Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.403
Filtrar
1.
Zhonghua Nei Ke Za Zhi ; 63(7): 666-673, 2024 Jul 01.
Artículo en Chino | MEDLINE | ID: mdl-38951090

RESUMEN

Objective: To quantify cerebral cortical and deep gray matter atrophy in patients with multiple sclerosis (MS) and explore its correlation with impairment in domains of cognitive function. Methods: Twenty patients with MS and 16 healthy controls (HC) matched for age, sex, and education level were included. Using FreeSurfer software, based on 3D-MRI technology, the differences in cortical thickness and deep gray matter volume between the two groups were comparatively analyzed. A neuropsychological scale that included six domains of cognitive function was scored on both study groups to analyze the correlation between cortical thickness and volume of deep gray matter in MS patients with impairment in cognitive function domains. Results: Impairment in domains of cognitive function: cognitive impairment was present in 60% MS patients in this study, mainly manifesting as impairment of verbal memory, verbal fluency, visuospatial memory, and information processing speed function (all P<0.05). Of these, the majority had impaired visuospatial memory function (55.0%), and the least number of patients had impaired information processing speed (15.0%). Changes in cortical thickness: compared with the HC group, the MS group showed that cortical atrophy was mainly concentrated in the frontoparietal region, including significant thinning of cortical thickness in the left inferior parietal gyrus, right superior frontal gyrus, and the right superior parietal gyrus (all P<0.05). Among them, atrophy of the left inferior parietal gyrus was significantly positively correlated with the impairment of verbal memory, verbal fluency, and information processing speed (all P<0.05). There was a significant positive correlation between the right superior frontal gyrus atrophy and verbal memory, verbal fluency, and visuospatial memory impairment (all P<0.05). Changes in deep gray matter volume: compared with the HC group, deep gray matter volume in the MS group decreased significantly in the bilateral thalamus, bilateral putamen, bilateral pallidum (all P<0.01), and right nucleus accumbens (P<0.05). Among them, left thalamus atrophy was significantly positively correlated with visuospatial memory impairment (r=0.45, P=0.046), and left putamen atrophy was both significantly positively correlated with visuospatial memory (r=0.45, P=0.047) and information processing speed impairment (r=0.50, P=0.026). Conclusions: Early structural brain changes in MS are dominated by gray matter atrophy. Deep gray matter is more prominent than cortical atrophy.


Asunto(s)
Atrofia , Cognición , Disfunción Cognitiva , Sustancia Gris , Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Estudios Transversales , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/psicología , Disfunción Cognitiva/etiología , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Pruebas Neuropsicológicas , Masculino , Femenino
2.
Lancet Psychiatry ; 11(8): 620-632, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025633

RESUMEN

BACKGROUND: Conduct disorder is associated with the highest burden of any mental disorder in childhood, yet its neurobiology remains unclear. Inconsistent findings limit our understanding of the role of brain structure alterations in conduct disorder. This study aims to identify the most robust and replicable brain structural correlates of conduct disorder. METHODS: The ENIGMA-Antisocial Behavior Working Group performed a coordinated analysis of structural MRI data from 15 international cohorts. Eligibility criteria were a mean sample age of 18 years or less, with data available on sex, age, and diagnosis of conduct disorder, and at least ten participants with conduct disorder and ten typically developing participants. 3D T1-weighted MRI brain scans of all participants were pre-processed using ENIGMA-standardised protocols. We assessed group differences in cortical thickness, surface area, and subcortical volumes using general linear models, adjusting for age, sex, and total intracranial volume. Group-by-sex and group-by-age interactions, and DSM-subtype comparisons (childhood-onset vs adolescent-onset, and low vs high levels of callous-unemotional traits) were investigated. People with lived experience of conduct disorder were not involved in this study. FINDINGS: We collated individual participant data from 1185 young people with conduct disorder (339 [28·6%] female and 846 [71·4%] male) and 1253 typically developing young people (446 [35·6%] female and 807 [64·4%] male), with a mean age of 13·5 years (SD 3·0; range 7-21). Information on race and ethnicity was not available. Relative to typically developing young people, the conduct disorder group had lower surface area in 26 cortical regions and lower total surface area (Cohen's d 0·09-0·26). Cortical thickness differed in the caudal anterior cingulate cortex (d 0·16) and the banks of the superior temporal sulcus (d -0·13). The conduct disorder group also had smaller amygdala (d 0·13), nucleus accumbens (d 0·11), thalamus (d 0·14), and hippocampus (d 0·12) volumes. Most differences remained significant after adjusting for ADHD comorbidity or intelligence quotient. No group-by-sex or group-by-age interactions were detected. Few differences were found between DSM-defined conduct disorder subtypes. However, individuals with high callous-unemotional traits showed more widespread differences compared with controls than those with low callous-unemotional traits. INTERPRETATION: Our findings provide robust evidence of subtle yet widespread brain structural alterations in conduct disorder across subtypes and sexes, mostly in surface area. These findings provide further evidence that brain alterations might contribute to conduct disorder. Greater consideration of this under-recognised disorder is needed in research and clinical practice. FUNDING: Academy of Medical Sciences and Economic and Social Research Council.


