Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.502
Filtrar
1.
F1000Res ; 13: 226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948349

RESUMEN

Objective: This scoping review will identify existing literature regarding contextual factors relevant to vector-control interventions to prevent malaria. We will use the findings of the scoping review to produce an interactive evidence and gap map. The map will assist in the priority setting, development, and conduct of targeted systematic reviews. These systematic reviews seek to assist the Vector Control and Insecticide Resistance Unit of the World Health Organization's Global Malaria Programme by informing recommendation development by their Guidelines Development Group. Introduction: Malaria contributes substantially to the global burden of disease, with an estimated 247 million cases and 619,000 deaths in 2021. Vector-control is key in reducing malaria transmission. Vector-control interventions directly target the mosquito, reducing the potential for parasite infections. These interventions commonly include insecticides used in indoor residual spraying or insecticide-treated nets and larval source management. Several new vector-control interventions are under evaluation to complement these. In addition to estimating the effects of interventions on health outcomes, it is critical to understand how populations at risk of malaria consider them in terms of their feasibility, acceptability, and values. Inclusion Criteria: Eligible studies will have assessed the contextual factors of feasibility or acceptability of the interventions of interest, or the valuation of the outcomes of interests. These assessments will be from the perspective of people who receive (residents) or deliver (workers or technicians) the vector-control intervention for the purpose of preventing malaria. Methods: We will conduct this scoping review in accordance with the JBI methodology for scoping reviews and report in line with the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews (PRISMA-ScR). We will construct the evidence and gap map following guidance from the Campbell Collaboration.


Asunto(s)
Malaria , Control de Mosquitos , Malaria/prevención & control , Malaria/transmisión , Humanos , Control de Mosquitos/métodos , Animales , Insecticidas , Mosquitos Vectores
2.
Sci Rep ; 14(1): 15421, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965297

RESUMEN

Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as Dengue, Chikungunya and Zika, causing a major impact on global economic and public health. The main way to prevent these diseases is vector control, which is carried out through physical and biological methods, in addition to environmental management. Although chemical insecticides are the most effective strategy, they present some problems such as vector resistance and ecotoxicity. Recent research highlights the potential of the imidazolium salt "1-methyl-3-octadecylimidazolium chloride" (C18MImCl) as an innovative and environmentally friendly solution against Ae. aegypti. Despite its promising larvicidal activity, the mode of action of C18MImCl in mosquito cells and tissues remains unknown. This study aimed to investigate its impacts on Ae. aegypti larvae and three cell lines of Ae. aegypti and Ae. albopictus, comparing the cellular effects with those on human cells. Cell viability assays and histopathological analyses of treated larvae were conducted. Results revealed the imidazolium salt's high selectivity (> 254) for mosquito cells over human cells. After salt ingestion, the mechanism of larval death involves toxic effects on midgut cells. This research marks the first description of an imidazolium salt's action on mosquito cells and midgut tissues, showcasing its potential for the development of a selective and sustainable strategy for vector control.


Asunto(s)
Aedes , Imidazoles , Insecticidas , Larva , Aedes/efectos de los fármacos , Animales , Larva/efectos de los fármacos , Imidazoles/toxicidad , Imidazoles/farmacología , Insecticidas/toxicidad , Insecticidas/farmacología , Humanos , Mosquitos Vectores/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Control de Mosquitos/métodos
3.
BMC Public Health ; 24(1): 1781, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965485

RESUMEN

BACKGROUND: Recently, Europe has seen an emergence of mosquito-borne viruses (MBVs). Understanding citizens' perceptions of and behaviours towards mosquitoes and MBVs is crucial to reduce disease risk. We investigated and compared perceptions, knowledge, and determinants of citizens' behavioural intentions related to mosquitoes and MBVs in the Netherlands and Spain, to help improve public health interventions. METHODS: Using the validated MosquitoWise survey, data was collected through participant panels in Spain (N = 475) and the Netherlands (N = 438). Health Belief Model scores measuring behavioural intent, knowledge, and information scores were calculated. Confidence Interval-Based Estimation of Relevance was used, together with potential for change indexes, to identify promising determinants for improving prevention measure use. RESULTS: Spanish participants' responses showed slightly higher intent to use prevention measures compared to those of Dutch participants (29.1 and 28.2, respectively, p 0.03). Most participants in Spain (92.2%) and the Netherlands (91.8%) indicated they used at least one prevention measure, but differences were observed in which types they used. More Spanish participants indicated to have received information on mosquitoes and MBVs compared to Dutch participants. Spanish participants preferred health professional information sources, while Dutch participants favoured government websites. Determinants for intent to use prevention measures included "Knowledge", "Reminders to Use Prevention Measures", and "Information" in the Netherlands and Spain. Determinants for repellent use included "Perceived Benefits" and "Cues to Action", with "Perceived Benefits" having a high potential for behavioural change in both countries. "Self-Efficacy" and "Knowledge" were determinants in both countries for breeding site removal. CONCLUSION: This study found differences in knowledge between the Netherlands and Spain but similarities in determinants for intent to use prevention measures, intent to use repellents and intent to remove mosquito breeding sites. Identified determinants can be the focus for future public health interventions to reduce MBV risks.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Países Bajos , Humanos , España , Estudios Transversales , Adulto , Femenino , Masculino , Persona de Mediana Edad , Animales , Adulto Joven , Culicidae , Mosquitos Vectores , Control de Mosquitos/métodos , Adolescente , Intención , Encuestas y Cuestionarios , Anciano
4.
PLoS One ; 19(7): e0305207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968330

