Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.599
Filtrar
1.
PeerJ ; 12: e17461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952992

RESUMEN

Agricultural soils contaminated with heavy metals poison crops and disturb the normal functioning of rhizosphere microbial communities. Different crops and rhizosphere microbial communities exhibit different heavy metal resistance mechanisms. Here, indoor pot studies were used to assess the mechanisms of grain and soil rhizosphere microbial communities on chromium (Cr) stress. Millet grain variety 'Jingu 21' (Setaria italica) and soil samples were collected prior to control (CK), 6 hours after (Cr_6h), and 6 days following (Cr_6d) Cr stress. Transcriptomic analysis, high-throughput sequencing and quantitative polymerase chain reaction (qPCR) were used for sample determination and data analysis. Cr stress inhibited the expression of genes related to cell division, and photosynthesis in grain plants while stimulating the expression of genes related to DNA replication and repair, in addition to plant defense systems resist Cr stress. In response to chromium stress, rhizosphere soil bacterial and fungal community compositions and diversity changed significantly (p < 0.05). Both bacterial and fungal co-occurrence networks primarily comprised positively correlated edges that would serve to increase community stability. However, bacterial community networks were larger than fungal community networks and were more tightly connected and less modular than fungal networks. The abundances of C/N functional genes exhibited increasing trends with increased Cr exposure. Overall, these results suggest that Cr stress primarily prevented cereal seedlings from completing photosynthesis, cell division, and proliferation while simultaneously triggering plant defense mechanisms to resist the toxic effects of Cr. Soil bacterial and fungal populations exhibited diverse response traits, community-assembly mechanisms, and increased expression of functional genes related to carbon and nitrogen cycling, all of which are likely related to microbial survival during Cr stress. This study provides new insights into resistance mechanisms, microbial community structures, and mechanisms of C/N functional genes responses in cereal plants to heavy metal contaminated agricultural soils. Portions of this text were previously published as part of a preprint (https://www.researchsquare.com/article/rs-2891904/v1).


Asunto(s)
Cromo , Grano Comestible , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Cromo/toxicidad , Cromo/efectos adversos , Cromo/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/efectos adversos , Grano Comestible/microbiología , Estrés Fisiológico/efectos de los fármacos , Hongos/efectos de los fármacos , Hongos/genética , Microbiota/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo
2.
Environ Geochem Health ; 46(8): 282, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963450

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with carcinogenic, mutagenic and teratogenic effects. The white-rot fungi in the fungal group have significant degradation ability for high molecular weight organic pollutants. However, exogenous fungi are easily antagonized by indigenous microorganisms. Low molecular weight organic acids, a small molecular organic matter secreted by plants, can provide carbon sources for soil microorganisms. Combining organic acids with white rot fungi may improve the nutritional environment of fungi. In this study, immobilized Trametes versicolor was used to degrade benzo[a]pyrene in soil, and its effect on removing benzo[a]pyrene in soil mediated by different low molecular weight organic acids was investigated. The results showed that when the degradation was 35 days, the removal effect of the experimental group with citric acid was the best, reaching 43.7%. The degradation effect of Trametes versicolor on benzo[a]pyrene was further investigated in the liquid medium when citric acid was added, and the effects of citric acid on the biomass, extracellular protein concentration and laccase activity of Trametes versicolor were investigated by controlling different concentrations of citric acid. In general, citric acid can act as a carbon source for Trametes versicolor and promote its extracellular protein secretion and laccase activity, thereby accelerating the mineralization of benzo[a]pyrene by Trametes versicolor. Therefore, citric acid can be used as a biostimulant in the remediation of PAHs contaminated soil with Trametes versicolor.


Asunto(s)
Benzo(a)pireno , Biodegradación Ambiental , Ácido Cítrico , Contaminantes del Suelo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Ácido Cítrico/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Lacasa/metabolismo , Microbiología del Suelo , Polyporaceae/metabolismo , Trametes/metabolismo , Biomasa
3.
Sci Rep ; 14(1): 16067, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992206

