Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.641
Filtrar
1.
J Environ Sci (China) ; 147: 179-188, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003038

RESUMEN

Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil. Phytoremediation of contaminated soil is an environmental and sustainable technology, and soil native microorganisms in the process of phytoremediation also participate in the remediation of heavy metals. However, the effects of high concentrations of multiple heavy metals (HCMHMs) on plants and native soil microorganisms remain uncertain. Thus, further clarification of the mechanism of phytoremediation of HCMHMs soil by plants and native soil microorganisms is required. Using the plant Sedum alfredii (S. alfredii) to restore HCMHM-contaminated soil, we further explored the mechanism of S. alfredii and native soil microorganisms in the remediation of HCMHM soils. The results showed that (i) S. alfredii can promote heavy metals from non-rhizosphere soil to rhizosphere soil, which is conducive to the effect of plants on heavy metals. In addition, it can also enrich the absorbed heavy metals in its roots and leaves; (ii) native soil bacteria can increase the abundance of signal molecule-synthesizing enzymes, such as trpE, trpG, bjaI, rpfF, ACSL, and yidC, and promote the expression of the pathway that converts serine to cysteine, then synthesize substances to chelate heavy metals. In addition, we speculated that genes such as K19703, K07891, K09711, K19703, K07891, and K09711 in native bacteria may be involved in the stabilization or absorption of heavy metals. The results provide scientific basis for S. alfredii to remediate heavy metals contaminated soils, and confirm the potential of phytoremediation of HCMHM contaminated soil.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Sedum , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Sedum/metabolismo , Metales Pesados/análisis , Rizosfera , Suelo/química
2.
J Environ Sci (China) ; 147: 153-164, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003036

RESUMEN

Heavy metal(loid) (HM) pollution in agricultural soils has become an environmental concern in antimony (Sb) mining areas. However, priority pollution sources identification and deep understanding of environmental risks of HMs face great challenges due to multiple and complex pollution sources coexist. Herein, an integrated approach was conducted to distinguish pollution sources and assess human health risk (HHR) and ecological risk (ER) in a typical Sb mining watershed in Southern China. This approach combines absolute principal component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) models with ER and HHR assessments. Four pollution sources were distinguished for both models, and APCS-MLR model was more accurate and plausible. Predominant HM concentration source was natural source (39.1%), followed by industrial and agricultural activities (23.0%), unknown sources (21.5%) and Sb mining and smelting activities (16.4%). Although natural source contributed the most to HM concentrations, it did not pose a significant ER. Industrial and agricultural activities predominantly contributed to ER, and attention should be paid to Cd and Sb. Sb mining and smelting activities were primary anthropogenic sources of HHR, particularly Sb and As contaminations. Considering ER and HHR assessments, Sb mining and smelting, and industrial and agricultural activities are critical sources, causing serious ecological and health threats. This study showed the advantages of multiple receptor model application in obtaining reliable source identification and providing better source-oriented risk assessments. HM pollution management, such as regulating mining and smelting and implementing soil remediation in polluted agricultural soils, is strongly recommended for protecting ecosystems and humans.


Asunto(s)
Agricultura , Antimonio , Monitoreo del Ambiente , Metales Pesados , Minería , Contaminantes del Suelo , Antimonio/análisis , Medición de Riesgo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , China , Suelo/química
3.
J Environ Sci (China) ; 147: 282-293, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003047

RESUMEN

There have been reports of potential health risks for people from hydrophobic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated hydrocarbons (PCHs), and organophosphate flame retardants (OPFRs). When a contaminated site is used for residential housing or public utility and recreation areas, the soil-bound organic pollutants might pose a threat to human health. In this study, we investigated the contamination profiles and potential risks to human health of 15 PAHs, 6 PCHs, and 12 OPFRs in soils from four contaminated sites in China. We used an in vitro method to determine the oral bioaccessibility of soil pollutants. Total PAHs were found at concentrations ranging from 26.4 ng/g to 987 ng/g. PCHs (0.27‒14.3 ng/g) and OPFRs (6.30‒310 ng/g) were detected, but at low levels compared to earlier reports. The levels of PAHs, PCHs, and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74% to 91.0%, 2.51% to 39.6%, and 1.37% to 96.9%, respectively. Based on both spiked and unspiked samples, we found that the oral bioaccessibility of pollutants was correlated with their logKow and molecular weight, and the total organic carbon content and pH of soils. PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children. When considering oral bioaccessibility, nine soils still posed potential risks, while the risks in the remaining soils became negligible. The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , China , Medición de Riesgo , Hidrocarburos Policíclicos Aromáticos/análisis , Humanos , Suelo/química , Interacciones Hidrofóbicas e Hidrofílicas , Retardadores de Llama/análisis , Hidrocarburos Clorados/análisis
4.
J Environ Sci (China) ; 147: 259-267, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003045