RESUMEN

Increasing reports of insecticide resistance continue to hamper the gains of vector control strategies in curbing malaria transmission. This makes identifying new insecticide targets or alternative vector control strategies necessary. CLassifier of Essentiality AcRoss EukaRyote (CLEARER), a leave-one-organism-out cross-validation machine learning classifier for essential genes, was used to predict essential genes in Anopheles gambiae and selected predicted genes experimentally validated. The CLEARER algorithm was trained on six model organisms: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and employed to identify essential genes in An. gambiae. Of the 10,426 genes in An. gambiae, 1,946 genes (18.7%) were predicted to be Cellular Essential Genes (CEGs), 1716 (16.5%) to be Organism Essential Genes (OEGs), and 852 genes (8.2%) to be essential as both OEGs and CEGs. RNA interference (RNAi) was used to validate the top three highly expressed non-ribosomal predictions as probable vector control targets, by determining the effect of these genes on the survival of An. gambiae G3 mosquitoes. In addition, the effect of knockdown of arginase (AGAP008783) on Plasmodium berghei infection in mosquitoes was evaluated, an enzyme we computationally inferred earlier to be essential based on chokepoint analysis. Arginase and the top three genes, AGAP007406 (Elongation factor 1-alpha, Elf1), AGAP002076 (Heat shock 70kDa protein 1/8, HSP), AGAP009441 (Elongation factor 2, Elf2), had knockdown efficiencies of 91%, 75%, 63%, and 61%, respectively. While knockdown of HSP or Elf2 significantly reduced longevity of the mosquitoes (p<0.0001) compared to control groups, Elf1 or arginase knockdown had no effect on survival. However, arginase knockdown significantly reduced P. berghei oocytes counts in the midgut of mosquitoes when compared to LacZ-injected controls. The study reveals HSP and Elf2 as important contributors to mosquito survival and arginase as important for parasite development, hence placing them as possible targets for vector control.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Interferencia de ARN , Animales , Anopheles/genética , Anopheles/parasitología , Malaria/prevención & control , Malaria/transmisión , Malaria/parasitología , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Biología Computacional/métodos , Ratones , Humanos , Control de Mosquitos/métodos , Genes Esenciales , Femenino , Plasmodium berghei/genética
5.
PLoS One ; 19(7): e0300368, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985752

RESUMEN

BACKGROUND: A treated fabric device for emanating the volatile pyrethroid transfluthrin was recently developed in Tanzania that protected against night-biting Anopheles and Culex mosquitoes for several months. Here perceptions of community end users provided with such transfluthrin emanators, primarily intended to protect them against day-active Aedes vectors of human arboviruses that often attack people outdoors, were assessed in Port-au-Prince, Haiti. METHODS: Following the distribution of transfluthrin emanators to participating households in poor-to-middle class urban neighbourhoods, questionnaire surveys and in-depth interviews of end-user households were supplemented with conventional and Photovoice-based focus group discussions. Observations were assessed synthetically to evaluate user perceptions of protection and acceptability, and to solicit advice for improving and promoting them in the future. RESULTS: Many participants viewed emanators positively and several outlined various advantages over current alternatives, although some expressed concerns about smell, health hazards, bulkiness, unattractiveness and future cost. Most participants expressed moderate to high satisfaction with protection against mosquitoes, especially indoors. Protection against other arthropod pests was also commonly reported, although satisfaction levels were highly variable. Diverse use practices were reported, some of which probably targeted nocturnal Culex resting indoors, rather than Aedes attacking them outdoors during daylight hours. Perceived durability of protection varied: While many participants noted some slow loss over months, others noted rapid decline within days. A few participants specifically attributed efficacy loss to outdoor use and exposure to wind or moisture. Many expressed stringent expectations of satisfactory protection levels, with even a single mosquito bite considered unsatisfactory. Some participants considered emanators superior to fans, bedsheets, sprays and coils, but it is concerning that several preferred them to bed nets and consequently stopped using the latter. CONCLUSIONS: The perspectives shared by Haitian end-users are consistent with those from similar studies in Brazil and recent epidemiological evidence from Peru that other transfluthrin emanator products can protect against arbovirus infection. While these encouraging sociological observations contrast starkly with evidence of essentially negligible effects upon Aedes landing rates from parallel entomological assessments across Haiti, Tanzania, Brazil and Peru, no other reason to doubt the generally encouraging views expressed herein by Haitian end users could be identified.