RESUMEN

Nickel (Ni) and copper (Cu) contamination have become major threats to plant survival worldwide. 24-epibrassinolide (24-EBR) and melatonin (MT) have emerged as valuable treatments to alleviate heavy metal-induced phytotoxicity. However, plants have not fully demonstrated the potential mechanisms by which these two hormones act under Ni and Cu stress. Herein, this study investigated the impact of individual and combined application of 24-EBR and MT on the growth and physiological traits of Primula forbesii Franch. subjected to stress (200 µmol L-1 Ni and Cu). The experiments compared the effects of different mitigation treatments on heavy metal (HM) stress and the scientific basis and practical reference for using these exogenous substances to improve HM resistance of P. forbesii in polluted environments. Nickel and Cu stress significantly hindered leaf photosynthesis and nutrient uptake, reducing plant growth and gas exchange. However, 24-EBR, MT, and 24-EBR + MT treatments alleviated the growth inhibition caused by Ni and Cu stress, improved the growth indexes of P. forbesii, and increased the gas exchange parameters. Exogenous MT effectively alleviated Ni stress, and 24-EBR + MT significantly alleviated the toxic effects of Cu stress. Unlike HM stress, MT and 24-EBR + MT activated the antioxidant enzyme activity (by increasing superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), significantly reduced reactive oxygen species (ROS) accumulation, and regulated ascorbate and glutathione cycle (AsA-GSH) efficiency. Besides, the treatments enhanced the ability of P. forbesii to accumulate HMs, shielding plants from harm. These findings conclusively illustrate the capability of 24-EBR and MT to significantly bolster the tolerance of P. forbesii to Ni and Cu stress.


Asunto(s)
Brasinoesteroides , Cobre , Melatonina , Níquel , Esteroides Heterocíclicos , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , Esteroides Heterocíclicos/farmacología , Níquel/toxicidad , Cobre/toxicidad , Fotosíntesis/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Estrés Fisiológico/efectos de los fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacología
4.
Environ Geochem Health ; 46(9): 312, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001963

RESUMEN

The ground cracks resulting from coal mining activities induce alterations in the physical and chemical characteristics of soil. However, limited knowledge exists regarding the impact of subsidence caused by coal mining on the distribution of potentially toxic elements (PTEs) fractions in farmland soil. In this study, we collected 19 soil profiles at varying depths from the soil surface and at horizontal distances of 0, 1, 2, and 5 m from the vertical crack. Using BCR extraction fractionation, we determined the geochemical fractions and total concentrations of Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) to investigate their ecological risk, spatial fraction distribution, and main influencing factors. Results showed that the E r i values of Cd appearing in 68.7% of the samples were higher than 40 and less than 80, presented a moderate ecological risk. Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), and lead (Pb) were mainly bound to residual fractions (> 60%) with lower mobility and Cd was dominated by F1 (acid-soluble fractions, 50%) and F2 (reducible fractions, 29%) in surface soil (0-20 cm). The geochemical fractionation revealed that the mobile fractions (F1-acid-soluble and F2-reducible) of PTEs were primarily located near the crack, influenced by available potassium. In contrast, the less mobile fractions (F3-oxidizable and F4-residual) exhibited higher concentrations at distances of 2 and 5 m from the crack, except for arsenic, influenced by the presence of clay particles and available phosphorus.


Asunto(s)
Minas de Carbón , Monitoreo del Ambiente , Metales Pesados , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Metales Pesados/análisis , Metales Pesados/toxicidad , Suelo/química , Granjas , Medición de Riesgo
5.
Ecotoxicol Environ Saf ; 281: 116683, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964061

RESUMEN

Soil pollution by microplastics (MPs), defined as plastic particles <5 mm, and heavy metals is a significant environmental issue. However, studies on the co-contamination effects of MPs and heavy metals on buckwheat rhizosphere microorganisms, especially on the arbuscular mycorrhizal fungi (AMF) community, are limited. We introduced low (0.01 g kg-1) and high doses of lead (Pb) (2 g kg-1) along with polyethylene (PE) and polylactic acid (PLA) MPs, both individually and in combination, into soil and assessed soil properties, buckwheat growth, and rhizosphere bacterial and AMF communities in a 40-day pot experiment. Notable alterations were observed in soil properties such as pH, alkaline hydrolyzable nitrogen (AN), and the available Pb (APb). High-dose Pb combined with PLA-MPs hindered buckwheat growth. Compared to the control, bacterial Chao1 richness and Shannon diversity were lower in the high dose Pb with PLA treatment, and differentially abundant bacteria were mainly detected in the high Pb dose treatments. Variations in bacterial communities correlated with APb, pH and AN. Overall, the AMF community composition remained largely consistent across all treatments. This phenomenon may be due to fungi having lower nutritional demands than bacteria. Stochastic processes played a relatively important role in the assembly of both bacterial and AMF communities. In summary, MPs appeared to amplify both the positive and negative effects of high Pb doses on the buckwheat rhizosphere bacteria.