Asunto(s)
Trastorno de la Conducta , Imagen por Resonancia Magnética , Humanos , Trastorno de la Conducta/patología , Trastorno de la Conducta/diagnóstico por imagen , Masculino , Femenino , Adolescente , Niño , Estudios de Cohortes , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Tamaño de los Órganos , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Adulto Joven , Amígdala del Cerebelo/patología , Amígdala del Cerebelo/diagnóstico por imagen
3.
Neurology ; 103(4): e209679, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39042846

RESUMEN

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) spans heterogeneous typical and atypical phenotypes. Posterior cortical atrophy (PCA) is a striking example, characterized by prominent impairment in visual and other posterior functions in contrast to typical, amnestic AD. The primary study objective was to establish how the similarities and differences of cognition and brain volumes within AD and PCA (and by extension other AD variants) can be conceptualized as systematic variations across a transdiagnostic, graded multidimensional space. METHODS: This was a cross-sectional, single-center, observational, cohort study performed at the National Hospital for Neurology & Neurosurgery, London, United Kingdom. Data were collected from a cohort of patients with PCA and AD, matched for age, disease duration, and Mini-Mental State Examination (MMSE) scores. There were 2 sets of outcome measures: (1) scores on a neuropsychological battery containing 22 tests spanning visuoperceptual and visuospatial processing, episodic memory, language, executive functions, calculation, and visuospatial processing and (2) measures extracted from high-resolution T1-weighted volumetric MRI scans. Principal component analysis was used to extract the transdiagnostic dimensions of phenotypical variation from the detailed neuropsychological data. Voxel-based morphometry was used to examine associations between the PCA-derived clinical phenotypes and the structural measures. RESULTS: We enrolled 93 participants with PCA (mean: age = 59.9 years, MMSE = 21.2; 59/93 female) and 58 AD participants (mean: age = 57.1 years, MMSE = 19.7; 22/58 female). The principal component analysis for PCA (sample adequacy confirmed: Kaiser-Meyer-Olkin = 0.865) extracted 3 dimensions accounting for 61.0% of variance in patients' performance, reflecting general cognitive impairment, visuoperceptual deficits, and visuospatial impairments. Plotting AD cases into the PCA-derived multidimensional space, and vice versa, revealed graded, overlapping variations between cases along these dimensions, with no evidence for categorical-like patient clustering. Similarly, the relationship between brain volumes and scores on the extracted dimensions was overlapping for PCA and AD cases. DISCUSSION: These results provide evidence supporting a reconceptualization of clinical and radiologic variation in these heterogenous AD phenotypes as being along shared phenotypic continua spanning PCA and AD, arising from systematic graded variations within a transdiagnostic, multidimensional neurocognitive geometry.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Femenino , Masculino , Atrofia/patología , Anciano , Estudios Transversales , Persona de Mediana Edad , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Estudios de Cohortes
4.
J Headache Pain ; 25(1): 110, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977951

RESUMEN

BACKGROUND: New daily persistent headache (NDPH) is a rare primary headache with unclear pathogenesis. Neuroimaging studies of NDPH are limited, and controversy still exists. Diffusion tensor imaging (DTI) is commonly used to study the white matter. However, lacking specificity, the potential pathological mechanisms of white matter microstructural changes remain poorly understood. In addition, the intricacy of gray matter structures impedes the application of the DTI model. Here, we applied an advanced diffusion model of neurite orientation dispersion and density imaging (NODDI) to study the white matter and cortical gray matter microstructure in patients with NDPH. METHODS: This study assessed brain microstructure, including 27 patients with NDPH, and matched 28 healthy controls (HCs) by NODDI. The differences between the two groups were assessed by tract-based spatial statistics (TBSS) and surface-based analysis (SBA), focusing on the NODDI metrics (neurite density index (NDI), orientation dispersion index (ODI), and isotropic volume fraction (ISOVF)). Furthermore, we performed Pearson's correlation analysis between the NODDI indicators and clinical characteristics. RESULTS: Compared to HCs, patients with NDPH had a reduction of density and complexity in several fiber tracts. For robust results, the fiber tracts were defined as comprising more than 100 voxels, including bilateral inferior fronto-occipital fasciculus (IFOF), left superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF), as well as right corticospinal tract (CST). Moreover, the reduction of neurite density was uncovered in the left superior and middle frontal cortex, left precentral cortex, and right lateral orbitofrontal cortex and insula. There was no correlation between the NODDI metrics of these brain regions and clinical variables or scales of relevance after the Bonferroni correction. CONCLUSIONS: Our research indicated that neurite loss was detected in both white matter and cortical gray matter of patients with NDPH.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Gris , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Masculino , Adulto , Persona de Mediana Edad , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Trastornos de Cefalalgia/diagnóstico por imagen , Trastornos de Cefalalgia/patología , Neuritas/patología
5.
BMC Pulm Med ; 24(1): 341, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010041

RESUMEN

Chronic obstructive pulmonary disease (COPD) has been associated with alterations in the brain cortical structure. Nonetheless, the causality between COPD and brain cortical structure has not been determined. In the present study, we used Mendelian randomization (MR) analysis to explore the causal effects of genetic predicated COPD on brain cortical structure, namely cortical surface area (SA) and cortical thickness (TH). Genetic association summary data for COPD were obtained from the FinnGen consortium (N = 358,369; Ncase = 20,066). PRISm summary genetic data were retrieved from a case-control GWAS conducted in the UK Biobank (N = 296,282). Lung function indices, including forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC, were extracted from a meta-analysis of the UK Biobank and SpiroMeta consortium (N = 400,102). Brain cortical structure data were obtained from the ENIGMA consortium (N = 51,665). Inverse-variance weighted (IVW) method was used as the primary analysis, and a series of sensitivity tests were exploited to evaluate the heterogeneity and pleiotropy of our results. The results identified potential causal effects of COPD on several brain cortical specifications, including pars orbitalis, cuneus and inferior parietal gyrus. Furthermore, genetic predicated lung function index (FEV1, FVC and FEV1/FVC), as well as PRISm, also has causal effects on brain cortical structure. According to our results, a total of 15 functional specifications were influenced by lung function index and PRISm. These findings contribute to understanding the causal effects of COPD and lung function to brain cortical structure.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Volumen Espiratorio Forzado , Capacidad Vital , Estudio de Asociación del Genoma Completo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Corteza Cerebral/patología , Masculino , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Pulmón/fisiopatología
6.
Eat Weight Disord ; 29(1): 47, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028377