Asunto(s)
Ciclopropanos , Fluorobencenos , Control de Mosquitos , Haití , Animales , Humanos , Control de Mosquitos/métodos , Femenino , Masculino , Insecticidas , Adulto , Mosquitos Vectores , Aedes/efectos de los fármacos , Persona de Mediana Edad , Encuestas y Cuestionarios , Anopheles/efectos de los fármacos , Culex/efectos de los fármacos
6.
Parasit Vectors ; 17(1): 289, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971773

RESUMEN

BACKGROUND: The current rise of new innovative tools for mosquito control, such as the release of transgenic mosquitoes carrying a dominant lethal gene and Wolbachia-based strategies, necessitates a massive production of mosquitoes in the insectary. However, currently laboratory rearing depends on vertebrate blood for egg production and maintenance. This practice raises ethical concerns, incurs logistical and cost limitations, and entails potential risk associated with pathogen transmission and blood storage. Consequently, an artificial blood-free diet emerges as a desirable alternative to address these challenges. This study aims to evaluate the effects of a previously formulated artificial blood-free diet (herein referred to as BLOODless) on Anopheles gambiae (An. gambiae s.s.; IFAKARA) gonotrophic parameters and fitness compared with bovine blood. METHODS: The study was a laboratory-based comparative evaluation of the fitness, fecundity and fertility of An. gambiae s.s. (IFAKARA) reared on BLOODless versus vertebrate blood from founder generation (F0) to eighth generation (F8). A total of 1000 female mosquitoes were randomly selected from F0, of which 500 mosquitoes were fed with bovine blood (control group) and the other 500 mosquitoes were fed with BLOODless diet (experimental group). The feeding success, number of eggs per female, hatching rate and pupation rate were examined post-feeding. Longevity and wing length were determined as fitness parameters for adult male and female mosquitoes for both populations. RESULTS: While blood-fed and BLOODless-fed mosquitoes showed similar feeding success, 92.3% [95% confidence interval (CI) 89.7-94.9] versus 93.6% (95% CI 90.6-96.6), respectively, significant differences emerged in their reproductive parameters. The mean number of eggs laid per female was significantly higher for blood-fed mosquitoes (P < 0.001) whereas BLOODless-fed mosquitoes had significantly lower hatching rates [odds ratio (OR) 0.17, 95% CI 0.14-0.22, P < 0.001]. Wing length and longevity were similar between both groups. CONCLUSIONS: This study demonstrates the potential of the BLOODless diet as a viable and ethical alternative to vertebrate blood feeding for rearing An. gambiae s.s. This breakthrough paves the way for more efficient and ethical studies aimed at combating malaria and other mosquito-borne diseases.


Asunto(s)
Anopheles , Dieta , Fertilidad , Animales , Anopheles/fisiología , Femenino , Dieta/veterinaria , Masculino , Bovinos , Control de Mosquitos/métodos , Aptitud Genética , Sangre , Mosquitos Vectores/fisiología , Mosquitos Vectores/genética , Reproducción
7.
Parasit Vectors ; 17(1): 300, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992693

RESUMEN

BACKGROUND: The widespread use of insecticide-treated nets (ITNs) has significantly contributed to the reduction in malaria cases and deaths observed across Africa. Unfortunately, this control strategy is threatened by the rapid spread of pyrethroid resistance in malaria vectors. Dual-active-ingredient insecticidal nets are now available to mitigate the impact of pyrethroid resistance. To facilitate evidence-based decisions regarding product selection in specific use settings, data are needed on the efficacy of these different nets against local mosquito populations. METHODS: Two experimental hut trials were performed in Za-Kpota, southern Benin in 2021 to evaluate the performance of Interceptor G2 (BASF), Royal Guard (Disease Control Technologies) and PermaNet 3.0 (Vestergaard Frandsen), all dual-active-ingredient bednets, in comparison to untreated or standard pyrethroid-treated bednets, against free-flying wild Anopheles gambiae mosquitoes. The performance of some of these next-generation nets was compared to the same type of nets that have been in use for up to 2 years. Mosquitoes collected in the huts were followed up after exposure to assess the sublethal effects of treatments on certain life-history traits. RESULTS: The predominant species in the study site was Anopheles gambiae sensu stricto (An. gambiae s.s.). Both Anopheles coluzzii and An. gambiae s.s. were resistant to pyrethroids (deltamethrin susceptibility was restored by piperonyl butoxide pre-exposure). In the experimental hut trials, the highest blood-feeding inhibition (5.56%) was recorded for the Royal Guard net, relative to the standard PermaNet 2.0 net (44.44% inhibition). The highest 72-h mortality rate (90.11%) was recorded for the Interceptor G2 net compared to the PermaNet 2.0 net (56.04%). After exposure, the risk of death of An. gambiae sensu lato (An. gambiae s.l.) was 6.5-fold higher with the Interceptor G2 net and 4.4-fold higher with the PermaNet 3.0 net compared to the respective untreated net. Lower mosquito mortality was recorded with an aged Interceptor G2 net compared to a new Interceptor G2 net. Oviposition rates were lower in mosquitoes collected from huts containing ITNs compared to those of untreated controls. None of the mosquitoes collected from huts equipped with Royal Guard nets laid any eggs. CONCLUSIONS: The Royal Guard and Interceptor G2 nets showed a potential to significantly improve the control of malaria-transmitting vectors. However, the PermaNet 3.0 net remains effective in pyrethroid-resistant areas.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Control de Mosquitos , Mosquitos Vectores , Piretrinas , Animales , Anopheles/efectos de los fármacos , Benin , Piretrinas/farmacología , Control de Mosquitos/métodos , Insecticidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Malaria/prevención & control , Malaria/transmisión , Femenino
8.
PLoS One ; 19(7): e0298512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995958