Asunto(s)
Fagopyrum , Plomo , Microplásticos , Micorrizas , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Micorrizas/efectos de los fármacos , Plomo/toxicidad , Microplásticos/toxicidad , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Suelo/química
6.
Environ Geochem Health ; 46(8): 290, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976075

RESUMEN

Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P < 0.000) reduction in heavy metal concentrations in the soil as a result of E. fetida activity. The order of heavy metal accumulation by E. fetida was found to be Cr > Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Oligoquetos , Reproducción , Contaminantes del Suelo , Oligoquetos/efectos de los fármacos , Metales Pesados/toxicidad , Animales , Contaminantes del Suelo/toxicidad , Reproducción/efectos de los fármacos , Restauración y Remediación Ambiental/métodos , Ensayo Cometa , Espectroscopía Infrarroja por Transformada de Fourier , Daño del ADN , Suelo/química
7.
BMC Plant Biol ; 24(1): 660, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987664

RESUMEN

Arsenic (As) contamination is a major environmental pollutant that adversely affects plant physiological processes and can hinder nutrients and water availability. Such conditions ultimately resulted in stunted growth, low yield, and poor plant health. Using rhizobacteria and composted biochar (ECB) can effectively overcome this problem. Rhizobacteria have the potential to enhance plant growth by promoting nutrient uptake, producing growth hormones, and suppressing diseases. Composted biochar can enhance plant growth by improving aeration, water retention, and nutrient cycling. Its porous structure supports beneficial microorganisms, increasing nutrient uptake and resilience to stressors, ultimately boosting yields while sequestering carbon. Therefore, the current study was conducted to investigate the combined effect of previously isolated Bacillus faecalis (B. faecalis) and ECB as amendments on maize cultivated under different As levels (0, 300, 600 mg As/kg soil). Four treatments (control, 0.5% composted biochar (0.5ECB), B. faecalis, and 0.5ECB + B. faecalis) were applied in four replications following a completely randomized design. Results showed that the 0.5ECB + B. faecalis treatment led to a significant rise in maize plant height (~ 99%), shoot length (~ 55%), root length (~ 82%), shoot fresh (~ 87%), and shoot dry weight (~ 96%), root fresh (~ 97%), and dry weight (~ 91%) over the control under 600As stress. There was a notable increase in maize chlorophyll a (~ 99%), chlorophyll b (~ 81%), total chlorophyll (~ 94%), and shoot N, P, and K concentration compared to control under As stress, also showing the potential of 0.5ECB + B. faecalis treatment. Consequently, the findings suggest that applying 0.5ECB + B. faecalis is a strategy for alleviating As stress in maize plants.


Asunto(s)
Arsénico , Carbón Orgánico , Zea mays , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Arsénico/toxicidad , Bacillus/fisiología , Contaminantes del Suelo/toxicidad , Clorofila/metabolismo
8.
BMC Plant Biol ; 24(1): 659, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987675

RESUMEN

BACKGROUND: The potential of phytoremediation using garlic monoculture (MC) and intercropping (IC) system with perennial ryegrass to enhance the uptake of cadmium (Cd), chromium (Cr), and lead (Pb) were investigated. RESULTS: Positive correlations were found between MC and IC systems, with varying biomass. Production of perennial ryegrass was affected differently depending on the type of toxic metal present in the soil. Root growth inhibition was more affected than shoot growth inhibition. The total biomass of shoot and root in IC was higher than MC, increasing approximately 3.7 and 2.9 fold compared to MC, attributed to advantages in root IC crop systems. Photosystem II efficiency showed less sensitivity to metal toxicity compared to the control, with a decrease between 10.07-12.03%. Among gas exchange parameters, only Cr significantly affected physiological responses by reducing transpiration by 69.24%, likely due to leaf chlorosis and necrosis. CONCLUSION: This study exhibited the potential of garlic MC and IC with perennial ryegrass in phytoremediation. Although the different metals affect plant growth differently, IC showed advantages over MC in term biomass production.