RESUMEN

PURPOSE: This study investigated the association between childhood eating behaviors and cortical morphology, in relation to sex and age, in a community sample. METHODS: Neuroimaging data of 71 children (mean age = 9.9 ± 1.4 years; 39 boys/32 girls) were obtained from the Nathan Kline Institute-Rockland Sample. Emotional overeating, food fussiness, and emotional undereating were assessed using the Children's Eating Behavior Questionnaire. Cortical thickness was obtained at 81,924 vertices covering the entire cortex. Generalized Linear Mixed Models were used for statistical analysis. RESULTS: There was a significant effect of sex in the association between cortical thickness and emotional overeating (localized at the right postcentral and bilateral superior parietal gyri). Boys with more emotional overeating presented cortical thickening, whereas the opposite was observed in girls (p < 0.05). Different patterns of association were identified between food fussiness and cortical thickness (p < 0.05). The left rostral middle frontal gyrus displayed a positive correlation with food fussiness from 6 to 8 years, but a negative correlation from 12 to 14 years. Emotional undereating was associated with cortical thickening at the left precuneus, left middle temporal gyrus, and left insula (p < 0.05) with no effect of sex or age. CONCLUSIONS: Leveraging on a community sample, findings support distinct patterns of associations between eating behaviors and cortical thickness, depending on sex and age.


Asunto(s)
Corteza Cerebral , Conducta Alimentaria , Trastornos de Alimentación y de la Ingestión de Alimentos , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Niño , Conducta Alimentaria/psicología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Adolescente , Trastornos de Alimentación y de la Ingestión de Alimentos/psicología , Factores de Edad , Factores Sexuales , Emociones/fisiología , Conducta Infantil/psicología
7.
CNS Neurosci Ther ; 30(6): e14810, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887969

RESUMEN

AIMS: To study the changes in cortical thickness and subcortical gray matter structures in children with complete spinal cord injury (CSCI), reveal the possible causes of dysfunction beyond sensory motor dysfunction after CSCI, and provide a possible neural basis for corresponding functional intervention training. METHODS: Thirty-seven pediatric CSCI patients and 34 age-, gender-matched healthy children as healthy controls (HCs) were recruited. The 3D high-resolution T1-weighted structural images of all subjects were obtained using a 3.0 Tesla MRI system. Statistical differences between pediatric CSCI patients and HCs in cortical thickness and volumes of subcortical gray matter structures were evaluated. Then, correlation analyses were performed to analyze the correlation between the imaging indicators and clinical characteristics. RESULTS: Compared with HCs, pediatric CSCI patients showed decreased cortical thickness in the right precentral gyrus, superior temporal gyrus, and posterior segment of the lateral sulcus, while increased cortical thickness in the right lingual gyrus and inferior occipital gyrus. The volume of the right thalamus in pediatric CSCI patients was significantly smaller than that in HCs. No significant correlation was found between the imaging indicators and the injury duration, sensory scores, and motor scores of pediatric CSCI patients. CONCLUSIONS: These findings demonstrated that the brain structural reorganizations of pediatric CSCI occurred not only in sensory motor areas but also in cognitive and visual related brain regions, which may suggest that the visual processing, cognitive abnormalities, and related early intervention therapy also deserve greater attention beyond sensory motor rehabilitation training in pediatric CSCI patients.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/diagnóstico por imagen , Femenino , Masculino , Niño , Adolescente , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Tamaño de los Órganos
8.
Acta Neuropathol Commun ; 12(1): 108, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943180

RESUMEN

We quantified and determined for the first time the distribution pattern of the neuropeptide NPFF in the human cerebral cortex and subjacent white matter. To do so, we studied n = 9 cases without neurological disorders and n = 22 cases with neurodegenerative diseases, including sporadic amyotrophic lateral sclerosis (ALS, n = 8), Alzheimer's disease (AD, n = 8), Pick's disease (PiD, n = 3), and schizophrenia (n = 3). NPFF-immunopositive cells were located chiefly, but not exclusively, in the superficial white matter and constituted there a subpopulation of white matter interstitial cells (WMIC): Pyramidal-like and multipolar somata predominated in the gyral crowns, whereas bipolar and ovoid somata predominated in the cortex surrounding the sulci. Their sparsely ramified axons were unmyelinated and exhibited NPFF-positive bead-like varicosities. We found significantly fewer NPFF-immunopositive cells in the gray matter of the frontal, cingulate, and superior temporal gyri of both sporadic ALS and late-stage AD patients than in controls, and significantly fewer NPFF-positive cells in the subjacent as well as deep white matter of the frontal gyrus of these patients compared to controls. Notably, the number of NPFF-positive cells was also significantly lower in the hippocampal formation in AD compared to controls. In PiD, NPFF-positive cells were present in significantly lower numbers in the gray and white matter of the cingulate and frontal gyrii in comparison to controls. In schizophrenic patients, lower wNPFF cell counts in the neocortex were significant and global (cingulate, frontal, superior temporal gyrus, medial, and inferior gyri). The precise functions of NPFF-positive cells and their relationship to the superficial corticocortical white matter U-fibers are currently unknown. Here, NPFF immunohistochemistry and expression characterize a previously unrecognized population of cells in the human brain, thereby providing a new entry-point for investigating their physiological and pathophysiological roles.


