Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64.767
Filtrar
1.
Pharmeur Bio Sci Notes ; 2024: 90-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967620

RESUMEN

Human immunoglobulin products are used for the treatment of a number of diseases, such as primary or secondary immunodeficiencies and autoimmune conditions due to the complete absence of antibodies or the production of defective immunoglobulins. Quality control of human immunoglobulin products is essential to ensure therapeutic functionality and safety. This includes testing for Fc function and anticomplementary activity (ACA), as well as verification of appropriate molecular size distribution using size-exclusion chromatography as prescribed in the European Pharmacopoeia (Ph. Eur.) monographs 0338, 0918, 2788 and 1928. To this end, specific biological reference preparations (BRPs) must be used. Stocks of the Ph. Eur. Human immunoglobulin (molecular size) BRP were running low and therefore a collaborative study was run by the European Directorate for the Quality of Medicines & HealthCare (EDQM), under the aegis of the Biological Standardisation Programme, to calibrate replacement batches. Eighteen laboratories, including manufacturers and Official Medicines Control Laboratories, took part in the study. Three batches of candidate BRPs were assessed and compared to Ph. Eur. Human immunoglobulin (molecular size) BRP 3 to ensure continuity. Based on the study results, the candidate BRPs were adopted by the Ph. Eur. Commission as Ph. Eur. Human immunoglobulin (molecular size) BRP batch 4, 5 and 6.


Asunto(s)
Inmunoglobulinas , Control de Calidad , Humanos , Inmunoglobulinas/análisis , Estándares de Referencia , Cromatografía en Gel/normas , Peso Molecular , Europa (Continente)
2.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000599

RESUMEN

Seminal plasma contains a heterogeneous population of extracellular vesicles (sEVs) that remains poorly characterized. This study aimed to characterize the lipidomic profile of two subsets of differently sized sEVs, small (S-) and large (L-), isolated from porcine seminal plasma by size-exclusion chromatography and characterized by an orthogonal approach. High-performance liquid chromatography-high-resolution mass spectrometry was used for lipidomic analysis. A total of 157 lipid species from 14 lipid classes of 4 major categories (sphingolipids, glycerophospholipids, glycerolipids, and sterols) were identified. Qualitative differences were limited to two cholesteryl ester species present only in S-sEVs. L-sEVs had higher levels of all quantified lipid classes due to their larger membrane surface area. The distribution pattern was different, especially for sphingomyelins (more in S-sEVs) and ceramides (more in L-sEVs). In conclusion, this study reveals differences in the lipidomic profile of two subsets of porcine sEVs, suggesting that they differ in biogenesis and functionality.


Asunto(s)
Vesículas Extracelulares , Lipidómica , Lípidos , Semen , Animales , Vesículas Extracelulares/metabolismo , Porcinos , Semen/metabolismo , Semen/química , Masculino , Lípidos/análisis , Lípidos/química , Lipidómica/métodos , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Cromatografía en Gel
3.
BMC Res Notes ; 17(1): 202, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044286

RESUMEN

OBJECTIVE: Extracellular vesicles (EVs) have been shown to play a critical role in promoting tumorigenesis. As EV research grows, it is of importance to have standardization of isolation, quality control, characterization and validation methods across studies along with reliable references to explore troubleshooting solutions. Therefore, our objective with this Research Note was to isolate EVs from multiple breast cancer cell lines and to describe and perform protocols for validation as outlined by the list of minimal information for studies of EVs (MISEV) from the International Society for Extracellular Vesicles. RESULTS: To isolate EVs, two techniques were employed: ultracentrifugation and size exclusion chromatography. Ultracentrifugation yielded better recovery of EVs in our hands and was therefore used for further validation. In order to satisfy the MISEV requirements, protein quantification, immunoblotting of positive (CD9, CD63, TSG101) and negative (TGFß1, ß-tubulin) markers, nanoflow cytometry and electron microscopy was performed. With these experiments, we demonstrate that yield of validated EVs varied between different breast cancer cell lines. Protocols were optimized to accommodate for low levels of EVs, and various technical and troubleshooting suggestions are included for potential application to other cell types that may provide benefit to investigators interested in future EV studies.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias de la Mama/patología , Femenino , Línea Celular Tumoral , Ultracentrifugación/métodos , Control de Calidad , Cromatografía en Gel/métodos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo , Proteínas de Unión al ADN , Factores de Transcripción
4.
Pharm Res ; 41(7): 1443-1454, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951451