RESUMEN

Arsenic (As) pollution in soils is a pervasive environmental issue. Biochar immobilization offers a promising solution for addressing soil As contamination. The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar. However, the influence of a specific property on As immobilization varies among different studies, and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge. To enhance immobilization efficiency and reduce labor and time costs, a machine learning (ML) model was employed to predict As immobilization efficiency before biochar application. In this study, we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models. The results demonstrated that the random forest (RF) model outperformed gradient boost regression tree and support vector regression models in predictive performance. Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization. These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils. Furthermore, the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization. These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.


Asunto(s)
Arsénico , Carbón Orgánico , Aprendizaje Automático , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Arsénico/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Suelo/química , Modelos Químicos
5.
J Environ Sci (China) ; 147: 392-403, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003057

RESUMEN

This study used steel slag, fly ash, and metakaolin as raw materials (SFM materials) to create silica-alumina-based geopolymers that can solidify Hg2+ when activated with sodium-based water glass. The experiments began with a triangular lattice point mixing design experiment, and the results were fitted, analyzed, and predicted. The optimum SFM material mass ratio was found to be 70% steel slag, 25% fly ash, and 5% metakaolin. The optimum modulus of the activator was identified by comparing the unconfined compressive strength and solidifying impact on Hg2+of geosynthetics with different modulus. The SFM geopolymer was then applied in the form of potting to cure the granulated mercury tailings. The inclusion of 50% SFM material generated a geosynthetic that reduced mercury transport to the surface soil by roughly 90%. The mercury concentration of herbaceous plant samples was also reduced by 78%. It indicates that the SFM material can effectively attenuate the migration transformation of mercury. Finally, characterization methods such as XPS and FTIR were used to investigate the mechanism of Hg2+ solidification by geopolymers generated by SFM materials. The possible solidification mechanisms were proposed as alkaline environment-induced mercury precipitation, chemical bonding s, surface adsorption of Hg2+ and its precipitates by the geopolymer, and physical encapsulation.


Asunto(s)
Mercurio , Mercurio/química , Mercurio/análisis , Polímeros/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Minería , Ceniza del Carbón/química , Modelos Químicos
6.
J Environ Sci (China) ; 147: 652-664, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003080

RESUMEN

Ball milling is an environmentally friendly technology for the remediation of petroleum-contaminated soil (PCS), but the cleanup of organic pollutants requires a long time, and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume. The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil (BCS-O) as wastewater treatment materials. The total petroleum hydrocarbon removal rates by ball milling under vacuum, air, and oxygen atmospheres are 39.83%, 55.21%, and 93.84%, respectively. The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals. The Cu2+, Ni2+, and Mn2+ adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides. Furthermore, BCS-O can effectively activate persulfate (PDS) oxidation to degrade aniline, while BCS-O loaded with transition metal (BCS-O-Me) shows better activation efficiency and reusability. BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by 1O2 oxidation and electron transfer. The main active sites are oxygen-containing functional groups, vacancy defects, and graphitized carbon. The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate 1O2 and attack aniline. Graphitized carbon promotes aniline degradation by accelerating electron transfer. The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the post-remediation soil.


Asunto(s)
Restauración y Remediación Ambiental , Oxígeno , Petróleo , Contaminantes del Suelo , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Adsorción , Aguas Residuales/química , Oxígeno/química , Oxígeno/análisis , Eliminación de Residuos Líquidos/métodos , Restauración y Remediación Ambiental/métodos , Suelo/química , Catálisis
7.
J Environ Sci (China) ; 147: 630-641, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003078

RESUMEN

Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.