RESUMEN

Pyrethroids are the most widely used insecticides to control vector borne diseases including malaria. Physiological resistance mechanisms to these insecticides have been well described, whereas those for behavioral resistance remain overlooked. Field data suggest the presence of spatial sensory detection by Anopheles mosquitoes of the pyrethroid molecules used in insecticide-based control tools, such as long-lasting insecticide nets or insecticide residual spraying. This opens the way to the emergence of a wide range of behavioral adaptations among malaria vectors. However, the spatial sensory detection of these molecules is controversial and needs to be demonstrated. The goal of this study was to behaviorally characterize the non-contact detection of three of the most common pyrethroids used for malaria vector control: permethrin, deltamethrin an ⍺-cypermethrin. To reach this goal, we recorded the behavior (takeoff response) of Anopheles gambiae pyrethroid-sensitive and resistant laboratory strains, as well as field collected mosquitoes from the Gambiae Complex, when exposed to the headspace of bottles containing different doses of the insecticides at 25 and 35°C, in order to represent a range of laboratory and field temperatures. We found the proportion of laboratory susceptible and resistant female mosquitoes that took off was, in all treatments, dose and the temperature dependent. Sensitive mosquitoes were significantly more prone to take off only in the presence of ⍺-cypermethrin, whereas sensitive and resistant mosquitoes showed similar responses to permethrin and deltamethrin. Field-collected mosquitoes of the Gambiae Complex were also responsive to permethrin, independently of the species identity (An. gambiae, An. coluzzii and An. arabiensis) or their genotypes for the kdr mutation, known to confer resistance to pyrethroids. The observed ability of Anopheles spp. mosquitoes to detect insecticides without contact could favor the evolution of behavioral modifications that may allow them to avoid or reduce the adverse effect of insecticides and thus, the development of behavioral resistance.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Insecticidas , Control de Mosquitos , Mosquitos Vectores , Piretrinas , Animales , Anopheles/efectos de los fármacos , Anopheles/fisiología , Piretrinas/farmacología , Piretrinas/toxicidad , Insecticidas/farmacología , Insecticidas/toxicidad , Mosquitos Vectores/efectos de los fármacos , Control de Mosquitos/métodos , Femenino , Nitrilos/farmacología , Permetrina/farmacología , Malaria/transmisión , Malaria/prevención & control
9.
Proc Biol Sci ; 291(2027): 20240609, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043243

RESUMEN

Arthropod vectored diseases have been a major impediment to societal advancements globally. Strategies to mitigate transmission of these diseases include preventative care (e.g. vaccination), primary treatment and most notably, the suppression of vectors in both indoor and outdoor spaces. The outcomes of indoor vector control (IVC) strategies, such as long-lasting insecticide-treated nets (LLINs) and indoor residual sprays (IRSs), are heavily influenced by individual and community-level perceptions and acceptance. These perceptions, and therefore product acceptance, are largely influenced by the successful suppression of non-target nuisance pests such as bed bugs and cockroaches. Adoption and consistent use of LLINs and IRS is responsible for immense reductions in the prevalence and incidence of malaria. However, recent observations suggest that failed control of indoor pests, leading to product distrust and abandonment, may threaten vector control programme success and further derail already slowed progress towards malaria elimination. We review the evidence of the relationship between IVC and nuisance pests and discuss the dearth of research on this relationship. We make the case that the ancillary control of indoor nuisance and public health pests needs to be considered in the development and implementation of new technologies for malaria elimination.


Asunto(s)
Control de Mosquitos , Animales , Control de Mosquitos/métodos , Humanos , Malaria/prevención & control , Mosquiteros Tratados con Insecticida , Insecticidas , Chinches , Control de Insectos/métodos
10.
Gates Open Res ; 8: 27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035850

RESUMEN

This article addresses the evolving challenges in evaluating insecticide-based tools for vector control. In response to the emergence of insecticide resistance in major malaria vectors, novel chemistries and products are coming to market, and there is a need to review the available testing methodologies. Commonly used methods for evaluating insecticides, such as the World Health Organization (WHO) cone bioassay, are inadequate for the diverse range of tools now available. Innovation to Impact (I2I) has studied the variability in laboratory methods, with the aim of identifying key factors that contribute to variation and providing recommendations to tighten up protocols. The I2I Methods Landscape is a living document which presents a review of existing methods for evaluating vector control tools, with the scope currently extending to insecticide-treated nets (ITNs) and indoor residual sprays (IRS). The review reveals a lack of validation for many commonly used vector control methods, highlighting the need for improved protocols to enhance reliability and robustness of the data that is generated to make decisions in product development, evaluation, and implementation. A critical aspect highlighted by this work is the need for tailored methods to measure endpoints relevant to the diverse modes of action of novel insecticides. I2I envisage that the Methods Landscape will serve as a decision-making tool for researchers and product manufacturers in selecting appropriate methods, and a means to prioritise research and development. We call for collective efforts in the pro-active development, validation, and consistent implementation of suitable methods in vector control to produce the data needed to make robust decisions.