Asunto(s)
Corteza Cerebral , Enfermedades Neurodegenerativas , Esquizofrenia , Sustancia Blanca , Humanos , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Masculino , Esquizofrenia/patología , Esquizofrenia/metabolismo , Femenino , Corteza Cerebral/patología , Corteza Cerebral/metabolismo , Anciano , Persona de Mediana Edad , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/metabolismo , Anciano de 80 o más Años , Oligopéptidos , Adulto , Neuronas/patología , Neuronas/metabolismo
9.
Soc Cogn Affect Neurosci ; 19(1)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38915189

RESUMEN

Malfunctioning in executive functioning has been proposed as a risk factor for intimate partner violence (IPV). This is not only due to its effects on behavioral regulation but also because of its association with other variables such as sexism. Executive dysfunctions have been associated with frontal and prefrontal cortical thickness. Therefore, our first aim was to assess differences in cortical thickness in frontal and prefrontal regions, as well as levels of sexism, between two groups of IPV perpetrators (with and without executive dysfunctions) and a control group of non-violent men. Second, we analyzed whether the cortical thickness in the frontal and prefrontal regions would explain sexism scores. Our results indicate that IPV perpetrators classified as dysexecutive exhibited a lower cortical thickness in the right rostral anterior cingulate superior frontal bilaterally, caudal middle frontal bilaterally, right medial orbitofrontal, right paracentral, and precentral bilaterally when compared with controls. Furthermore, they exhibited higher levels of sexism than the rest of the groups. Most importantly, in the brain structures that distinguished between groups, lower thickness was associated with higher sexism scores. This research emphasizes the need to incorporate neuroimaging techniques to develop accurate IPV profiles or subtypes based on neuropsychological functioning.


Asunto(s)
Función Ejecutiva , Violencia de Pareja , Imagen por Resonancia Magnética , Sexismo , Humanos , Masculino , Función Ejecutiva/fisiología , Adulto , Violencia de Pareja/psicología , Imagen por Resonancia Magnética/métodos , Pruebas Neuropsicológicas , Adulto Joven , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Femenino , Persona de Mediana Edad , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/patología
10.
Brain ; 147(7): 2428-2439, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38842726

RESUMEN

Four-repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R tauopathies are progressive supranuclear palsy (PSP) and corticobasal degeneration characterized by subcortical tau accumulation and cortical neuronal dysfunction, as shown by PET-assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction, and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces remote neuronal dysfunction in functionally connected cortical regions to test a pathophysiological model that mechanistically links subcortical tau accumulation to cortical neuronal dysfunction in 4R tauopathies. We included 51 Aß-negative patients with clinically diagnosed PSP variants (n = 26) or corticobasal syndrome (n = 25) who underwent structural MRI and 18F-PI-2620 tau-PET. 18F-PI-2620 tau-PET was recorded using a dynamic one-stop-shop acquisition protocol to determine an early 0.5-2.5 min post tracer-injection perfusion window for assessing cortical neuronal dysfunction, as well as a 20-40 min post tracer-injection window to determine 4R-tau load. Perfusion-PET (i.e. early window) was assessed in 200 cortical regions, and tau-PET was assessed in 32 subcortical regions of established functional brain atlases. We determined tau epicentres as subcortical regions with the highest 18F-PI-2620 tau-PET signal and assessed the connectivity of tau epicentres to cortical regions of interest using a resting-state functional MRI-based functional connectivity template derived from 69 healthy elderly controls from the ADNI cohort. Using linear regression, we assessed whether: (i) higher subcortical tau-PET was associated with reduced cortical perfusion; and (ii) cortical perfusion reductions were observed preferentially in regions closely connected to subcortical tau epicentres. As hypothesized, higher subcortical tau-PET was associated with overall lower cortical perfusion, which remained consistent when controlling for cortical tau-PET. Using group-average and subject-level PET data, we found that the seed-based connectivity pattern of subcortical tau epicentres aligned with cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicentre showed lower perfusion. Together, subcortical tau-accumulation is associated with remote perfusion reductions indicative of neuronal dysfunction in functionally connected cortical regions in 4R-tauopathies. This suggests that subcortical tau pathology may induce cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity.


Asunto(s)
Corteza Cerebral , Tomografía de Emisión de Positrones , Parálisis Supranuclear Progresiva , Tauopatías , Proteínas tau , Humanos , Masculino , Femenino , Tomografía de Emisión de Positrones/métodos , Anciano , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Tauopatías/patología , Proteínas tau/metabolismo , Persona de Mediana Edad , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/fisiopatología , Imagen por Resonancia Magnética/métodos
11.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200271, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38896808

RESUMEN

BACKGROUND AND OBJECTIVES: A CSF-in gradient in cortical and thalamic gray matter (GM) damage has been found in multiple sclerosis (MS). We concomitantly explored the patterns of cortical, thalamic, and caudate microstructural abnormalities at progressive distances from CSF using a multiparametric MRI approach. METHODS: For this cross-sectional study, from 3T 3D T1-weighted scans, we sampled cortical layers at 25%-50%-75% depths from pial surface and thalamic and caudate bands at 2-3-4 voxels from the ventricular-GM interface. Using linear mixed models, we tested between-group comparisons of magnetization transfer ratio (MTR) and R2* layer-specific z-scores, CSF-in across-layer z-score changes, and their correlations with clinical (disease duration and disability) and structural (focal lesions, brain, and choroid plexus volume) MRI measures. RESULTS: We enrolled 52 patients with MS (33 relapsing-remitting [RRMS], 19 progressive [PMS], mean age: 46.4 years, median disease duration: 15.1 years, median: EDSS 2.0) and 70 controls (mean age 41.5 ± 12.8). Compared with controls, RRMS showed lower MTR values in the outer and middle cortical layers (false-discovery rate [FDR]-p ≤ 0.025) and lower R2* values in all 3 cortical layers (FDR-p ≤ 0.016). PMS had lower MTR values in the outer and middle cortical (FDR-p ≤ 0.016) and thalamic (FDR-p ≤ 0.048) layers, and in the outer caudate layer (FDR-p = 0.024). They showed lower R2* values in the outer cortical layer (FDR-p = 0.003) and in the outer thalamic layer (FDR-p = 0.046) and higher R2* values in all 3 caudate layers (FDR-p ≤ 0.031). Both RRMS and PMS had a gradient of damage, with lower values closer to the CSF, for cortical (FDR-p ≤ 0.002) and thalamic (FDR-p ≤ 0.042) MTR. PMS showed a gradient of damage for cortical R2* (FDR-p = 0.005), thalamic R2* (FDR-p = 0.004), and caudate MTR (FDR-p ≤ 0.013). Lower MTR and R2* of outer cortical, thalamic, and caudate layers and steeper gradient of damage toward the CSF were significantly associated with older age, higher T2-hyperintense white matter lesion volume, higher thalamic lesion volume, and lower brain volume (ß ≥ 0.08, all FDR-p ≤ 0.040). Lower MTR of outer caudate layer was associated with more severe disability (ß = -0.26, FDR-p = 0.040). No correlations with choroid plexus volume were found. DISCUSSION: CSF-in damage gradients are heterogeneous among different GM regions and through MS course, possibly reflecting different dynamics of demyelination and iron loss/accumulation.