Asunto(s)
Arsénico , Cadmio , Carbón Orgánico , Magnesio , Oryza , Contaminantes del Suelo , Suelo , Oryza/química , Cadmio/análisis , Cadmio/química , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Arsénico/análisis , Suelo/química , Magnesio/química , Hierro/química , Restauración y Remediación Ambiental/métodos
8.
J Environ Sci (China) ; 147: 93-100, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003087

RESUMEN

Polybromodiphenyl ethers (PBDEs), the widely used flame retardants, are common contaminants in surface soils at e-waste recycling sites. The association of PBDEs with soil colloids has been observed, indicating the potential risk to groundwater due to colloid-facilitated transport. However, the extent to which soil colloids may enhance the spreading of PBDEs in groundwater is largely unknown. Herein, we report the co-transport of decabromodiphenyl ester (BDE-209) and soil colloids in saturated porous media. The colloids released from a soil sample collected at an e-waste recycling site in Tianjin, China, contain high concentration of PBDEs, with BDE-209 being the most abundant conger (320 ± 30 mg/kg). The colloids exhibit relatively high mobility in saturated sand columns, under conditions commonly observed in groundwater environments. Notably, under all the tested conditions (i.e., varying flow velocity, pH, ionic species and ionic strength), the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids, even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved. Additionally, the mass of BDE-209 retained in the columns also correlates strongly with the mass of retained colloids. Apparently, the PBDEs remain bound to soil colloids during transport in porous media. Findings in this study indicate that soil colloids may significantly promote the transport of PBDEs in groundwater by serving as an effective carrier. This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.


Asunto(s)
Coloides , Retardadores de Llama , Agua Subterránea , Éteres Difenilos Halogenados , Contaminantes del Suelo , Suelo , Contaminantes Químicos del Agua , Éteres Difenilos Halogenados/análisis , Coloides/química , Agua Subterránea/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Suelo/química , Contaminantes Químicos del Agua/análisis , China , Retardadores de Llama/análisis , Monitoreo del Ambiente , Modelos Químicos
9.
Environ Geochem Health ; 46(8): 265, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954233

RESUMEN

Shaanxi Province is located in the most important molybdenum ore district in the world, but a lot of molybdenum tailings have been released, polluting the environment and wasting resources seriously. Taking eleven tailing samples collected at the main molybdenum tailings ponds in Shaanxi Province as the research object, the physical, chemical, and mineralogical characteristics were studied through scanning electron microscope, X-ray fluorescence, X-ray diffraction, inductively coupled plasma mass spectrometer, and others. The ecological risk and utilization potential of molybdenum tailings were investigated through leaching test, geo-accumulation index, potential ecological risk assessment, and other methods. The results demonstrated that the main chemical and mineralogical composition of various molybdenum tailings in Shaanxi Province is similar, and the predominant mineral composition is muscovite, quartz, microcline, and calcite. The potential ecological risk of heavy metals in six molybdenum tailings is high, while Pb and Cd are the main pollution risk elements. Molybdenum tailings contain considerable amounts of critical minerals with huge potential economic value, and molybdenum tailings with high environmental hazards could be converted into a possible source for critical minerals by recovering the critical minerals and repurposing the secondary tailings as an additive or cement substitute. This study provides an innovative idea for the pollution treatment of molybdenum tailings and indicates the prospect of molybdenum tailings as a secondary source for critical minerals.


Asunto(s)
Molibdeno , Molibdeno/análisis , China , Monitoreo del Ambiente , Medición de Riesgo , Minería , Espectrometría por Rayos X , Metales Pesados/análisis , Difracción de Rayos X , Microscopía Electrónica de Rastreo , Contaminantes del Suelo/análisis
10.
Environ Geochem Health ; 46(8): 273, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958773

RESUMEN

To enhance risk assessment for contaminated sites, incorporating bioavailability through bioaccessibility as a corrective factor to total concentration is essential to provide a more realistic estimate of exposure. While the main in vitro tests have been validated for As, Cd, and/or Pb, their potential for assessing the bioaccessibility of additional elements remains underexplored. In this study, the physicochemical parameters, pseudototal Cr and Ni concentrations, soil phase distribution, and oral bioaccessibility of twenty-seven soil samples were analysed using both the ISO 17924 standard and a simplified test based on hydrochloric acid. The results showed wide variability in terms of the concentrations (from 31 to 21,079 mg kg-1 for Cr, and from 26 to 11,663 mg kg-1 for Ni) and generally low bioaccessibility for Cr and Ni, with levels below 20% and 30%, respectively. Bioaccessibility variability was greater for anthropogenic soils, while geogenic enriched soils exhibited low bioaccessibility. The soil parameters had an influence on bioaccessibility, but the effects depended on the soils of interest. Sequential extractions provided the most comprehensive explanation for bioaccessibility. Cr and Ni were mostly associated with the residual fraction, indicating limited bioaccessibility. Ni was distributed in all phases, whereas Cr was absent from the most mobile phase, which may explain the lower bioaccessibility of Cr compared to that of Ni. The study showed promising results for the use of the simplified test to predict Cr and Ni bioaccessibility, and its importance for more accurate human exposure evaluation and effective soil management practices.