Asunto(s)
Insecticidas , Malaria , Control de Mosquitos , Control de Mosquitos/métodos , Animales , Humanos , Malaria/prevención & control , Mosquitos Vectores/efectos de los fármacos , Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida
11.
Malar J ; 23(1): 214, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026236

RESUMEN

BACKGROUND: Attractive targeted sugar bait (ATSB) stations are a novel tool with potential to complement current approaches to malaria vector control. To assess the public health value of ATSB station deployment in areas of high coverage with standard vector control, a two-arm cluster-randomized controlled trial (cRCT) of Sarabi ATSB® stations (Westham Ltd., Hod-Hasharon, Israel) was conducted in Western Province, Zambia, a high-burden location were Anopheles funestus is the dominant vector. The trial included 70 clusters and was designed to measure the effect of ATSBs on case incidence and infection prevalence over two 7-month deployments. Reported here are results of the vector surveillance component of the study, conducted in a subset of 20 clusters and designed to provide entomological context to guide overall interpretation of trial findings. METHODS: Each month, 200 paired indoor-outdoor human landing catch (HLC) and 200 paired light trap (LT) collections were conducted to monitor An. funestus parity, abundance, biting rates, sporozoite prevalence, and entomological inoculation rates (EIR). RESULTS: During the study 20,337 female An. funestus were collected, 11,229 from control and 9,108 from intervention clusters. A subset of 3,131 HLC specimens were assessed for parity: The mean non-parous proportion was 23.0% (95% CI 18.2-28.7%, total n = 1477) in the control and 21.2% (95% CI 18.8-23.9%, total n = 1654) in the intervention arm, an OR = 1.05 (95% CI 0.82-1.34; p = 0.688). A non-significant reduction in LT abundance (RR = 0.65 [95% CI 0.30-1.40, p = 0.267]) was associated with ATSB deployment. HLC rates were highly variable, but model results indicate a similar non-significant trend with a RR = 0.68 (95%CI 0.22-2.00; p = 0.479). There were no effects on sporozoite prevalence or EIR. CONCLUSIONS: Anopheles funestus parity did not differ across study arms, but ATSB deployment was associated with a non-significant 35% reduction in vector LT density, results that are consistent with the epidemiological impact reported elsewhere. Additional research is needed to better understand how to maximize the potential impact of ATSB approaches in Zambia and other contexts. TRIAL REGISTRATION NUMBER: This trial was registered with Clinicaltrials.gov (NCT04800055, 16 March 2021).


Asunto(s)
Anopheles , Control de Mosquitos , Mosquitos Vectores , Zambia , Anopheles/fisiología , Animales , Mosquitos Vectores/fisiología , Control de Mosquitos/métodos , Femenino , Humanos , Azúcares , Malaria/prevención & control
12.
Parasit Vectors ; 17(1): 303, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997729

RESUMEN

BACKGROUND: Malaria transmission is known to be perennial and heterogeneous in Benin. Studies assessing local malaria prevalence, transmission levels and vector characteristics are critical for designing, monitoring and evaluating new vector control interventions in community trials. We conducted a study in the Zakpota sub-district of central Benin to collect baseline data on household characteristics, malaria prevalence, vector characteristics and transmission dynamics in preparation for a randomised controlled trial to evaluate the community impact of VECTRON™ T500, a new broflanilide indoor residual spraying (IRS) product. METHODS: A total of 480 children under 5 years of age from the 15 villages of the sub-district were tested for malaria by rapid diagnostic tests (RDTs). Mosquitoes were collected by human landing catches (HLCs), pyrethrum spray catches (PSCs) and Centers for Disease Control and Prevention miniature light traps (CDC-LTs) in selected houses in each village to assess vector density, composition, vector infectivity and prevalence of insecticide resistance markers. Bioassays were performed to detect vector susceptibility to pyrethroids, broflanilide (6 µg/bottle) and clothianidin (90 µg/bottle). RESULTS: A total of 9080 households were enumerated in the 15 study villages. Insecticide-treated net (ITN) usage was > 90%, with 1-2 ITNs owned per household. Houses were constructed mainly with cement (44%) and mud (38%) substrates or a mixture of cement and mud (18%), and 60% of them had open eaves. The overall prevalence of P. falciparum infection was 19% among surveyed children: 20% among females and 18% among males. The haemoglobin rate showed an anaemia (< 11 g/dl) prevalence of 66%. Anopheles coluzzii and An. gambiae sensu stricto (s.s.) were the two vector species present at an overall proportion of 46% versus 54%, respectively. The human biting rate was 2.3 bites per person per night (b/p/n) and biting occurred mostly indoors compared with outdoors (IRR = 0.776; P = 0.001). The overall proportion of outdoor biting was 44% and exceeded indoor biting in three villages. The sporozoite rate was 2% with a combined yearly entomological inoculation rate (EIR) of 16.1 infected bites per person per year (ib/p/y). There was great variability in malaria transmission risk across the villages, with EIR ranging from 0 to 29.3 ib/p/y. The vector population showed a high intensity of resistance to pyrethroids across the study villages but was largely susceptible to broflanilide and clothianidin. CONCLUSIONS: This study found high levels of malaria prevalence, vector density and transmission in the Zakpota sub-district despite the wide use of insecticide-treated nets. The vector population was mostly indoor resting and showed a high intensity of pyrethroid resistance but was generally fully susceptible to broflanilide. These findings demonstrated the suitability of the study area for the assessment of VECTRON™ T500 in a community randomised trial.