Asunto(s)
Corteza Cerebral , Sustancia Gris , Esclerosis Múltiple Recurrente-Remitente , Tálamo , Humanos , Persona de Mediana Edad , Masculino , Femenino , Adulto , Estudios Transversales , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Tálamo/patología , Tálamo/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/líquido cefalorraquídeo , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Crónica Progresiva/patología , Imagen por Resonancia Magnética , Imágenes de Resonancia Magnética Multiparamétrica , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/patología , Esclerosis Múltiple/diagnóstico por imagen , Núcleo Caudado/patología , Núcleo Caudado/diagnóstico por imagen
12.
Neurology ; 103(2): e209623, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38900989

RESUMEN

BACKGROUND AND OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is predominantly associated with motor cortex, corticospinal tract (CST), brainstem, and spinal cord degeneration, and cerebellar involvement is much less well characterized. However, some of the cardinal clinical features of ALS, such as dysarthria, dysphagia, gait impairment, falls, and impaired dexterity, are believed to be exacerbated by coexisting cerebellar pathology. Cerebellar pathology may also contribute to cognitive, behavioral, and pseudobulbar manifestations. Our objective was to systematically assess both intracerebellar pathology and cerebrocerebellar connectivity alterations in a genetically stratified cohort of ALS. METHODS: A prospective, multimodal neuroimaging study was conducted to evaluate the longitudinal evolution of intracerebellar pathology and cerebrocerebellar connectivity, using structural and functional measures. RESULTS: A total of 113 healthy controls and 212 genetically stratified individuals with ALS were included: (1) C9orf72 hexanucleotide carriers ("C9POS"), (2) sporadic patients who tested negative for ALS-associated genetic variants, and (3) intermediate-length CAG trinucleotide carriers in ATXN2 ("ATXN2"). Flocculonodular lobule (padj = 0.014, 95% CI -5.06e-5 to -3.98e-6) and crura (padj = 0.031, 95% CI -1.63e-3 to -5.55e-5) volume reductions were detected at baseline in sporadic patients. Cerebellofrontal and cerebelloparietal structural connectivity impairment was observed in both C9POS and sporadic patients at baseline, and both projections deteriorated further over time in sporadic patients (padj = 0.003, t(249) = 3.04 and padj = 0.05, t(249) = 1.93). Functional cerebelloparietal uncoupling was evident in sporadic patients at baseline (padj = 0.004, 95% CI -0.19 to -0.03). ATXN2 patients exhibited decreased cerebello-occipital functional connectivity at baseline (padj = 0.004, 95% CI -0.63 to -0.06), progressive cerebellotemporal functional disconnection (padj = 0.025, t(199) = -2.26), and progressive flocculonodular lobule degeneration (padj = 0.017, t(249) = -2.24). C9POS patients showed progressive ventral dentate atrophy (padj = 0.007, t(249) = -2.75). The CSTs (padj < 0.001, 95% CI 4.89e-5 to 1.14e-4) and transcallosal interhemispheric fibers (padj < 0.001, 95% CI 5.21e-5 to 1.31e-4) were affected at baseline in C9POS and exhibited rapid degeneration over the 4 time points. The rate of decline in CST and corpus callosum integrity was faster than the rate of cerebrocerebellar disconnection (padj = 0.001, t(190) = 6.93). DISCUSSION: ALS is associated with accruing intracerebellar disease burden as well as progressive corticocerebellar uncoupling. Contrary to previous suggestions, we have not detected evidence of compensatory structural or functional changes in response to supratentorial degeneration. The contribution of cerebellar disease burden to dysarthria, dysphagia, gait impairment, pseudobulbar affect, and cognitive deficits should be carefully considered in clinical assessments, monitoring, and multidisciplinary interventions.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Cerebelo , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Anciano , Proteína C9orf72/genética , Estudios Prospectivos , Ataxina-2/genética , Imagen por Resonancia Magnética , Progresión de la Enfermedad , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Adulto , Estudios Longitudinales
13.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38897816