Asunto(s)
Biodegradación Ambiental , Ajo , Lolium , Metales Pesados , Fotosíntesis , Lolium/crecimiento & desarrollo , Lolium/efectos de los fármacos , Lolium/fisiología , Lolium/metabolismo , Fotosíntesis/efectos de los fármacos , Metales Pesados/toxicidad , Ajo/crecimiento & desarrollo , Ajo/fisiología , Ajo/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Biomasa , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Cadmio/toxicidad , Cadmio/metabolismo
9.
Environ Sci Pollut Res Int ; 31(32): 44815-44827, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38955968

RESUMEN

To reveal the toxicological mechanisms of pesticide mixtures on soil organisms, this study concentrated on evaluating enzymatic activity and gene expression changes in the earthworm Eisenia fetida (Savigny 1826). Despite being frequently exposed to multiple pesticides, including the common combination of abamectin (ABA) and carbendazim (CAR), environmental organisms have primarily been studied for the effects of individual pesticides. Acute toxicity results exhibited that the combination of ABA and CAR caused a synergistic impact on E. fetida. The levels of MDA, ROS, T-SOD, and caspase3 demonstrated a significant increase across most individual and combined groups, indicating the induction of oxidative stress and cell death. Additionally, the expression of three genes (hsp70, gst, and crt) exhibited a significant decrease following exposure to individual pesticides and their combinations, pointing toward cellular damage and impaired detoxification function. In contrast, a noteworthy increase in ann expression was observed after exposure to both individual pesticides and their mixtures, suggesting the stimulation of reproductive capacity in E. fetida. The present findings contributed to a more comprehensive understanding of the potential toxicity mechanisms of the ABA and CAR mixture, specifically on oxidative stress, cell death, detoxification dysfunction, and reproductive capacity in earthworms. Collectively, these data offered valuable toxicological insights into the combined effects of pesticides on soil organisms, enhancing our understanding of the underlying risks associated with the coexistence of different pesticides in natural soil environments.


Asunto(s)
Bencimidazoles , Carbamatos , Ivermectina , Oligoquetos , Contaminantes del Suelo , Suelo , Animales , Oligoquetos/efectos de los fármacos , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Carbamatos/toxicidad , Bencimidazoles/toxicidad , Suelo/química , Contaminantes del Suelo/toxicidad , Estrés Oxidativo , Plaguicidas/toxicidad
10.
Environ Sci Pollut Res Int ; 31(32): 45370-45382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965106

RESUMEN

Notwithstanding the fact that melatonin (MT) and titanium nanoparticles (Ti NPs) alone have been widely used recently to modulate cadmium (Cd) stress in plants, there is a gap in the comparative impacts of these materials on lowering Cd toxicity in sage plants. The objective of this study was to determine how foliar application of MT and Ti NPs affected the growth, Cd accumulation, photosynthesis, water content, lipid peroxidation, and essential oil (EO) quality and quantity of sage plants in Cd-contaminated soils. A factorial experiment was conducted using MT at 100 and 200 µM and Ti NPs at 50 and 100 mg L-1 topically, together with Cd toxicity at 10 and 20 mg Cd kg-1 soil. The results showed that Cd toxicity decreased plant growth and enhanced lipid peroxidation. The Cd stress at 20 mg kg-1 soil resulted in increases in Cd root (693%), Cd shoot (429%), electrolyte leakage (EL, 29%), malondialdehyde (MDA, 72%), shoot weight (31%), root weight (27%), chlorophyll (Chl) a + b (26%), relative water content (RWC, 23%), and EO yield (30%). The application of MT and Ti NPs controlled drought stress by reducing MDA and EL, enhancing plant weight, Chl, RWC, and EO production, and minimizing Cd accumulation in plant tissues. The predominant compounds in the EO were α-thujone, 1,8-cineole, ß-thujone, camphor, and α-humulene. MT and Ti NPs caused α-thujone to rise, whereas Cd stress caused it to fall. Based on heat map analysis, MDA was the trait that was most sensitive to treatments. In summary, the research emphasizes the possibility of MT and Ti NPs, particularly MT at 200 µM, to mitigate Cd toxicity in sage plants and enhance their biochemical reactions.