Asunto(s)
Anopheles , Insecticidas , Malaria , Control de Mosquitos , Mosquitos Vectores , Benin/epidemiología , Humanos , Animales , Insecticidas/farmacología , Control de Mosquitos/métodos , Prevalencia , Preescolar , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/parasitología , Anopheles/efectos de los fármacos , Anopheles/parasitología , Anopheles/fisiología , Femenino , Malaria/transmisión , Malaria/prevención & control , Malaria/epidemiología , Masculino , Lactante , Resistencia a los Insecticidas , Piretrinas/farmacología
13.
Sci Rep ; 14(1): 16325, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009775

RESUMEN

Mosquitoes are important vectors for the transmission of several infectious diseases that lead to huge morbidity and mortality. The exhaustive use of synthetic insecticides has led to widespread resistance and environmental pollution. Using essential oils and nano-emulsions as novel insecticides is a promising alternative approach for controlling vector borne diseases. In the current study, Lantana camara EO and NE were evaluated for their larvicidal and pupicidal activities against Anopheles culicifacies. The inhibitory effect of EO and NE on AChE, NSE (α/ß), and GST was also evaluated and compared. GC-MS analysis of oil displayed 61 major peaks. The stable nano-emulsion with an observed hydrodynamic diameter of 147.62 nm was formed using the o/w method. The nano-emulsion exhibited good larvicidal (LC50 50.35 ppm and LC90 222.84 ppm) and pupicidal (LC50 54.82 ppm and LC90 174.58 ppm) activities. Biochemical evaluations revealed that LCEO and LCNE inhibited AChE, NSE (α/ß), and GST, displaying LCNE to be a potent binder to AChE and NSE enzyme, whereas LCEO showed higher binding potency towards GST. The nano-emulsion provides us with novel opportunities to target different mosquito enzymes with improved insecticidal efficacy. Due to its natural origin, it can be further developed as a safer and more potent larvicide/insecticide capable of combating emerging insecticide resistance.


Asunto(s)
Anopheles , Emulsiones , Insecticidas , Lantana , Larva , Aceites Volátiles , Anopheles/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Animales , Lantana/química , Insecticidas/farmacología , Insecticidas/química , Larva/efectos de los fármacos , Cinética , Acetilcolinesterasa/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/antagonistas & inhibidores , Mosquitos Vectores/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Control de Mosquitos/métodos
14.
Mol Biol Rep ; 51(1): 800, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001994

RESUMEN

BACKGROUND: Mosquitoes are widespread globally and have contributed to transmitting pathogens to humans and the burden of vector-borne diseases. They are effectively controlled at their larval stages by biocontrol agents. Unravelling natural sources for microbial agents can lead us to novel potential candidates for managing mosquito-borne diseases. In the present study, an attempt was made to isolate a novel bacterium from the field-collected agricultural soil for larvicidal activity and promising bacterial metabolites for human healthcare. METHODS AND RESULTS: Field-collected soil samples from the Union territory of Puducherry, India, have been used as the source of bacteria. Isolate VCRC B655 belonging to the genus Lysinibacillus was identified by 16S rRNA gene sequencing and exhibited promising larvicidal activity against different mosquito species, including Culex (Cx.) quinquefasciatus, Anopheles (An.) stephensi, and Aedes (Ae.) aegypti. The lethal concentration (LC) of Lysinibacillus sp. VCRCB655 was observed to be high for Cx. quiquefasciatus: LC50 at 0.047 mg/l, LC90 at 0.086 mg/l, followed by An. stephensi and Ae. aegypti (LC50: 0.6952 mg/l and 0.795 mg/l) respectively. Additionally, metabolic profiling of the culture supernatant was carried out through Gas chromatography and Mass spectrophotometry (GC/MS) and identified 15 major secondary metabolites of different metabolic classes. Diketopiperazine (DKPs), notably pyro lo [1, 2-a] pyrazine1, 4-dione, are the abundant compounds reported for antioxidant activity, and an insecticide compound benzeneacetic acid was also identified. CONCLUSIONS: A new bacterial isolate, Lysinibacillus sp. VCRC B655 has been identified with significant larvicidal activity against mosquito larvae with no observed in non-target organisms. GC-MS analysis revealed diverse bioactive compounds with substantial biological applications. In conclusion, Lysinibacillus sp. VCRC B655 showed promise as an alternative biocontrol agent for mosquito vector control, with additional biological applications further enhancing its significance.


Asunto(s)
Bacillaceae , Cromatografía de Gases y Espectrometría de Masas , Larva , Control de Mosquitos , ARN Ribosómico 16S , Animales , Bacillaceae/aislamiento & purificación , Bacillaceae/metabolismo , Bacillaceae/genética , Cromatografía de Gases y Espectrometría de Masas/métodos , Control de Mosquitos/métodos , Larva/microbiología , ARN Ribosómico 16S/genética , India , Microbiología del Suelo , Anopheles/microbiología , Culex/microbiología , Filogenia , Aedes/microbiología , Insecticidas/farmacología
15.
Parasit Vectors ; 17(1): 306, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014474