RESUMEN

Brain structural abnormality has been observed in the prodromal and early stages of schizophrenia, but the mechanism behind it is not clear. In this study, to explore the association between cortical abnormalities, metabolite levels, inflammation levels and clinical symptoms of schizophrenia, 51 drug-naive first-episode schizophrenia (FES) patients, 51 ultra-high risk for psychosis (UHR), and 51 healthy controls (HC) were recruited. We estimated gray matter volume (GMV), cortical thickness (CT), concentrations of different metabolites, and inflammatory marks among four groups (UHR converted to psychosis [UHR-C], UHR unconverted to psychosis [UHR-NC], FES, HC). UHR-C group had more CT in the right lateral occipital cortex and the right medial orbito-frontal cortex (rMOF), while a significant reduction in CT of the right fusiform cortex was observed in FES group. UHR-C group had significantly higher concentration of IL-6, while IL-17 could significantly predict CT of the right fusiform and IL-4 and IL-17 were significant predictors of CT in the rMOF. To conclude, it is reasonable to speculate that the increased CT in UHR-C group is related to the inflammatory response, and may participate in some compensatory mechanism, but might become exhaustive with the progress of the disease due to potential neurotoxic effects.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Esquizofrenia/patología , Esquizofrenia/diagnóstico por imagen , Masculino , Femenino , Adulto Joven , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Adulto , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Adolescente
14.
Neurobiol Dis ; 198: 106554, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844243

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder that severely affects the basal ganglia and regions of the cerebral cortex. While astrocytosis and microgliosis both contribute to basal ganglia pathology, the contribution of gliosis and potential factors driving glial activity in the human HD cerebral cortex is less understood. Our study aims to identify nuanced indicators of gliosis in HD which is challenging to identify in the severely degenerated basal ganglia, by investigating the middle temporal gyrus (MTG), a cortical region previously documented to demonstrate milder neuronal loss. Immunohistochemistry was conducted on MTG paraffin-embedded tissue microarrays (TMAs) comprising 29 HD and 35 neurologically normal cases to compare the immunoreactivity patterns of key astrocytic proteins (glial fibrillary acidic protein, GFAP; inwardly rectifying potassium channel 4.1, Kir4.1; glutamate transporter-1, GLT-1; aquaporin-4, AQP4), key microglial proteins (ionised calcium-binding adapter molecule-1, IBA-1; human leukocyte antigen (HLA)-DR; transmembrane protein 119, TMEM119; purinergic receptor P2RY12, P2RY12), and indicators of proliferation (Ki-67; proliferative cell nuclear antigen, PCNA). Our findings demonstrate an upregulation of GFAP+ protein expression attributed to the presence of more GFAP+ expressing cells in HD, which correlated with greater cortical mutant huntingtin (mHTT) deposition. In contrast, Kir4.1, GLT-1, and AQP4 immunoreactivity levels were unchanged in HD. We also demonstrate an increased number of IBA-1+ and TMEM119+ microglia with somal enlargement. IBA-1+, TMEM119+, and P2RY12+ reactive microglia immunophenotypes were also identified in HD, evidenced by the presence of rod-shaped, hypertrophic, and dystrophic microglia. In HD cases, IBA-1+ cells contained either Ki-67 or PCNA, whereas GFAP+ astrocytes were devoid of proliferative nuclei. These findings suggest cortical microgliosis may be driven by proliferation in HD, supporting the hypothesis of microglial proliferation as a feature of HD pathophysiology. In contrast, astrocytes in HD demonstrate an altered GFAP expression profile that is associated with the degree of mHTT deposition.


Asunto(s)
Astrocitos , Proliferación Celular , Enfermedad de Huntington , Microglía , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Microglía/metabolismo , Microglía/patología , Astrocitos/metabolismo , Astrocitos/patología , Masculino , Femenino , Persona de Mediana Edad , Proliferación Celular/fisiología , Adulto , Anciano , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Proteínas de Unión al Calcio/metabolismo , Gliosis/metabolismo , Gliosis/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de la Membrana , Proteínas de Microfilamentos
15.
Zhonghua Yan Ke Za Zhi ; 60(6): 528-536, 2024 Jun 11.
Artículo en Chino | MEDLINE | ID: mdl-38825952

RESUMEN

Objective: To explore the changes in gray matter volume of the cerebral cortex in patients with intermittent exotropia (IXT) using the voxel-based analysis and to analyze the correlation between these changes and clinical manifestations. Methods: This was a cross-sectional study. A collection of 15 consecutive patients diagnosed with IXT at Tianjin Eye Hospital from March 2021 to May 2022 formed the exotropia group, which comprised 8 males and 7 females, with an average age of (23.5±5.2) years. Ten healthy individuals, 3 males and 7 females, with an average age of (27.0±7.5) years, were selected as the control group. All participants underwent assessments of exotropia severity and Titmus stereoacuity. Three-dimensional high-resolution brain images were obtained through MRI scans. Voxel-based morphometry was employed to preprocess the MRI data, and the SPM toolbox in MATLAB was utilized to analyze differences of images between the two groups. Regions of interest (ROI) with structural abnormalities in the gray matter volume analysis were selected, and the ratio of gray matter voxel values in the ROI to the mean gray matter voxel values of the whole brain for each participant was calculated using the MarsBaR software. The correlation between this ratio and exotropia severity as well as the common logarithm of Titmus stereoacuity was analyzed. Results: The differences in age, gender distribution, and refractive error between the two groups were not statistically significant (all P>0.05). However, there were statistically significant differences in the degree of strabismus and Titmus stereoacuity (both P<0.001). Compared to the control group, patients in the strabismus group exhibited decreased gray matter volume in several brain regions, including the wedges of the medial surface of the cerebral hemisphere (decreased by 89 voxels), the left lingual gyrus (decreased by 176 voxels), the left calcarine sulcus V3 area (decreased by 30 voxels), the central anterior gyrus of the right frontal lobe (decreased by 192 voxels), the gray matter of the left hippocampal gyrus (decreased by 20 voxels), and the bilateral lateral geniculate nuclei (decreased by 100 and 40 voxels on the left and right sides, respectively). These differences were all statistically significant (all P<0.001). Additionally, there was an increase in gray matter volume in several brain regions, including the bilateral caudate nuclei (increased by 60 and 76 voxels on the left and right sides, respectively) and the left precentral gyrus (increased by 36 voxels). These differences were also statistically significant (all P<0.001). A group-level analysis identified 10 brain regions with structural differences between the two groups, which were used as ROI. The gray matter volume ratio was negatively correlated with the degree of exotropia (all P<0.05) in the ROI of the left wedges (r=-0.670), left calcarine sulcus V3 area (r=-0.610), and left lingual gyrus (r=-0.684). The gray matter volume ratio was negatively correlated with lgTS (all P<0.05) in the ROI of the left wedges (r=-0.568) and the central anterior gyrus of the right frontal lobe (r=-0.563). Conclusions: Patients with IXT exhibit decreased gray matter volume in the horizontal connection areas between the primary visual cortices V1 and V2. The reduction in gray matter volume of the lingual gyrus and the dorsal visual pathway V3 area becomes more pronounced with increasing exotropia severity, while the gray matter volume of the precentral gyrus (BA6 area) decreases with worsening stereoacuity.