Asunto(s)
Cadmio , Melatonina , Salvia officinalis , Titanio , Cadmio/toxicidad , Titanio/toxicidad , Melatonina/farmacología , Contaminantes del Suelo/toxicidad , Nanopartículas del Metal/toxicidad , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos
11.
Sci Total Environ ; 946: 174503, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38971246

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) play important roles in plant growth and defense under heavy metal (HM) stress. The direct integration of microbial and plant signals is key to the regulation of plant growth and HM stress defense, but the underlying mechanisms are still limited. Herein, we reveal a novel mechanism by which PGPR regulates plant growth-regulating substances in plant tissues and coordinates plant growth and defense in pak choi under cadmium (Cd) stress. This might be an efficient strategy and an extension of the mechanism by which plant-microbe interactions improve plant stress resistance. Azospirillum brasilense and heme synergistically reduced the shoot Cd content and promoted the growth of pak choi. The interaction between abscisic acid of microbial origin and heme improved Cd stress tolerance through enhancing Cd accumulation in the root cell wall. The interaction between A. brasilense and heme induced the growth-defense shift in plants under Cd stress. Plants sacrifice growth to enhance Cd stress defense, which then transforms into a dual promotion of both growth and defense. This study deepens our understanding of plant-microbe interactions and provides a novel strategy to improve plant growth and defense under HM stress, ensuring future food production and security.


Asunto(s)
Azospirillum brasilense , Cadmio , Hemo , Contaminantes del Suelo , Azospirillum brasilense/fisiología , Cadmio/toxicidad , Hemo/metabolismo , Contaminantes del Suelo/toxicidad , Desarrollo de la Planta/efectos de los fármacos , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Estrés Fisiológico
12.
Environ Sci Pollut Res Int ; 31(32): 44800-44814, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954347

RESUMEN

Naphthalene (NAP) was frequently detected in polycyclic aromatic hydrocarbons (PAHs)-contaminated soil, and its residues may pose an eco-toxicological threat to soil organisms. The toxic effects of NAP were closely tied to phenolic and quinone metabolites in biological metabolism. However, the present knowledge concerning the eco-toxicological impacts of NAP metabolites at the animal level is scanty. Here, we assessed the differences in the eco-toxicological responses of Eisenia fetida (E. fetida) in NAP, 1-naphthol (1-NAO) or 1,4-naphthoquinone (1,4-NQ) contaminated soils. NAP, 1-NAO, and 1,4-NQ exposure triggered the onset of oxidative stress as evidenced by the destruction of the antioxidant enzyme system. The lipid peroxidation and DNA oxidative damage levels induced by 1-NAO and 1,4-NQ were higher than those of NAP. The elevation of DNA damage varied considerably depending on differences in oxidative stress and the direct mode of action of NAP or its metabolites with DNA. All three toxicants induced different degrees of physiological damage to the body wall, but only 1, 4-NQ caused the shedding of intestinal epithelial cells. The integrated biomarker response for different exposure times illustrated that the comprehensive toxicity at the animal level was 1,4-NQ > 1-NAO > NAP, and the time-dependent trends of oxidative stress responses induced by the three toxicants were similar. At the initial stage, the antioxidant system of E. fetida responded positively to the provocation, but the ability of E. fetida to resist stimulation decreased with the prolongation of time resulting in provocation oxidative damage. This study would provide new insights into the toxicological effects and biohazard of PAHs on soil animals.


Asunto(s)
Naftalenos , Oligoquetos , Estrés Oxidativo , Contaminantes del Suelo , Animales , Oligoquetos/efectos de los fármacos , Oligoquetos/metabolismo , Contaminantes del Suelo/toxicidad , Naftalenos/toxicidad , Suelo/química , Daño del ADN , Hidrocarburos Policíclicos Aromáticos/toxicidad , Peroxidación de Lípido/efectos de los fármacos
13.
Environ Sci Pollut Res Int ; 31(33): 45834-45846, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38972946

RESUMEN

Propylparaben (PrP) and dichloropropylparaben (diClPrP) are found in soil worldwide, mainly due to the incorporation of urban sludge in crop soils and the use of non-raw wastewater for irrigation. Studies on the adverse effects of PrP on plants are incipient and not found for diClPrP. PrP and diClPrP were evaluated at concentrations 4, 40, and 400 µg/L for their phytotoxic potential to seeds of Allium cepa (onion), Cucumis sativus (cucumber), Lycopersicum sculentum (tomato), and Lactuca sativa (lettuce), and cytotoxic, genotoxic potential, and for generating oxygen-reactive substances in root meristems of A. cepa bulbs. PrP and diClPrP caused a significant reduction in seed root elongation in all four species. In A. cepa bulb roots, PrP and diClPrP resulted in a high prophase index; in addition, PrP at 400 µg/L and diClPrP at the three concentrations significantly decreased cell proliferation and caused alterations in a significant number of cells. Furthermore, diClPrP concentrations induced the development of hooked roots in onion bulbs. The two chemical compounds caused significant changes in the modulation of catalase, ascorbate peroxidase, and guaiacol peroxidase, disarming the root meristems against hydroxyl radicals and superoxides. Therefore, PrP and diClPrP were phytotoxic and cytogenotoxic to the species tested, proving dangerous to plants.