RESUMEN

PURPOSE: Chemical modifications in monoclonal antibodies can change hydrophobicity, charge heterogeneity as well as conformation, which eventually can impact their physical stability. In this study, the effect of the individual charge variants on physical stability and aggregation propensity in two different buffer conditions used during downstream purification was investigated. METHODS: The charge variants were separated using semi-preparative cation exchange chromatography and buffer exchanged in the two buffers with pH 6.0 and 3.8. Subsequently each variant was analysed for size heterogeneity using size exclusion chromatography and dynamic light scattering, conformational stability, colloidal stability, and aggregation behaviour under accelerated stability conditions. RESULTS: Size variants in each charge variant were similar in both pH conditions when analyzed without extended storage. However, conformational stability was lower at pH 3.8 than pH 6.0. All charge variants showed similar apparent melting temperature at pH 6.0. In contrast, at pH 3.8 variants A3, A5, B2, B3 and B4 display lower Tm, suggesting reduced conformational stability. Further, A2, A3 and A5 exhibit reduced colloidal stability at pH 3.8. In general, acidic variants are more prone to aggregation than basic variants. CONCLUSION: Typical industry practice today is to examine in-process intermediate stability with acidic species and basic species taken as a single category each. We suggest that perhaps stability evaluation needs to be performed at specie level as different acidic or basic species have different stability and this knowledge can be used for clever designing of the downstream process to achieve a stable product.


Asunto(s)
Anticuerpos Monoclonales , Estabilidad Proteica , Anticuerpos Monoclonales/química , Concentración de Iones de Hidrógeno , Estabilidad de Medicamentos , Conformación Proteica , Agregado de Proteínas , Cromatografía por Intercambio Iónico/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Cromatografía en Gel , Coloides/química , Productos Biológicos/química , Humanos , Tampones (Química)
5.
Anal Chem ; 96(29): 11716-11724, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38986034

RESUMEN

Assessment of critical quality attributes (CQAs) is an important aspect during the development of therapeutic monoclonal antibodies (mAbs). Attributes that affect either the target binding or Fc receptor engagement may have direct impacts on the drug safety and efficacy and thus are considered as CQAs. Native size exclusion chromatography (SEC)-based competitive binding assay has recently been reported and demonstrated significant benefits compared to conventional approaches for CQA identification, owing to its faster turn-around and higher multiplexity. Expanding on the similar concept, we report the development of a novel affinity-resolved size exclusion chromatography-mass spectrometry (AR-SEC-MS) method for rapid CQA evaluation in therapeutic mAbs. This method features wide applicability, fast turn-around, high multiplexity, and easy implementation. Using the well-studied Fc gamma receptor III-A (FcγRIIIa) and Fc interaction as a model system, the effectiveness of this method in studying the attribute-and-function relationship was demonstrated. Further, two case studies were detailed to showcase the application of this method in assessing CQAs related to antibody target binding, which included unusual N-linked glycosylation in a bispecific antibody and Met oxidation in a monospecific antibody, both occurring within the complementarity-determining regions (CDRs).


Asunto(s)
Anticuerpos Monoclonales , Cromatografía en Gel , Espectrometría de Masas , Anticuerpos Monoclonales/química , Cromatografía en Gel/métodos , Espectrometría de Masas/métodos , Humanos , Receptores de IgG/metabolismo , Cromatografía de Afinidad/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38996753