Asunto(s)
Disponibilidad Biológica , Cromo , Níquel , Contaminantes del Suelo , Níquel/análisis , Níquel/farmacocinética , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Cromo/farmacocinética , Cromo/análisis , Humanos , Medición de Riesgo , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Suelo/química
11.
Environ Geochem Health ; 46(8): 279, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958829

RESUMEN

The present study focused on to determine the concentration and health risk of heavy metals (Cu, Pb, Zn, Cd, Hg, Cr) in e-waste contaminated soils collected from different provinces of Pakistan. Further, the impact of heavy metals on soil enzyme activities and microbial community was also investigated. The concentration (mg/kg) of Hg, Zn, Fe, Cu, Pb, Cd, and Cr ranged between 0-0.258, 2.284-6.587, 3.005-40.72, 8.67-36.88, 12.05-35.03, 1.03-2.43, and 33.13-60.05, respectively. The results revealed that Lahore site of Punjab province indicated more concentration of heavy metals as compared to other sites. The level of Cr at all sites whereas Hg at only two sites exceeds the World Health Organization standards (WHO) for soil. Soil enzyme activity exhibited dynamic trend among the sites. Maximum enzyme activity was observed for urease followed by phosphatase and catalase. Contamination factor (Cf), Pollution load index (PLI), and geo-accumulation index (Igeo) results showed that all the sites are highly contaminated with Cu, Cd, and Pb. Hazard index (HI) was less than 1 for children and adults suggesting non-carcinogenic health risk. Principle component analysis results depicted relation among Cr, Fr, catalase, and actinomycetes; Cd, OM, urease, and bacteria, and Pb, Cu, Zn, Hg, and phosphatase, suggesting soil enzymes and microbial community profiles were influenced by e-waste pollution. Therefore, there is a dire need to introduce sustainable e-waste recycling techniques as well as to make stringent e-waste management policies to reduce further environmental contamination.


Asunto(s)
Residuos Electrónicos , Metales Pesados , Microbiología del Suelo , Contaminantes del Suelo , Metales Pesados/análisis , Pakistán , Contaminantes del Suelo/análisis , Medición de Riesgo , Humanos , Monitoreo del Ambiente/métodos , Instalaciones de Eliminación de Residuos , Suelo/química
12.
Environ Geochem Health ; 46(8): 280, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963449

RESUMEN

The chlor-alkali industry (CAI) is crucial for global chemical production; however, its operation has led to widespread heavy metal (HM) contamination at numerous sites, which has not been thoroughly investigated. This study analysed 122 soil and groundwater samples from a typical CAI site in Kaifeng, China. Our aim was to assess the ecological and health risks, identify the sources, and examine the migration characteristics of HMs at this site using Monte Carlo simulation, absolute principal component score-multiple linear regression (APCS-MLR), and the potential environmental risk index (Ei). Our findings revealed that the exceedance rates for Cd, Pb, Hg, and Ni were 71.96%, 45.79%, 49.59%, and 65.42%, respectively. Mercury (Hg) displayed the greatest coefficient of variation across all the soil layers, indicating a significant anthropogenic influence. Cd and Hg were identified as having high and extremely high potential environmental risk levels, respectively. The spatial distributions of the improved Nemerow index (INI), total ecological risk (Ri), and HM content varied considerably, with the most contaminated areas typically associated with the storage of raw and auxiliary materials. Surface aggregation and significant vertical transport were noted for HMs; As and Ni showed substantial accumulation in subsoil layers, severely contaminating the groundwater. Self-organizing maps categorized the samples into two different groups, showing strong positive correlations between Cd, Pb, and Hg. The APCS-MLR model suggested that industrial emissions were the main contributors, accounting for 60.3% of the total HM input. Elevated hazard quotient values for Hg posed significant noncarcinogenic risks, whereas acceptable levels of carcinogenic risk were observed for both adults (96.60%) and children (97.83%). This study significantly enhances historical CAI pollution data and offers valuable insights into ongoing environmental and health challenges.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Metales Pesados/análisis , China , Agua Subterránea/química , Contaminantes del Suelo/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Humanos , Industria Química
13.
Sci Rep ; 14(1): 15114, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956155

