RESUMEN
Species of the ectomycorrhizal (ECM) family Cortinariaceae (Agaricales, Agaricomycetes, Basidiomycota) have long been considered impoverished or absent from lowland tropical rainforests. Several decades of collecting in forests dominated by ECM trees in South America's Guiana Shield is countering this view, with discovery of numerous Cortinariaceae species. To date, ~12 morphospecies of this family have been found in the central Pakaraima Mountains of Guyana. Here, we describe three of these as new species of Cortinarius and two as new species of Phlegmacium from forests dominated by the ECM tree genera Dicymbe (Fabaceae subfam. Detarioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea (Cistaceae). Macromorphological, micromorphological, habitat, and DNA sequence data are provided for each new species.
Asunto(s)
Agaricales , ADN de Hongos , Fabaceae , Micorrizas , Filogenia , Guyana , ADN de Hongos/genética , Micorrizas/clasificación , Micorrizas/genética , Agaricales/clasificación , Agaricales/genética , Agaricales/aislamiento & purificación , Fabaceae/microbiología , Análisis de Secuencia de ADN , ADN Espaciador Ribosómico/genética , Cortinarius/clasificación , Cortinarius/genética , Cortinarius/aislamiento & purificación , Ecosistema , ADN Ribosómico/genética , Esporas Fúngicas/citología , Esporas Fúngicas/clasificaciónRESUMEN
In the Patagonian region, Cortinarius is the most diverse and abundant genus of ectomycorrhizal fungi with at least 250 species. Sequestrate forms were until recently documented within the genus Thaxterogaster, a genus now known to be polyphyletic, and many were consequently transferred to Cortinarius. Original descriptions were mostly available in German and Spanish and interpretations of morphological structures outdated. Despite recent advances in Cortinarius systematics, the current classification, diversity, and ecology of sequestrate "cortinarioid" fungi in Patagonia remain unclear. The objective of this study was to provide an update on sequestrate Cortinarius of southern South America. We documented each species with morphological descriptions, photographs, basidiospore scanning electron microscopy (SEM) images, and molecular characterization using nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and nuc 28S rDNA (28S) sequence data. Original descriptions of taxa were also translated to English and revised based on fresh collections. We documented 24 species from Patagonia based on molecular data and conducted morphological and phylogenetic analysis for 18 previously described species based on type and reference specimens. In addition, we formally described two new species. Four additional taxa were provisionally determined as new but require further study. New ITS sequence data were produced from eight type specimens. We also provide a new name, Cortinarius gloiodes, nom. nov., for the taxon previously described as Thaxterogaster gliocyclus. In addition to the species treated in detail, we provided additional reference information and discussion on six described species that remained incompletely known or for which no recent collections were found. Of the 24 taxa documented from Patagonia, 15 species were assigned to 12 current sections in the genus Cortinarius. Analysis of spore ultrastructure showed that sequestrate forms of Patagonian Cortinarius lack a true perisporium.
Asunto(s)
Agaricales , Cortinarius , Agaricales/genética , Cortinarius/genética , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Filogenia , Análisis de Secuencia de ADNRESUMEN
Because of systematic sampling campaigns in the northern Patagonian Nothofagaceae forests of Argentina, several specimens of sequestrate fungi were collected. Some of those collections showed phylogenetic affinities and morphological similarities to members of the formerly recognized sequestrate genus Thaxterogaster, currently a synonym of Cortinarius on the basis of molecular data. Comparisons of macro- and micromorphological features and sequences of nuc rDNA internal transcribed spacer (ITS) regions have revealed that these collections belong to formerly undescribed species. The sequences of the four new taxa presented here, Cortinarius flavopurpureus, C. translucidus, C. nahuelhuapensis, and C. infrequens, were combined into a data set including additional sequences generated from herbarium collections and retrieved from public gene databases and analyzed by maximum likelihood and Bayesian inference methods. The four new species were resolved as distinct clades with strong support; at the same time, they showed unique morphological characteristics (hypogeous to subhypogeous habit, complete gasteromycetation, and spore shape and ornamentation) that separate them from previously described Cortinarius species. In addition, several undescribed and/or not previously sequenced species from these forests were detected through phylogenetic analysis of ectomycorrhizal root tip sequences. A key of characters to identify the sequestrate Cortinarius from Patagonia is provided.
Asunto(s)
Cortinarius/clasificación , Cortinarius/genética , ADN de Hongos/genética , Argentina , Teorema de Bayes , Cortinarius/aislamiento & purificación , ADN Espaciador Ribosómico/genética , Bosques , Filogenia , Análisis de Secuencia de ADNRESUMEN
Cortinarius magellanicus Speg. is an edible, ectomycorrhizal fungus, widely distributed in Argentina, Chile and New Zealand. However, earlier studies already indicated that the epithet 'magellanicus' might have been applied in a wide sense, thus circumscribing several species. A neotype was designated by Moser and Horak (1975) due Spegazzini's type was lost. Argentinian Nothofagaceae forests' samples, from autumn of 2017, morphologically recognized as C. magellanicus were used for a phylogenetic analysis, including sequences from type material and closely related species. Our results showed that C. magellanicus represents a complex of species, with at least three phylogenetic lineages, each with strong regionalism and distinct host associations. Cortinarius magellanicus s. str. is restricted to Patagonia of Argentina and Chile. The misidentified reports from New Zealand and Australia represent distinct and different lineages. In the present contribution, the re-description of C. magellanicus is based on neotype material and two new species are proposed. Cortinarius vitreopileatus var. similissimus is described as variety from New Zealand resembling C. magellanicus, however without close phylogenetic relationship to it. The taxonomic delimitation for C. magellanicus species complex is of high relevance due to the abundance of these fungi and their ectomycorrhizal role in Nothofagaceae forests in Gondwanian region.