RESUMEN

Metalloproteins binding with trace elements play a crucial role in biological processes and on the contrary, those binding with exogenous heavy metals have adverse effects. However, the methods for rapid, high sensitivity and simultaneous analysis of these metalloproteins are still lacking. In this study, a fast method for simultaneously determination of both essential and toxic metal-containing proteins was developed by coupling size exclusion chromatography (SEC) with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). After optimization of the separation and detection conditions, seven metalloproteins with different molecular weight (from 16.0 to 443.0 kDa) were successfully separated within 10 min and the proteins containing iron (Fe), copper (Cu), zinc (Zn), iodine (I) and lead (Pb) elements could be simultaneously detected with the use of oxygen as the collision gas in ICP-MS/MS. Accordingly, the linear relationship between log molecular weight and retention time was established to estimate the molecular weight of unknown proteins. Thus, the trace metal and toxic metal containing proteins could be detected in a single run with high sensitivity (detection limits in the range of 0.0020-2.5 µg/mL) and good repeatability (relative standard deviations lower than 4.5 %). This method was then successfully used to analyze metal (e.g., Pb, Zn, Cu and Fe) binding proteins in the blood of Pb-intoxicated patients, and the results showed a negative correlation between the contents of zinc and lead binding proteins, which was identified to contain hemoglobin subunit. In summary, this work provided a rapid and sensitive tool for screening metal containing proteins in large number of biological samples.


Asunto(s)
Cromatografía en Gel , Límite de Detección , Metaloproteínas , Espectrometría de Masas en Tándem , Cromatografía en Gel/métodos , Espectrometría de Masas en Tándem/métodos , Humanos , Reproducibilidad de los Resultados , Metaloproteínas/sangre , Metaloproteínas/química , Metaloproteínas/análisis , Modelos Lineales , Metales Pesados/sangre , Metales Pesados/análisis , Metales Pesados/química , Animales
7.
Methods Mol Biol ; 2839: 233-241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008257

RESUMEN

This chapter presents a method for the heterologous expression and purification of human ALA synthase from Escherichia coli. Mature ALAS is produced with an N-terminal hexahistidine affinity tag followed by a SUMO fusion tag for solubility and ease of purification. The plasmid is introduced into competent E. coli cells, and robust protein expression is induced with IPTG. The ALAS cofactor, pyridoxal 5'-phosphate, is inserted during protein production to yield an active enzyme upon purification. After cell lysis, the tagged ALAS protein is isolated via a multistep purification that involves an initial nickel-affinity step, affinity tag cleavage and removal, and a final size exclusion chromatography polishing step. Importantly, this protocol is amenable to various ALAS truncations and mutations, opening the door to understanding ALAS biology and its intersections with iron utilization across several organisms.


Asunto(s)
Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Expresión Génica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Cromatografía de Afinidad , Histidina/metabolismo , Histidina/genética , Plásmidos/genética , Clonación Molecular/métodos , Cromatografía en Gel , Oligopéptidos
8.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892442

RESUMEN

Biopharmaceutical products, in particular messenger ribonucleic acid (mRNA), have the potential to dramatically improve the quality of life for patients suffering from respiratory and infectious diseases, rare genetic disorders, and cancer. However, the quality and safety of such products are particularly critical for patients and require close scrutiny. Key product-related impurities, such as fragments and aggregates, among others, can significantly reduce the efficacy of mRNA therapies. In the present work, the possibilities offered by size exclusion chromatography (SEC) for the characterization of mRNA samples were explored using state-of-the-art ultra-wide pore columns with average pore diameters of 1000 and 2500 Å. Our investigation shows that a column with 1000 Å pores proved to be optimal for the analysis of mRNA products, whatever the size between 500 and 5000 nucleotides (nt). We also studied the influence of mobile phase composition and found that the addition of 10 mM magnesium chloride (MgCl2) can be beneficial in improving the resolution and recovery of large size variants for some mRNA samples. We demonstrate that caution should be exercised when increasing column length or decreasing the flow rate. While these adjustments slightly improve resolution, they also lead to an apparent increase in the amount of low-molecular-weight species (LMWS) and monomer peak tailing, which can be attributed to the prolonged residence time inside the column. Finally, our optimal SEC method has been successfully applied to a wide range of mRNA products, ranging from 1000 to 4500 nt in length, as well as mRNA from different suppliers and stressed/unstressed samples.