Asunto(s)
Corteza Cerebral , Exotropía , Sustancia Gris , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Exotropía/diagnóstico por imagen , Estudios Transversales , Adulto Joven , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Estudios de Casos y Controles
16.
J Neurol Sci ; 462: 123113, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941706

RESUMEN

BACKGROUND: Brain and cortical atrophy play crucial roles in supporting the clinical diagnosis of Alzheimer's disease (AD). This study hypothesized that the ratios of brain or cortical volume to subcortical gray matter structure volumes are potential imaging markers for cognitive alterations in AD dementia and amnestic mild cognitive impairment (aMCI). METHODS: Seventy-seven subjects diagnosed with AD dementia or aMCI underwent baseline neuropsychological testing, 2-year follow-up cognitive assessments, and high-resolution T1-weighted MRI scans. Total brain/cortical volume and subcortical gray matter structure volumes were automatically segmented and measured. Univariate and multiple linear regression analyses were conducted to determine the associations between volumetric ratios and interval changes in cognitive scores. RESULTS: The ratio of cortical volume to caudate volume showed the most significant association with changes in MoCA (B = 0.132, SE = 0.042, p = 0.002), MMSE (B = 0.140, SE = 0.040, p = 0.001), and CDR-SOB (B = -0.013, SE = 0.005, p = 0.007) scores over the 2-year follow-up period. These associations remained significant after adjusting for various covariates. Similar associations were observed for the ratios of cortical volume to putamen and globus pallidum volumes. CONCLUSIONS: The cortex-to-caudate volume ratio is significantly associated with cognitive decline in AD dementia and aMCI. This ratio may serve as a useful biomarker for monitoring disease progression and predicting cognitive outcomes. Our findings highlight the importance of considering the relative atrophy of cortical and subcortical structures in understanding AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Corteza Cerebral , Disfunción Cognitiva , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Masculino , Femenino , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/etiología , Anciano , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Anciano de 80 o más Años , Tamaño de los Órganos , Estudios de Seguimiento , Persona de Mediana Edad , Progresión de la Enfermedad , Atrofia/patología
17.
Neurobiol Aging ; 141: 129-139, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38909430

RESUMEN

White matter hyperintensities (WMH) are associated with cortical thinning. Although they are primarily detected in older participants, these lesions can appear in younger and midlife individuals. Here, we tested whether WMH are associated with cortical thinning in relatively younger (26-50 years) and relatively older (58-84) participants who were free of dementia, and how these associations are moderated by WMH localization. WMH were automatically quantified and categorized according to the localization of three classes of white matter tracts: association, commissural and projection fibers. Mediation analyses were used to infer whether differences in cortical thickness between younger and older participants were explained by WMH. Our results revealed that total WMH explained between 20.6 % and 65.5 % of the effect of age on cortical thickness in AD-signature regions including the lateral temporal lobes and supramarginal gyrus, among others. This mediation was slightly stronger for projection WMH, although it was still significant for association and commissural WMH. These results suggest that there is an interplay between vascular and AD causes of cognitive impairment that starts at younger ages.


Asunto(s)
Envejecimiento , Corteza Cerebral , Sustancia Blanca , Humanos , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Anciano , Masculino , Femenino , Persona de Mediana Edad , Anciano de 80 o más Años , Adulto , Envejecimiento/patología , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/diagnóstico por imagen
18.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200265, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917380

RESUMEN

BACKGROUND AND OBJECTIVES: To evaluate CSF inflammatory markers with accumulation of cortical damage as well as disease activity in patients with early relapsing-remitting MS (RRMS). METHODS: CSF levels of osteopontin (OPN) and 66 inflammatory markers were assessed using an immune-assay multiplex technique in 107 patients with RRMS (82 F/25 M, mean age 35.7 ± 11.8 years). All patients underwent regular clinical assessment and yearly 3T MRI scans for 2 years while 39 patients had a 4-year follow-up. White matter lesion number and volume, cortical lesions (CLs) and volume, and global cortical thickness (CTh) were evaluated together with the 'no evidence of disease activity' (NEDA-3) status, defined by no relapses, no disability worsening, and no MRI activity, including CLs. RESULTS: The random forest algorithm selected OPN, CXCL13, TWEAK, TNF, IL19, sCD30, sTNFR1, IL35, IL16, and sCD163 as significantly associated with changes in global CTh. OPN and CXCL13 were most related to accumulation of atrophy after 2 and 4 years. In a multivariate linear regression model on CSF markers, OPN (p < 0.001), CXCL13 (p = 0.001), and sTNFR1 (p = 0.024) were increased in those patients with accumulating atrophy (adjusted R-squared 0.615). The 10 markers were added in a model that included all clinical, demographic, and MRI variables: OPN (p = 0.002) and IL19 (p = 0.022) levels were confirmed to be significantly increased in patients developing more CTh change over the follow-up (adjusted R-squared 0.619). CXCL13 and OPN also revealed the best association with NEDA-3 after 2 years, with OPN significantly linked to disability accumulation (OR 2.468 [1.46-5.034], p = 0.004) at the multivariate logistic regression model. DISCUSSION: These data confirm and expand our knowledge on the prognostic role of the CSF inflammatory profile in predicting changes in cortical pathology and disease activity in early MS. The data emphasize a crucial role of OPN.