Asunto(s)
Cortinarius/aislamiento & purificación , Magnoliopsida/microbiología , Micorrizas/aislamiento & purificación , Argentina , Australia , Chile , Cortinarius/clasificación , Cortinarius/genética , Cortinarius/crecimiento & desarrollo , Ecosistema , Bosques , Micorrizas/clasificación , Micorrizas/genética , Micorrizas/crecimiento & desarrollo , Nueva Zelanda , Filogenia , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/aislamiento & purificaciónRESUMEN
The descolea clade includes species of ectomycorrhizal basidiomycetes in the genera Descolea, Setchelliogaster, Descomyces, and Timgrovea that are known primarily from the Southern Hemisphere. Taxa in this group produce basidiomes that range in morphology from typical epigeous mushrooms (Descolea) and secotioid taxa (Setchelliogaster) to fully gasteroid species (Descomyces and Timgrovea). High intraspecific morphological variation has been reported in several species within this clade, suggesting that careful morphological and molecular studies are needed to refine species concepts. Molecular analyses of fresh Patagonian collections in conjunction with taxonomic studies have confirmed high variability in key morphological features, including overall sporocarp form, spore shape and dimensions, universal veil remnants, and cuticle configuration. Based on our synthesis, we emend the genus Descolea to include sequestrate species. We describe the new sequestrate taxon Descolea inferna sp. nov. from Nothofagaceae forests in Patagonia and we propose Cortinarius squamatus as a synonym of our new combination Descolea brunnea. We also formalize the identity of Descolea pallida as a synonym of Descolea antarctica and provide new specimens of Cortinarius archeuretus, a species that has not been encountered since the original discovery during the expeditions of Roland Thaxter in 1905-1906. Here we re-describe and transfer this species to Descolea as D. archeureta. We also discuss diagnostic features that can be used to delimitate the four known South American taxa in the descolea clade.
Asunto(s)
Agaricales/clasificación , Fagales/microbiología , Agaricales/genética , Agaricales/crecimiento & desarrollo , Argentina , Cortinarius/clasificación , Cortinarius/genética , Cortinarius/crecimiento & desarrollo , ADN de Hongos/química , ADN de Hongos/aislamiento & purificación , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/aislamiento & purificación , Filogenia , Alineación de SecuenciaRESUMEN
BACKGROUND: Section Calochroi is one of the most species-rich lineages in the genus Cortinarius (Agaricales, Basidiomycota) and is widely distributed across boreo-nemoral areas, with some extensions into meridional zones. Previous phylogenetic studies of Calochroi (incl. section Fulvi) have been geographically restricted; therefore, phylogenetic and biogeographic relationships within this lineage at a global scale have been largely unknown. In this study, we obtained DNA sequences from a nearly complete taxon sampling of known species from Europe, Central America and North America. We inferred intra- and interspecific phylogenetic relationships as well as major morphological evolutionary trends within section Calochroi based on 576 ITS sequences, 230 ITS + 5.8S + D1/D2 sequences, and a combined dataset of ITS + 5.8S + D1/D2 and RPB1 sequences of a representative subsampling of 58 species. RESULTS: More than 100 species were identified by integrating DNA sequences with morphological, macrochemical and ecological data. Cortinarius section Calochroi was consistently resolved with high branch support into at least seven major lineages: Calochroi, Caroviolacei, Dibaphi, Elegantiores, Napi, Pseudoglaucopodes and Splendentes; whereas Rufoolivacei and Sulfurini appeared polyphyletic. A close relationship between Dibaphi, Elegantiores, Napi and Splendentes was consistently supported. Combinations of specific morphological, pigmentation and molecular characters appear useful in circumscribing clades. CONCLUSION: Our analyses demonstrate that Calochroi is an exclusively northern hemispheric lineage, where species follow their host trees throughout their natural ranges within and across continents. Results of this study contribute substantially to defining European species in this group and will help to either identify or to name new species occurring across the northern hemisphere. Major groupings are in partial agreement with earlier morphology-based and molecular phylogenetic hypotheses, but some relationships were unexpected, based on external morphology. In such cases, their true affinities appear to have been obscured by the repeated appearance of similar features among distantly related species. Therefore, further taxonomic studies are needed to evaluate the consistency of species concepts and interpretations of morphological features in a more global context. Reconstruction of ancestral states yielded two major evolutionary trends within section Calochroi: (1) the development of bright pigments evolved independently multiple times, and (2) the evolution of abruptly marginate to flattened stipe bulbs represents an autapomorphy of the Calochroi clade.