Asunto(s)
Cebollas , Parabenos , Parabenos/toxicidad , Cebollas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Lactuca/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Cucumis sativus/efectos de los fármacos
14.
Environ Sci Technol ; 58(26): 11301-11308, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38900968

RESUMEN

Tens of thousands of people in southern Europe suffer from Balkan endemic nephropathy (BEN), and four times as many are at risk. Incidental ingestion of aristolochic acids (AAs), stemming from the ubiquitousAristolochia clematitis(birthwort) weed in the region, leads to DNA adduct-induced toxicity in kidney cells, the primary cause of BEN. Numerous cofactors, including toxic organics and metals, have been investigated, but all have shown small contributions to the overall BEN relative to non-BEN village distribution gradients. Here, we reveal that combustion-derived pollutants from wood and coal burning in Serbia also contaminate arable soil and test as plausible causative factors of BEN. Using a GC-MS screening method, biomass-burning-derived furfural and coal-burning-derived medium-chain alkanes were detected in soil samples from BEN endemic areas levels at up to 63-times and 14-times higher, respectively, than in nonendemic areas. Significantly higher amounts were also detected in colocated wheat grains. Coexposure studies with cultured kidney cells showed that these pollutants enhance DNA adduct formation by AA, - the cause of AA nephrotoxicity and carcinogenicity. With the coincidence of birthwort-derived AAs and the widespread practice of biomass and coal burning for household cooking and heating purposes and agricultural burning in rural low-lying flood-affected areas in the Balkans, these results implicate combustion-derived pollutants in promoting the development of BEN.


Asunto(s)
Nefropatía de los Balcanes , Inundaciones , Nefropatía de los Balcanes/inducido químicamente , Nefropatía de los Balcanes/epidemiología , Humanos , Carbón Mineral , Serbia , Contaminantes del Suelo/toxicidad , Ácidos Aristolóquicos , Animales , Aristolochia/química , Peninsula Balcánica , Madera , Enfermedades Renales/inducido químicamente
15.
Plant Physiol Biochem ; 213: 108808, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865805

RESUMEN

The development of the mining industry and the overuse of inorganic fertilizers have led to an excess of manganese (Mn) in the soil, thereby, contaminating the soil environment and people's health. On heavy metal-contaminated soils, the combined arbuscular mycorrhizal fungi (AMF)-phytoremediation technique becomes a hotspot because of its environmentally friendly, in situ remediation. AMF inoculation often leads to a decrease in host Mn acquisition, which provides a basis for its application in phytoremediation of contaminated soils. Moreover, the utilization value of native AMF is greater than that of exotic AMF, because native AMF can adapt better to Mn-contaminated soils. In addition to the fact that AMF enhance plant Mn tolerance responses such as regionalization, organic matter chelation, limiting uptake and efflux, and so on, AMF also develop plant-independent fungal pathways such as direct biosorption of Mn by mycorrhizal hyphae, fungal Mn transporter genes, and sequestration of Mn by mycorrhizal hyphae, glomalin, and arbuscule-containing root cortical cells, which together mitigate excessive Mn toxicity to plants. Clarifying AMF-plant interactions under Mn stress will provide support for utilizing AMF as a phytoremediation in Mn-contaminated soils. The review reveals in detail how AMF develop its own mechanisms for responding to excess Mn and how AMF enhance plant Mn tolerance, accompanied by perspectives for future research.


Asunto(s)
Biodegradación Ambiental , Manganeso , Micorrizas , Plantas , Micorrizas/metabolismo , Micorrizas/fisiología , Manganeso/metabolismo , Manganeso/toxicidad , Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/microbiología , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos
16.
Plant Physiol Biochem ; 213: 108811, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870680