RESUMEN

Wheat straw returning is a common agronomic measure in the farmland. Understanding organic carbon transformation is of great significance for carbon budget under the premise of widespread distribution of cadmium (Cd) contaminated soils. An incubation experiment was conducted to assess the influence of Cd contamination on the decomposition and accumulation of total organic carbon (TOC) as well as the composition and abundance of bacterial communities in eight soil types with wheat straw addition. The results showed that inhibition of Cd contamination on microbially mediated organic carbon decomposition was affected by soil types. The lower cumulative C mineralization and higher TOC content could be observed in the acidic soils relative to that in the alkaline soils. The content of Cd in soil exhibits different effects on the inhibition in decomposition of TOC. The high dosage level of Cd had stronger inhibitory impact due to its high toxicity. The decomposition of TOC was restricted by a reduction in soil bacterial abundance and weakening of bacterial activities. Redundancy analysis (RDA) indicated that Proteobacteria and Gemmatimonadetes were abundant in alkaline Cd-contaminated soils with wheat straw addition, while Bacteroidetes dominated cumulative C mineralization in acidic Cd-contamination soils. Moreover, the abundance of predicted functional bacteria indicated that high-dose Cd-contamination and acid environment all inhibited the decomposition of TOC. The present study suggested that pH played an important role on carbon dynamics in the Cd-contaminated soils with wheat straw addition.


Asunto(s)
Cadmio , Carbono , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Triticum , Cadmio/metabolismo , Cadmio/análisis , Triticum/metabolismo , Triticum/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Carbono/metabolismo , Carbono/análisis , Suelo/química , Bacterias/metabolismo , Biodegradación Ambiental , Concentración de Iones de Hidrógeno
14.
Environ Geochem Health ; 46(8): 288, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970676

RESUMEN

The combustion of coal in power plants releases significant amounts of polycyclic aromatic hydrocarbons (PAHs), which are highly toxic and carcinogenic. This study assesses the ecological and human health impacts of PAHs contamination from a coal-fired power plant over 8 years. The monitoring site selection considered the distance from the power plant and the prevailing wind direction in the investigated area. The results reveal that, during the monitoring period, PAH levels increased on average by 43%, 61%, and 37% in the zone of the prevailing wind direction, in the area proximate to the power plant, and the zone distant from it, respectively. The site, which has a radius of 4.5 km in the prevailing wind direction, exhibited the highest ecological and human health impacts. Additionally, a strong correlation was observed between environmental and human health impacts, depending on the distance from the power plant, particularly in areas with the prevailing wind direction. These insights contribute to a comprehensive understanding of the intricate dynamics linking power plant emissions, PAHs contamination, and their far-reaching consequences on the environment and human health.


Asunto(s)
Carbón Mineral , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Centrales Eléctricas , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Humanos , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Viento , Evaluación del Impacto en la Salud
15.
Environ Geochem Health ; 46(8): 287, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970741

RESUMEN

The aim of the study was an assessment of the pollution level and identification of the antimony sources in soils in areas subjected to industrial anthropopressure from: transport, metallurgy and electrical waste recycling. The combination of soil magnetometry, chemical analyzes using atomic spectrometry (ICP-OES and ICP-MS), Sb fractionation analysis, statistical analysis (Pearson's correlation matrix, factor analysis) as well as Geoaccumulation Index, Pollution Load Index, and Sb/As factor allowed not only the assessment of soil contamination degree, but also comprehensive identification of different Sb sources. The results indicate that the soil in the vicinity of the studied objects was characterized by high values of magnetic susceptibility and thus, high contents of potentially toxic elements. The most polluted area was in the vicinity of electrical waste processing plants. Research has shown that the impact of road traffic and wearing off brake blocks, i.e. traffic anthropopression in general, has little effect on the surrounding soil in terms of antimony content. Large amounts of Pb, Zn, As and Cd were found in the soil collected in the vicinity of the heap after the processing of zinc-lead ores, the average antimony (11.31 mg kg-1) content was lower in the vicinity of the heap than in the area around the electrical and electronic waste processing plant, but still very high. Antimony in the studied soils was demobilized and associated mainly with the residual fraction.