Asunto(s)
Cromatografía en Gel , ARN Mensajero , ARN Mensajero/genética , ARN Mensajero/química , Cromatografía en Gel/métodos , Humanos , Porosidad , Peso Molecular , Cloruro de Magnesio/química
9.
PLoS One ; 19(6): e0305418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38889139

RESUMEN

Small extracellular vesicles (sEVs) are cell-released vesicles ranging from 30-150nm in size. They have garnered increasing attention because of their potential for both the diagnosis and treatment of disease. The diversity of sEVs derives from their biological composition and cargo content. Currently, the isolation of sEV subpopulations is primarily based on bio-physical and affinity-based approaches. Since a standardized definition for sEV subpopulations is yet to be fully established, it is important to further investigate the correlation between the biomolecular composition of sEVs and their physical properties. In this study, we employed a platform combining single-vesicle surface-enhanced Raman spectroscopy (SERS) and machine learning to examine individual sEVs isolated by size-exclusion chromatography (SEC). The biomolecular composition of each vesicle examined was reflected by its corresponding SERS spectral features (biomolecular "fingerprints"), with their roots in the composition of their collective Raman-active bonds. Origins of the SERS spectral features were validated through a comparative analysis between SERS and mass spectrometry (MS). SERS fingerprinting of individual vesicles was effective in overcoming the challenges posed by EV population averaging, allowing for the possibility of analyzing the variations in biomolecular composition between the vesicles of similar and/or different sizes. Using this approach, we uncovered that each of the size-based fractions of sEVs contained particles with predominantly similar SERS spectral features. Indeed, more than 84% of the vesicles residing within a particular group were clearly distinguishable from that of the other EV sub-populations, despite some spectral variations within each sub-population. Our results suggest the possibility that size-based EV fractionation methods produce samples where similarly eluted sEVs are correlated with their respective biochemical contents, as reflected by their SERS spectra. Our findings therefore highlight the possibility that the biogenesis and respective biological functionalities of the various sEV fractions may be inherently different.


Asunto(s)
Vesículas Extracelulares , Espectrometría Raman , Espectrometría Raman/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Cromatografía en Gel/métodos , Aprendizaje Automático , Espectrometría de Masas/métodos
10.
J Chromatogr A ; 1729: 465042, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38852271

RESUMEN

Aqueous mode size exclusion chromatography (SEC) was employed for the analysis and construction of molecular weight (MW) calibration curves of three water-soluble polymers, namely, polyethylene glycol, polyethylene oxide, and polyacrylic acid sodium salt. Several calibration curves were obtained, varying chromatographic conditions such as columns arrangement, ionic strength, temperature and pH, in addition trends in polymeric chromatographic behavior were examined. The variation in SEC distribution coefficients at different temperatures was found to be below 10 %, indicating that the studied polymers follow an ideal SEC mechanism under the tested conditions. Thus, differences in chromatographic behavior were ascribed to changes in polymer configuration induced by media and/or temperature. These variations in morphology were consistent with the observed SEC behavior. Regarding MW calibration, polynomial regression models ranging from first to fifth order were applied, and the most adequate ones were selected based on their fit and prediction capabilities. Third order polynomials were the preferred models for polyethylene glycol and polyacrylic acid sodium salt, independently of chromatographic conditions. Meanwhile for polyethylene oxide, either third or fifth-order polynomial models were optimal depending on the chromatographic conditions. All the selected regression models presented coefficients of multiple determination (R2) above 0.990, while achieving relative errors of prediction (REP%) in MW ranging from 0.3 to 4 % for cross-validation.


Asunto(s)
Cromatografía en Gel , Peso Molecular , Polietilenglicoles , Cromatografía en Gel/métodos , Calibración , Polietilenglicoles/química , Concentración Osmolar , Polímeros/química , Concentración de Iones de Hidrógeno , Resinas Acrílicas/química , Temperatura
11.
Biomacromolecules ; 25(7): 4420-4427, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38885360

RESUMEN

Poly(l-lactic acid) (PLA) is a biodegradable bioplastic with limited marine degradation. This study examines the impact of molecular weight on PLA's marine biodegradability. We synthesized PLA with terminal hydroxyl groups (PLA-OH) with degrees of polymerization (DP) between 14 and 642 and conducted biochemical oxygen demand (BOD) tests. Samples with a DP of 422 or 642 did not degrade, like commercial PLA. However, PLA-OH with a DP below 314 showed biodegradability, with DP 14 exhibiting a higher degradability than cellulose. Size exclusion chromatography (SEC) confirmed a decrease in molecular weight for samples with DPs below 314, indicating extracellular microbial activity. These findings suggest that PLA-OH with a DP under 314 can be degraded in marine conditions, unlike high-molecular-weight PLA. If the DP of high-molecular-weight PLA can be reduced to 314 by some specific method, then it is expected that PLA can be used to create marine biodegradable materials.