RESUMEN

BACKGROUND: The protective effectiveness of vector control in malaria relies on how the implemented tools overlap with mosquito species-specific compositions and bionomic traits. In Ethiopia, targeted entomological data enabling strategic decision-making are lacking around high-risk migrant worker camps in the lowlands and resident communities in the highlands-resulting in suboptimal malaria control strategies for both populations. This study investigates spatial and temporal mosquito behavior, generating baseline evidence that will improve malaria control for both migrant workers in the lowlands and their home communities in the highlands. METHODS: Hourly Centers for Disease Control and Prevention (CDC) light trap collections were performed indoors and outdoors during the peak (October to December 2022) and minor (March to May 2023) malaria transmission seasons. These seasons coincide with the post-long rain and post-short rain seasons, respectively. Eight resident households were sampled from each of four villages in the highlands and eight households/farm structures on and near farms in four villages in the lowlands. The sampling occurred between 18:00 and 06:00. Spatiotemporal vector behaviors and hourly indoor and outdoor mosquito capture rates, used as a proxy for human biting rates, were calculated for overall catches and for individual species. Adult mosquitoes were identified using morphological keys, and a subset of samples were confirmed to species by sequencing ribosomal DNA internal transcribed spacer region 2 (ITS2) and/or mitochondrial DNA cytochrome c oxidase subunit 1 (Cox1). RESULTS: In the highlands, 4697 Anopheles mosquitoes belonging to 13 morphologically identified species were collected. The predominant species of Anopheles identified in the highlands was An. gambiae sensu lato (s.l.) (n = 1970, 41.9%), followed by An. demeilloni (n = 1133, 24.1%) and An. cinereus (n = 520, 11.0%). In the lowland villages, 3220 mosquitoes belonging to 18 morphological species were collected. Anopheles gambiae s.l. (n = 1190, 36.9%), An. pretoriensis (n = 899, 27.9%), and An. demeilloni (n = 564, 17.5%) were the predominant species. A total of 20 species were identified molecularly, of which three could not be identified to species through comparison with published sequences. In highland villages, the indoor Anopheles mosquito capture rate was much greater than the outdoor rate. This trend reversed in the lowlands, where the rate of outdoor captures was greater than the indoor rate. In both highlands and lowlands, Anopheles mosquitoes showed early biting activities in the evening, which peaked between 18:00 and 21:00, for both indoor and outdoor locations. CONCLUSIONS: The high diversity of Anopheles vectors and their variable behaviors result in a dynamic and resilient transmission system impacting both exposure to infectious bites and intervention effectiveness. This creates gaps in protection allowing malaria transmission to persist. To achieve optimal control, one-size-fits-all strategies must be abandoned, and interventions should be tailored to the diverse spatiotemporal behaviors of different mosquito populations.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Estaciones del Año , Animales , Anopheles/clasificación , Anopheles/fisiología , Anopheles/genética , Etiopía , Mosquitos Vectores/clasificación , Mosquitos Vectores/fisiología , Mosquitos Vectores/genética , Humanos , Malaria/transmisión , Malaria/prevención & control , Femenino , Control de Mosquitos/métodos
16.
Medicine (Baltimore) ; 103(29): e39004, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029050

RESUMEN

Malaria is a major threat to lives in developing countries, especially in Africa. A lot of measures have been tried to curb the increased mortality and morbidity associated with malaria. A lot of resources have been channeled to control the devastating effects of malaria in these parts of the world. The aim of this paper is to discuss home-based care practices on prevention of malaria in children under 5 years. By cutting back on bushes and upholding good hygiene and sanitation, malaria in young children can be prevented in homes. This lessens disease and transmission while also assisting in death prevention and disease reduction. In Africa, Uganda is the third most affected country by malaria, which is a major cause of high morbidity and mortality in young children and pregnant women. This has forced the Government of Uganda and implementing partners, including the Global Fund and the Roll Back Malaria initiative, to redouble efforts to increase the use of insecticide-treated mosquito nets. Effective use of insecticide-treated bed nets is necessary to eliminate the above serious sequelae in children under 5 years old. Households and especially caregivers apply the use of impregnated mosquito nets and cleaning of surrounding bushes. According to research results, the use of indoor residual spray nets and insecticide-impregnated nets has significantly contributed to the prevention of malaria in children.


Asunto(s)
Malaria , Humanos , Malaria/prevención & control , Preescolar , Lactante , Uganda/epidemiología , Servicios de Atención de Salud a Domicilio , Mosquiteros Tratados con Insecticida , Femenino , Control de Mosquitos/métodos
17.
Medicine (Baltimore) ; 103(29): e39010, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029063

RESUMEN

Malaria, a global public health challenge, continues to affect millions of lives, particularly in regions where its transmission is endemic. The interplay between climate change and malaria dynamics has emerged as a critical concern, reshaping the landscape of this vector-borne disease. This review publication, titled "Adapting to the shifting landscape: Implications of climate change for malaria control," explores the multifaceted relationship between climate change and the control of malaria. The paper begins by dissecting the influence of climate change on malaria dynamics, including alterations in temperature, precipitation, and other climatic factors that impact the habitat and life cycle of malaria vectors. It delves into the evolving ecology and behavior of malaria vectors in response to changing climatic conditions, emphasizing the importance of understanding these adaptations. As a response to this shifting landscape, the review discusses adaptive strategies for malaria control, ranging from vector control measures to the utilization of climate data in early warning systems. Community engagement and education are highlighted as essential components of these strategies, recognizing the vital role of local communities in effective malaria control efforts. The paper also identifies future directions and research needs, underscoring the importance of staying ahead of the evolving climate-malaria relationship. This review underscores the urgency of adapting to the changing landscape of malaria transmission driven by climate change. It emphasizes the significance of proactively addressing climate-related challenges to enhance malaria control and protect the health and well-being of vulnerable populations.