Asunto(s)
Antimonio , Monitoreo del Ambiente , Contaminantes del Suelo , Suelo , Antimonio/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Suelo/química , Espectrofotometría Atómica/métodos , Residuos Electrónicos/análisis , Residuos Industriales/análisis
16.
Environ Geochem Health ; 46(9): 315, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001912

RESUMEN

Mining activities have resulted in a substantial accumulation of cadmium (Cd) in agricultural soils, particularly in southern China. Long-term Cd exposure can cause plant growth inhibition and various diseases. Rapid identification of the extent of soil Cd pollution and its driving factors are essential for soil management and risk assessment. However, traditional geostatistical methods are difficult to simulate the complex nonlinear relationships between soil Cd and potential features. In this study, sequential extraction and hotspot analyses indicated that Cd accumulation increased significantly near mining sites and exhibited high mobility. The concentration of Cd was estimated using three machine learning models based on 3169 topsoil samples, seven quantitative variables (soil pH, Fe, Ca, Mn, TOC, Al/Si and ba value) and three quantitative variables (soil parent rock, terrain and soil type). The random forest model achieved marginally better performance than the other models, with an R2 of 0.78. Importance analysis revealed that soil pH and Ca and Mn contents were the most significant factors affecting Cd accumulation and migration. Conversely, due to the essence of controlling Cd migration being soil property, soil type, terrain, and soil parent materials had little impact on the spatial distribution of soil Cd under the influence of mining activities. Our results provide a better understanding of the geochemical behavior of soil Cd in mining areas, which could be helpful for environmental management departments in controlling the diffusion of Cd pollution and capturing key targets for soil remediation.


Asunto(s)
Cadmio , Aprendizaje Automático , Minería , Contaminantes del Suelo , Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , China , Suelo/química , Monitoreo del Ambiente/métodos , Concentración de Iones de Hidrógeno
17.
Environ Geochem Health ; 46(9): 307, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002001

RESUMEN

This study aimed to assess the effectiveness of urban derived biochars such as Sugarcane bagasse (SB), Brinjal Stem (BS), and Citrus Peel (CP) produced at two different pyrolysis conditions (450 and 600 °C for 60 min) for soil heavy metal bioremediation potential. An ex-situ study was conducted to remediate single heavy metal-contaminated SoilRite with lead (Pb), copper (Cu), chromium (Cr) and cadmium (Cd), with biochars applied at different rates. Heavy metal status in soilrite was evaluated using various extraction methods (water-soluble, exchangeable, TCLP (Toxicity Characteristic Leaching Procedure), and PBET (Physiologically Based Extraction Tests)) to determine the biochar treatments' efficacy. The findings show that SB biochar at 450-60 are more effective in immobilizing heavy metals in water-soluble (Cd-100% Pb and Cu-70%), exchangeable (Pb:91%, Cd and Cu by 70-80%) and PBET-extracted forms (Cd-91%, Pb-80%, and Cu-75%), whereas biochar derived from BS (84%) and CP (90%) at 600-60 are more effective in immobilizing TCLP-extracted form of Pb and Cu. Urban derived biochars significantly reduced the toxicity of Pb, Cu, and Cd in various extractable forms and can stabilize and convert them into less accessible forms except for Cr. These extraction methods aid in evaluating environmental risks and influencing remediation strategies for soil heavy metal pollution. Urban biochar, as a cost-effective and eco-friendly solution, significantly solves this issue, facilitating sustainable waste management.


Asunto(s)
Carbón Orgánico , Restauración y Remediación Ambiental , Metales Pesados , Pirólisis , Contaminantes del Suelo , Carbón Orgánico/química , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Metales Pesados/química , Metales Pesados/análisis , Restauración y Remediación Ambiental/métodos , Citrus/química , Saccharum/química , Suelo/química , Biodegradación Ambiental
18.
Environ Geochem Health ; 46(9): 312, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001963

RESUMEN

The ground cracks resulting from coal mining activities induce alterations in the physical and chemical characteristics of soil. However, limited knowledge exists regarding the impact of subsidence caused by coal mining on the distribution of potentially toxic elements (PTEs) fractions in farmland soil. In this study, we collected 19 soil profiles at varying depths from the soil surface and at horizontal distances of 0, 1, 2, and 5 m from the vertical crack. Using BCR extraction fractionation, we determined the geochemical fractions and total concentrations of Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) to investigate their ecological risk, spatial fraction distribution, and main influencing factors. Results showed that the E r i values of Cd appearing in 68.7% of the samples were higher than 40 and less than 80, presented a moderate ecological risk. Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), and lead (Pb) were mainly bound to residual fractions (> 60%) with lower mobility and Cd was dominated by F1 (acid-soluble fractions, 50%) and F2 (reducible fractions, 29%) in surface soil (0-20 cm). The geochemical fractionation revealed that the mobile fractions (F1-acid-soluble and F2-reducible) of PTEs were primarily located near the crack, influenced by available potassium. In contrast, the less mobile fractions (F3-oxidizable and F4-residual) exhibited higher concentrations at distances of 2 and 5 m from the crack, except for arsenic, influenced by the presence of clay particles and available phosphorus.