Asunto(s)
Biodegradación Ambiental , Peso Molecular , Poliésteres , Poliésteres/química , Poliésteres/metabolismo , Polímeros/química , Polímeros/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Cromatografía en Gel
12.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891833

RESUMEN

In the last few years, several studies have emphasized the existence of injury-specific EV "barcodes" that could have significant importance for the precise diagnosis of different organ injuries in polytrauma patients. To expand the research potential of the NTF (network trauma research) biobank of polytraumatized patients, the NTF research group decided to further establish a biobank for EVs. However, until now, the protocols for the isolation, characterization, and storage of EVs for biobank purposes have not been conceptualized. Plasma and serum samples from healthy volunteers (n = 10) were used. Three EV isolation methods of high relevance for the work with patients' samples (ultracentrifugation, size exclusion chromatography, and immune magnetic bead-based isolation) were compared. EVs were quantified using nanoparticle tracking analysis, EV proteins, and miRNAs. The effects of different isolation solutions; the long storage of samples (up to 3 years); and the sensibility of EVs to serial freezing-thawing cycles and different storage conditions (RT, 4/-20/-80 °C, dry ice) were evaluated. The SEC isolation method was considered the most suitable for EV biobanking. We did not find any difference in the quantity of EVs between serum and plasma-EVs. The importance of particle-free PBS as an isolation solution was confirmed. Plasma that has been frozen for a long time can also be used as a source of EVs. Serial freezing-thawing cycles were found to affect the mean size of EVs but not their amount. The storage of EV samples for 5 days on dry ice significantly reduced the EV protein concentration.


Asunto(s)
Bancos de Muestras Biológicas , Vesículas Extracelulares , Traumatismo Múltiple , Humanos , Vesículas Extracelulares/metabolismo , Traumatismo Múltiple/metabolismo , Traumatismo Múltiple/sangre , Manejo de Especímenes/métodos , Cromatografía en Gel/métodos , Masculino , Ultracentrifugación/métodos , MicroARNs/sangre , MicroARNs/genética , Adulto , Femenino
13.
Artículo en Inglés | MEDLINE | ID: mdl-38823148

RESUMEN

The development and optimization of Antibody-Drug Conjugates (ADCs) hinge on enhanced analytical and bioanalytical characterization, particularly in assessing critical quality attributes (CQAs). The ADC's potency is largely determined by the average number of drugs attached to the monoclonal antibody (mAb), known as the drug-to-antibody ratio (DAR). Furthermore, the drug load distribution (DLD) influences the therapeutic window of the ADC, defining the range of dosages effective in treating diseases without causing toxic effects. Among CQAs, DAR and DLD are vital; their control is essential for ensuring manufacturing consistency and product quality. Typically, hydrophobic interaction chromatography (HIC) or reversed-phase liquid chromatography (RPLC) with UV detector have been used to quantitate DAR and DLD in quality control (QC) environment. Recently, Native size-exclusion chromatography-mass spectrometry (nSEC-MS) proves the potential as a platformable quantitative method for characterizing DAR and DLD across various cysteine-linked ADCs in research or early preclinical development. In this work, we established and assessed a streamlined nSEC-MS workflow with a benchtop LC-MS platform, to quantitatively monitor DAR and DLD of different chemotype and drug load level cysteine-linked ADCs. Moreover, to deploy this workflow in QC environment, complete method validation was conducted in three independent laboratories, adhering to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2(R1) guidelines. The results met the predefined analytical target profile (ATP) and performance criteria, encompassing specificity/selectivity, accuracy, precision, linearity, range, quantification/detection limit, and robustness. Finally, the method validation design offers a reference for other nSEC-MS methods that are potentially used to determine the DAR and DLD on cysteine-linker ADCs. To the best of our knowledge, this study is the first reported systematic validation of the nSEC-MS method for detecting DAR and DLD. The results indicated that the co-validated nSEC-MS workflow is suitable for DAR and DLD routine analysis in ADC quality control, release, and stability testing.