Asunto(s)
Cambio Climático , Malaria , Malaria/prevención & control , Malaria/transmisión , Malaria/epidemiología , Humanos , Animales , Control de Mosquitos/métodos , Ecosistema , Mosquitos Vectores
18.
Malar J ; 23(1): 204, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982496

RESUMEN

BACKGROUND: Attractive Targeted Sugar Baits (ATSBs) offer a complementary vector control strategy to interventions targeting blood feeding or larval control by attacking the sugar feeding behaviour of adult mosquitoes using an attract-and-kill approach. Western Zambia was the first location to receive and deploy ATSB Sarabi version 1.2 stations in a Phase III cluster randomized controlled trial. This paper describes ATSB station installation, monitoring, removal, and disposal, quantifies ATSB station coverage, and reports major reasons for ATSB station replacement. METHODS: ATSB stations were deployed during two annual transmission seasons, through scheduled installation and removal campaigns. During deployment, monitoring was conducted per protocol to maintain high coverage of the ATSB stations in good condition. Routine monitoring visits during the trial captured details on ATSB station damage necessitating replacement following pre-defined replacement criteria. Annual cross-sectional household surveys measured ATSB station coverage during peak malaria transmission. RESULTS: A total of 67,945 ATSB stations were installed in Year 1 (41,695 initially installed+ 26,250 installed during monitoring) and 69,494 ATSB stations were installed in Year 2 (41,982 initially installed+ 27,512 installed during monitoring) across 35 intervention clusters to maintain high coverage of two ATSB stations in good condition per eligible household structure. The primary reasons for ATSB station replacement due to damage were holes/tears and presence of mold. Cross-sectional household surveys documented high coverage of ATSB stations across Year 1 and Year 2 with 93.1% of eligible structures having ≥ 2 ATSB stations in any condition. DISCUSSION: ATSB station deployment and monitoring efforts were conducted in the context of a controlled cRCT to assess potential product efficacy. Damage to ATSB stations during deployment required replacement of a subset of stations. High coverage of eligible structures was maintained over the two-year study despite replacement requirements. Additional research is needed to better understand the impact of damage on ATSB station effectiveness under programmatic conditions, including thresholds of threats to physical integrity and biological deterioration on product efficacy. CONCLUSIONS: Optimizing ATSB stations to address causes of damage and conducting implementation research to inform optimal delivery and cost-effective deployment will be important to facilitate scale-up of ATSB interventions.


Asunto(s)
Control de Mosquitos , Zambia , Control de Mosquitos/métodos , Humanos , Animales , Femenino , Malaria/prevención & control , Azúcares , Estudios Transversales , Mosquitos Vectores/fisiología , Anopheles/fisiología , Masculino
19.
Environ Sci Pollut Res Int ; 31(33): 45485-45494, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967849

RESUMEN

Chironomid (Diptera: Chironomidae) larvae play a key role in aquatic food webs as prey for predators like amphibian and dragonfly larvae. This trophic link may be disrupted by anthropogenic stressors such as Bacillus thuringiensis var. israelensis (Bti), a biocide widely used in mosquito control. In a companion study, we recorded a 41% reduction of non-target larval chironomids abundance in outdoor floodplain pond mesocosms (FPMs) treated with Bti. Therefore, we examined the diet of two top predators in the FPMs, larvae of the palmate newt (Salamandridae: Lissotriton helveticus) and dragonfly (Aeshnidae: predominantly Anax imperator), using bulk stable isotope analyses of carbon and nitrogen. Additionally, we determined neutral lipid fatty acids in newt larvae to assess diet-related effects on their physiological condition. We did not find any effects of Bti on the diet proportions of newt larvae and no significant effects on the fatty acid content. We observed a trend in Aeshnidae larvae from Bti-FPMs consuming a higher proportion of large prey (Aeshnidae, newt, damselfly larvae; ~42%), and similar parts of smaller prey (chironomid, mayfly, Libellulidae, and zooplankton), compared to controls. Our findings may suggest bottom-up effects of Bti on aquatic predators but should be further evaluated, for instance, by using compound-specific stable isotope analyses of fatty acids or metabarcoding approaches.


Asunto(s)
Cadena Alimentaria , Larva , Control de Mosquitos , Estanques , Animales , Estanques/química , Control de Mosquitos/métodos , Conducta Predatoria , Chironomidae , Odonata , Bacillus thuringiensis , Salamandridae
20.
Math Biosci Eng ; 21(4): 5227-5249, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38872534

RESUMEN

Mosquito-borne diseases are threatening half of the world's population. To prevent the spread of malaria, dengue fever, or other mosquito-borne diseases, a new disease control strategy is to reduce or eradicate the wild mosquito population by releasing sterile mosquitoes. To study the effects of sterile insect technique on mosquito populations, we developed a mathematical model of constant release of sterile Aedes aegypti mosquitoes with strong and weak Allee effect and considered interspecific competition with Anopheles mosquitoes. We calculated multiple release thresholds and investigated the dynamical behavior of this model. In order to get closer to reality, an impulsive differential equation model was also introduced to study mosquito suppression dynamics under the strategy of releasing $ c $ sterile male mosquitoes at each interval time $ T $. Finally, the relationship between the releasing amount or the waiting period and the number of days required to suppress mosquitoes was illustrated by numerical simulations.


Asunto(s)
Aedes , Anopheles , Simulación por Computador , Control de Mosquitos , Mosquitos Vectores , Dinámica Poblacional , Animales , Control de Mosquitos/métodos , Masculino , Anopheles/fisiología , Femenino , Modelos Biológicos , Dengue/prevención & control , Dengue/transmisión , Dengue/epidemiología , Malaria/prevención & control , Malaria/transmisión , Humanos , Culicidae , Conducta Competitiva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...