Asunto(s)
Minas de Carbón , Monitoreo del Ambiente , Metales Pesados , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Metales Pesados/análisis , Metales Pesados/toxicidad , Suelo/química , Granjas , Medición de Riesgo
19.
Environ Geochem Health ; 46(9): 306, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002030

RESUMEN

This study examined plastics and toxic metals in municipal solid waste compost from various regions in Sri Lanka. Plastics were extracted using density separation, digested using wet peroxidation, and identified using Fourier Transform Infra-Red Spectroscopy in Attenuated Total Reflection mode. Compost and plastics were acid-digested to quantify total Cd, Cu, Co, Cr, Pb, and Zn concentrations and analyzed for the bioavailable fraction using 0.01 M CaCl2. Notably, plastics were highly abundant in most compost samples. The main plastic types detected were polyethylene, polypropylene, and cellophane. However, the average Cd, Cu, Co, Cr, Pb, and Zn levels were 0.727, 60.78, 3.670, 25.44, 18.95, and 130.7 mg/kg, respectively, which are well below the recommended levels. Zn was the most bioavailable (2.476 mg/kg), and Cd was the least bioavailable (0.053 mg/kg) metal associated with compost. The Contamination factor data show that there is considerable enhancement of Cd and Cu, however, Cr, Cu, Co, and Pb are at low contamination levels. Mean geo accumulation index values were 1.39, 1.07, - 1.06, - 0.84, - 0.32, and 0.08 for Cd, Cu, Co, Cr, Pb, and Zn. Therefore, the contamination level of compost samples with Cd and Cu ranges from uncontaminated to contaminated levels, whereas Co, Cr, Pb, and Zn are at uncontaminated levels. Despite no direct metal-plastic correlation, plastics in compost could harm plants, animals, and humans due to ingestion. Hence, reducing plastic and metal contamination in compost is crucial.


Asunto(s)
Compostaje , Metales Pesados , Plásticos , Contaminantes del Suelo , Residuos Sólidos , Sri Lanka , Plásticos/análisis , Residuos Sólidos/análisis , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Suelo/química , Espectroscopía Infrarroja por Transformada de Fourier , Eliminación de Residuos
20.
J Environ Manage ; 365: 121599, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968895

RESUMEN

To enhance the remediation effect of heavy metal pollution, organic fertilizers with different maturity levels were added to cadmium-contaminated soil. The remediation effect was determined by evaluating the form transformation and bioavailability of cadmium in heavy metal-contaminated soil. -Results showed that when the maturity was 50%, although the soil humus (HS) content increased, it didn't contribute to reducing the bioavailability of soil Cd. Appropriately increasing the maturity (GI ≥ 80%), the HS increased by 113.95%∼157.96%, and reduced significantly the bioavailability of soil Cd, among the exchangeable Cd decreased by 16.04%∼33.51% (P < 0.01). The structural equation modeling (SEM) revealed that HS content is a critical factor influencing the transformation of Cd forms and the reduction of exchangeable Cd accumulation; the HS and residual Cd content were positively correlated with the maturity (P < 0.01), while exchangeable Cd content was negatively correlated with maturity (P < 0.01), and the correlation increased with increasing maturity. In summary, appropriately increasing the maturity (GI ≥ 80%) can increase significantly HS, promote the transformation of exchangeable Cd into residual Cd, and ultimately enhance the effectiveness of organic fertilizers in the remediation of soil Cd pollution. These results provide a new insight into the remediation of Cd-contaminated soil through organic fertilizer as soil amendment in Cd-contaminated soil.


Asunto(s)
Cadmio , Fertilizantes , Contaminantes del Suelo , Suelo , Fertilizantes/análisis , Cadmio/análisis , Contaminantes del Suelo/análisis , Suelo/química , Metales Pesados/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...