Asunto(s)
Atrofia , Corteza Cerebral , Esclerosis Múltiple Recurrente-Remitente , Osteopontina , Humanos , Osteopontina/líquido cefalorraquídeo , Femenino , Masculino , Adulto , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Atrofia/patología , Persona de Mediana Edad , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética , Biomarcadores/líquido cefalorraquídeo , Estudios de Seguimiento , Adulto Joven , Progresión de la Enfermedad
19.
Neurobiol Aging ; 141: 102-112, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38850591

RESUMEN

The hypothalamus regulates homeostasis across the lifespan and is emerging as a regulator of aging. In murine models, aging-related changes in the hypothalamus, including microinflammation and gliosis, promote accelerated neurocognitive decline. We investigated relationships between hypothalamic microstructure and features of neurocognitive aging, including cortical thickness and cognition, in a cohort of community-dwelling older adults (age range 65-97 years, n=124). Hypothalamic microstructure was evaluated with two magnetic resonance imaging diffusion metrics: mean diffusivity (MD) and fractional anisotropy (FA), using a novel image processing pipeline. Hypothalamic MD was cross-sectionally positively associated with age and it was negatively associated with cortical thickness. Hypothalamic FA, independent of cortical thickness, was cross-sectionally positively associated with neurocognitive scores. An exploratory analysis of longitudinal neurocognitive performance suggested that lower hypothalamic FA may predict cognitive decline. No associations between hypothalamic MD, age, and cortical thickness were identified in a younger control cohort (age range 18-63 years, n=99). To our knowledge, this is the first study to demonstrate that hypothalamic microstructure is associated with features of neurocognitive aging in humans.


Asunto(s)
Envejecimiento , Cognición , Envejecimiento Cognitivo , Hipotálamo , Humanos , Anciano , Masculino , Femenino , Anciano de 80 o más Años , Hipotálamo/diagnóstico por imagen , Hipotálamo/patología , Persona de Mediana Edad , Adulto , Envejecimiento Cognitivo/fisiología , Envejecimiento/patología , Envejecimiento/psicología , Adulto Joven , Imagen por Resonancia Magnética , Adolescente , Estudios de Cohortes , Estudios Transversales , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Anisotropía
20.
Neurology ; 103(1): e209543, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870443

RESUMEN

BACKGROUND AND OBJECTIVES: Cortical lesions contribute to disability in multiple sclerosis (MS), but their impact on regional neurotransmitter levels remains to be clarified. We tested the hypothesis that cortical lesions are associated with regional glutamate and gamma-aminobutyric acid (GABA) concentrations within the affected cortical region. METHODS: In this cross-sectional study, we used structural 7T MRI to segment cortical lesions and 7T proton MR-spectroscopy of the bilateral sensorimotor hand areas to quantify regional GABA, glutamate, N-acetylaspartate, and myoinositol concentrations in patients with MS (inclusion criteria: diagnosis of relapsing-remitting [RR] or secondary progressive MS [SPMS]; age 18-80 years) and age and sex-matched healthy controls. Data were collected at a single center between August 2018 and September 2020. Linear mixed-effects models were used to test for associations between metabolite concentrations and cortical lesion volumes within the same MR-spectroscopy voxel. RESULTS: Forty-seven patients with MS (34 RRMS, 13 SPMS; 45.1 ± 12.5 years; 31 women) and 23 healthy controls (44.4 ± 13 years, 15 women) were studied. In patients, higher regional glutamate and lower regional GABA concentrations were associated with larger cortical lesion volume within the MR-spectroscopy voxel [glutamate: 0.61 (95% CI 0.19-1.03) log(mm3), p = 0.005, GABA: -0.71 (-1.24 to -0.18) log(mm3), p = 0.01]. In addition, lower N-acetylaspartate levels [-0.37 (-0.67 to -0.07) log(mm3), p = 0.016] and higher myoinositol levels [0.48 (0.03-0.93) log(mm3), p = 0.037] were associated with a larger regional cortical lesion volume. Furthermore, glutamate concentrations were reduced in patients with SPMS compared with healthy participants [-0.75 (-1.3 to -0.19) mM, p = 0.005] and patients with RRMS [-0.55 (-1.07 to -0.02) mM, p = 0.04]. N-acetylaspartate levels were lower in both patients with RRMS [-0.81 (-1.39 to -0.24) mM, p = 0.003] and SPMS [-1.31 (-2.07 to -0.54) mM, p < 0.001] when compared with healthy controls. Creatine-normalized N-acetylaspartate levels were associated with performance in the 9-hole peg test of the contralateral hand [-0.004 (-0.007 to -0.002) log(s), p = 0.002], and reduced mean creatine-normalized glutamate was associated with increased Expanded Disability Status Scale (R = -0.39, p = 0.02). DISCUSSION: Cortical lesions are associated with local increases in glutamate and a reduction in GABA concentration within the lesional or perilesional tissue. Further studies are needed to investigate the causal relationship between cortical lesions and changes in neurotransmitter concentrations.


Asunto(s)
Ácido Aspártico , Corteza Cerebral , Ácido Glutámico , Inositol , Ácido gamma-Aminobutírico , Humanos , Persona de Mediana Edad , Femenino , Masculino , Adulto , Inositol/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Ácido Glutámico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Estudios Transversales , Corteza Cerebral/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Anciano , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Crónica Progresiva/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Esclerosis Múltiple Recurrente-Remitente/patología , Adulto Joven , Espectroscopía de Protones por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...