RESUMEN

Arsenic (As) is a metalloid pollutant that is extensively distributed in the biosphere. As is among the most prevalent and toxic elements in the environment; it induces adverse effects even at low concentrations. Due to its toxic nature and bioavailability, the presence of As in soil and water has prompted numerous agricultural, environmental, and health concerns. As accumulation is detrimental to plant growth, development, and productivity. Toxicity of As to plants is a function of As speciation, plant species, and soil properties. As inhibits root proliferation and reduces leaf number. It is associated with defoliation, reduced biomass, nutrient uptake, and photosynthesis, chlorophyll degradation, generation of reactive oxygen species, membrane damage, electrolyte leakage, lipid peroxidation and genotoxicity. Plants respond to As stress by upregulating genes involved in detoxification. Different species have adopted avoidance and tolerance responses for As detoxification. Plants also activate phytohormonal signaling to mitigate the stressful impacts of As. This review addresses As speciation, uptake, and accumulation by plants. It describes plant morpho-physiological, biochemical, and molecular changes and how phytohormones respond to As stress. The review closes with a discussion of omic approaches for alleviating As toxicity in plants.


Asunto(s)
Arsénico , Plantas , Estrés Fisiológico , Arsénico/toxicidad , Arsénico/metabolismo , Estrés Fisiológico/efectos de los fármacos , Plantas/metabolismo , Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo
17.
Plant Physiol Biochem ; 213: 108795, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878390

RESUMEN

Microplastics and nanoplastics (MNPs), are minute particles resulting from plastic fragmentation, have raised concerns due to their widespread presence in the environment. This study investigates sources and distribution of MNPs and their impact on plants, elucidating the intricate mechanisms of toxicity. Through a comprehensive analysis, it reveals that these tiny plastic particles infiltrate plant tissues, disrupting vital physiological processes. Micro and nanoplastics impair root development, hinder water and nutrient uptake, photosynthesis, and induce oxidative stress and cyto-genotoxicity leading to stunted growth and diminished crop yields. Moreover, they interfere with plant-microbe interactions essential for nutrient cycling and soil health. The research also explores the translocation of these particles within plants, raising concerns about their potential entry into the food chain and subsequent human health risks. The study underscores the urgency of understanding MNPs toxicity on plants, emphasizing the need for innovative remediation strategies such as bioremediation by algae, fungi, bacteria, and plants and eco-friendly plastic alternatives. Addressing this issue is pivotal not only for environmental conservation but also for ensuring sustainable agriculture and global food security in the face of escalating plastic pollution.


Asunto(s)
Microplásticos , Plantas , Microplásticos/toxicidad , Plantas/metabolismo , Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Nanopartículas/toxicidad , Restauración y Remediación Ambiental/métodos , Plásticos/metabolismo , Plásticos/toxicidad , Contaminación Ambiental
18.
Plant Physiol Biochem ; 213: 108853, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901231

RESUMEN

To reduce heavy metal toxicity, like that induced by thallium (TI) in plants, growth-promoting bacteria (GPB) are a widely used to enhance plant tolerance to heavy metals toxicity. In our study, we characterized seven GPB and identified Actinoplanes spp., as the most active strain. This bioactive strain was then applied to alleviate TI phytotoxicity. TI contamination (20 mg/kg soil) induced TI bioaccumulation, reducing wheat growth (biomass accumulation) and photosynthesis rate, by about 55% and 90%, respectively. TI stress also induced oxidative damages as indicated by increased oxidative markers (H2O2 and lipid peroxidation (MDA)). Interestingly, Actinoplanes spp. significantly reduced growth inhibition and oxidative stress by 20% and 70%, respectively. As a defense mechanism to mitigate the TI toxicity, wheat plants showed improved antioxidant and detoxification defense including increased phenolic and tocopherols levels as well as peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) enzymes activities. These defense mechanisms were further induced by Actinoplanes spp. Additionally, Actinoplanes spp. increased the production of heavy metal-binding ligands such as metallothionein, phytochelatins, total glutathione, and glutathione S-transferase activity by 100%, 90%, 120%, and 100%, respectively. This study, therefore, elucidated the physiological and biochemical bases underlying TI-stress mitigation impact of Actinoplanes spp. Overall, Actinoplanes spp. holds promise as a valuable approach for ameliorating TI toxicity in plants. KEYBOARD: Actinobacteria, Bioaccumulation, Detoxification, Membrane damage, Redox regulation.