Asunto(s)
Cromatografía en Gel , Cisteína , Inmunoconjugados , Espectrometría de Masas , Inmunoconjugados/química , Inmunoconjugados/análisis , Cisteína/química , Reproducibilidad de los Resultados , Cromatografía en Gel/métodos , Espectrometría de Masas/métodos , Modelos Lineales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/análisis , Límite de Detección , Humanos , Flujo de Trabajo
14.
Methods Mol Biol ; 2810: 329-353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38926289

RESUMEN

In the recent years, there has been a rapid development of new technologies and strategies when it comes to protein purification and quality control (QC), but the basic technologies for these processes go back a long way, with many improvements over the past few decades. The purpose of this chapter is to review these approaches, as well as some other topics such as the advantages and disadvantages of various purification methods for intracellular or extracellular proteins, the most effective and widely used genetically engineered affinity tags, solubility-enhancing tags, and specific proteases for removal of nontarget sequences. Affinity chromatography (AC), like Protein A or G resins for the recovery of antibodies or Fc fusion proteins or immobilized metals for the recovery of histidine-tagged proteins, will be discussed along with other conventional chromatography techniques: ion exchange (IEC), hydrophobic exchange (HEC), mixed mode (MMC), size exclusion (SEC), and ultrafiltration (UF) systems. How to select and combine these different technologies for the purification of any given protein and the minimal criteria for QC characterization of the purity, homogeneity, identity, and integrity of the final product will be presented.


Asunto(s)
Cromatografía de Afinidad , Control de Calidad , Proteínas Recombinantes , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/genética , Animales , Humanos , Cromatografía de Afinidad/métodos , Cromatografía por Intercambio Iónico/métodos , Ultrafiltración/métodos , Cromatografía en Gel/métodos
15.
Food Res Int ; 186: 114380, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729734

RESUMEN

Pea albumins are found in the side stream during the isolation of pea proteins. They are soluble at acidic pH and have functional properties which differ from their globulin counterparts. In this study, we have investigated the aggregation and structural changes occurring to pea albumins under different environmental conditions, using a combination of size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALS) and small-angle X-ray scattering (SAXS). Albumins were extracted from a dry fractionated pea protein concentrate by precipitating the globulin fraction at acidic pH. The albumins were then studied at different pH (3, 4, 4.5, 7, 7.5, and 8) values. The effect of heating at 90 °C for 1, 3, and 5 min on their structural changes was investigated using SAXS. In addition, size exclusion of the albumins showed 4 distinct populations, depending on pH and heating conditions, with two large aggregates peaks (∼250 kDa): a dimer peak (∼24 kDa) containing predominantly pea albumin 2 (PA2), and a monomer peak of a molar mass of about 12 kDa (PA1). X-ray scattering intensities as a function of q were modeled as polydisperse spheres, and their aggregation was followed as a function of heating time. Albumins was most stable at pH 3, showing no aggregation during heat treatment. While albumins at pH 7.5 and 8 showed aggregation after heating, solutions at pH 4, 4.5, and 7 already contained aggregates even before heating. This work provides new knowledge on the overall structural development of albumins under different environmental conditions, improving our ability to employ these as future ingredients in foods.


Asunto(s)
Calor , Proteínas de Guisantes , Pisum sativum , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Concentración de Iones de Hidrógeno , Pisum sativum/química , Proteínas de Guisantes/química , Albúminas/química , Cromatografía en Gel
16.
Methods Mol Biol ; 2799: 13-27, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727900

RESUMEN

N-methyl-D-aspartate (NMDA) receptors are critical for brain function and serve as drug targets for the treatment of neurological and psychiatric disorders. They typically form the tetrameric assembly of GluN1-GluN2 (2A to 2D) subtypes, with their diverse three-dimensional conformations linked with the physiologically relevant function in vivo. Purified proteins of tetrameric assembled NMDA receptors have broad applications in the structural elucidation, hybridoma technology for antibody production, and high-throughput drug screening. However, obtaining sufficient quantity and monodisperse NMDA receptor protein is still technically challenging. Here, we summarize a paradigm for the expression and purification of diverse NMDA receptor subtypes, with detailed descriptions on screening constructs by fluorescence size-exclusion chromatography (FSEC), generation of recombinant baculovirus, expression in the eukaryotic expression system, protein purification by affinity chromatography and size-exclusion chromatography (SEC), biochemical and functional validation assays.


