861, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969410

RESUMEN

BACKGROUND: The high toxicity of hexavalent chromium [Cr (VI)] could not only cause harmful effects on humans, including carcinogenicity, respiratory issues, genetic damage, and skin irritation, but also contaminate drinking water sources, aquatic ecosystems, and soil, impairing the reproductive capacity, growth, and survival of organisms. Due to these harmful effects, detecting toxic Cr (VI) is of great significance. However, the rapid, simple, and efficient detection at a low Cr (VI) concentration is extremely challenging, especially in an acidic condition (existing as HCrO4-) due to its low adsorption free energy. RESULTS: A diketopyrrolopyrrole-based small molecule (DPPT-PhSMe) is designed and characterized to act as a chemosensor, which allows a high selectivity to Cr (VI) at an acidic condition with a low limit of detection to 10-8 M that is two orders of magnitude lower than the cut of limit (1 µM) recommended by World Health Organization (WHO). Mechanism study indicates that the rich sulfur atoms enhance the affinity to HCrO4-. Combining with favorable features of diketopyrrolopyrrole, DPPT-PhSMe not only allows dual-mode detection (colorimetric and spectroscopic) to Cr (VI), but also enables disposable paper-based sensor for naked-eye detection to Cr (VI) from fully aqueous media. The investigation of DPPT-PhSMe chemosensor for the quantification of Cr (VI) in real life samples demonstrates a high reliability and accuracy with an average percentage recovery of 102.1 % ± 4 (n = 3). SIGNIFICANCE: DPPT-PhSMe represents the first diketopyrrolopyrrole-derived chemosensor for efficient detection to toxic Cr (VI), not only providing a targeted solution to the bottleneck of Cr (VI) detection in acidic conditions (existing as HCrO4-) caused by its low adsorption free energy, but also opening a new scenario for simple, selective, and efficient Cr (VI) detection with conjugated dye molecules.


Asunto(s)
Cromo , Límite de Detección , Pirroles , Contaminantes Químicos del Agua , Cromo/análisis , Pirroles/química , Contaminantes Químicos del Agua/análisis , Cetonas/química , Cetonas/análisis , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...