Asunto(s)
Estrés Oxidativo , Talio , Triticum , Triticum/efectos de los fármacos , Triticum/metabolismo , Estrés Oxidativo/efectos de los fármacos , Talio/metabolismo , Talio/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Fotosíntesis/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Catalasa/metabolismo
19.
Environ Sci Pollut Res Int ; 31(30): 43023-43036, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888825

RESUMEN

So far, the physiological and molecular mechanisms of the impact of arbuscular mycorrhizal fungus (AMF) on Cd absorption, transport and detoxification in Ipomoea aquatica (water spinach) are still unclear. In the present study, a pot experiment was performed to investigate the impact of AMF-Glomus versiforme (Gv) on the photosynthetic characteristics, Cd uptake, antioxidative system and transcriptome in water spinach in the soils supplemented with 5 mg Cd kg-1. Gv inoculation improved significantly the photosynthetic characteristics and growth of water spinach. Furthermore, Gv colonization significantly promoted the activities of catalase (CAT), peroxidase (POD) and glutathione reductase (GR), contents of glutathione (GSH) and ascorbic acid (AsA), and the total antioxidant capacity (TCA), but decreased malondialdehyde (MDA) content in water spinach. In addition, Gv inoculation significantly increased pH in rhizosphere soils and decreased the Cd concentrations and uptakes in water spinach. Importantly, 2670 differentially expressed genes (DEGs) were screened in water spinach root colonized with Gv in 5 mg Cd kg-1 soil, of which 2008 DEGs were upregulated and 662 DEGs were downregulated. Especially, the expression levels of POD, CAT, GR, dehydroascorbate reductase 2 (DHAR2), glutathione S-transferase U8 (GSTU8) and glutathione synthetase (GSHS) and cytochrome P450 (Cyt P450) genes were significantly up-regulated in water spinach inoculated with Gv. Meanwhile, the plant cadmium resistance protein 2 (PCR2), metal tolerance protein 4 (MTP4), ATP-binding cassette transporter C family member (ABCC), ABC-yeast cadmium factor 1 (ABC-YCF1) and metallothionein (MT) genes were also up-regulated in mycorrhizal water spinach. Our results firstly elucidated the mechanism by which AMF reduced the uptake and phytotoxicity of Cd in water spinach through a transcriptome analysis.


Asunto(s)
Cadmio , Ipomoea , Micorrizas , Ipomoea/metabolismo , Ipomoea/genética , Cadmio/toxicidad , Micorrizas/fisiología , Glomeromycota/fisiología , Perfilación de la Expresión Génica , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Transcriptoma
20.
Sci Total Environ ; 945: 173931, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885718

RESUMEN

Microplastics (MPs) and cadmium (Cd) are toxic to rice; however, the effects and mechanisms of their combined exposure are unclear. The combined exposure effects of polystyrene microplastics (PS-MPs) with different particle sizes (1-10 µm, 50-150 µm) and concentrations (50, 500 mg·L-1) and Cd on rice were explored. PS-MPs combined with Cd amplifies the inhibition of each individual exposure on the height and biomass of rice seedlings, and they showed antagonistic effects. PS-MPs reduced the content of chlorophyll and increased the content of carotenoid rice seedlings significantly. High concentrations of PS-MPs enhanced the inhibition of Cd on chlorophyll content. Cd, PS-MPs single and combined exposures significantly altered the antioxidant enzyme (POD, CAT, SOD) activities in rice seedlings. Under PS-MPs exposure, overall, the MDA content in shoots and roots exhibited opposite trends, with a decrease in the former and an increase in the latter. In comparison with Cd treatment, the combined exposures' shoot and root MDA content was reduced. Cd and PS-MPs showed "low concentration antagonism, high concentration synergism" on the composite physiological indexes of rice seedlings. PS-MPs significantly increased the Cd accumulation in shoots. PS-MPs promoted the root absorption of Cd at 50 mg·L-1 while inhibited at 500 mg·L-1. Cd and PS-MPs treatments interfered with the balance of microelements (Mn, Zn, Fe, Cu, B, Mo) and macroelements (S, P, K, Mg, Ca) in rice seedlings; Mn was significantly inhibited. PS-MPs can enhance of Cd's toxicity to rice seedlings. The combined toxic effects of the two contaminants appear to be antagonistic or synergistic, relying on the particle size and concentration of the PS-MPs. Our findings offer information to help people understanding the combined toxicity of Cd and MPs on crops.


Asunto(s)
Cadmio , Microplásticos , Oryza , Poliestirenos , Plantones , Contaminantes del Suelo , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Cadmio/toxicidad , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Poliestirenos/toxicidad , Microplásticos/toxicidad , Contaminantes del Suelo/toxicidad , Clorofila/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...