Asunto(s)
Baculoviridae , Cromatografía de Afinidad , Cromatografía en Gel , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/aislamiento & purificación , Receptores de N-Metil-D-Aspartato/química , Animales , Baculoviridae/genética , Cromatografía de Afinidad/métodos , Humanos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Expresión Génica , Células Sf9
17.
Metallomics ; 16(6)2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38811147

RESUMEN

Red blood cells (RBCs) constitute ∼50% of the bloodstream and represent an important target for environmental pollutants and bacterial/viral infections, which can result in their rupture. In addition, diseases such as sickle cell anaemia and paroxysmal nocturnal haemoglobinuria can also result in the rupture of RBCs, which can be potentially life-threatening. With regard to the release of cytosolic metalloproteins from RBCs into the blood-organ system, the biochemical fate of haemoglobin is rather well understood, while comparatively little is known about another highly abundant Zn-metalloprotein, carbonic anhydrase (CA I). To gain insight into the interaction of CA I with human blood plasma constituents, we have employed a metallomics tool comprised of size-exclusion chromatography (SEC) coupled online with an inductively coupled plasma atomic emission spectrometer (ICP-AES), which allows to simultaneously observe all Cu, Fe, and Zn-metalloproteins. After the addition of CA I to human blood plasma incubated at 37°C, the SEC-ICP-AES analysis using phosphate buffered saline (pH 7.4) after 5 min, 1 h, and 2 h revealed that CA I eluted after all endogenous Zn-metalloproteins in the 30 kDa range. Matrix-assisted laser desorption-time of flight mass spectrometry analysis of the collected Zn-peak confirmed that CA I eluted from the column intact. Our in vitro results suggest that CA I released from RBCs to plasma remains free and may be actively involved in health-relevant adverse processes that unfold at the bloodstream-endothelial interface, including atherosclerosis and vision loss.


Asunto(s)
Anhidrasa Carbónica I , Eritrocitos , Humanos , Eritrocitos/metabolismo , Anhidrasa Carbónica I/metabolismo , Zinc/metabolismo , Zinc/sangre , Cromatografía en Gel , Plasma/metabolismo , Plasma/química , Espectrofotometría Atómica
18.
Anal Chim Acta ; 1309: 342666, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772654

RESUMEN

BACKGROUND: Peroxisome proliferator-activated receptors (PPARs) belong to the superfamily of nuclear receptors and represent the targets for the therapeutical treatment of type 2 diabetes, dyslipidemia and hyperglycemia associated with metabolic syndrome. Some medicinal plants have been traditionally used to treat this kind of metabolic diseases. Today only few drugs targeting PPARs have been approved and for this reason, the rapid identification of novel ligands and/or chemical scaffolds starting from natural extracts would benefit of a selective affinity ligand fishing assay. RESULTS: In this paper we describe the development of a new ligand fishing assay based on size exclusion chromatography (SEC) coupled to LC-MS for the analysis of complex samples such as botanical extracts. The known PPARα and PPARγ ligands, WY-14643 and rosiglitazone respectively, were used for system development and evaluation. The system has found application on an Allium lusitanicum methanolic extract, containing saponins, a class of chemical compounds which have attracted interest as PPARs ligands because of their hypolipidemic and insulin-like properties. SIGNIFICANCE: A new SEC-AS-MS method has been developed for the affinity screening of PPARα and PPARγ ligands. The system proved to be highly specific and will be used to improve the throughput for the identification of new selective metabolites from natural souces targeting PPARα and PPARγ.


Asunto(s)
Cromatografía en Gel , PPAR alfa , PPAR gamma , Extractos Vegetales , PPAR gamma/metabolismo , PPAR gamma/química , PPAR alfa/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ligandos , Espectrometría de Masas , Rosiglitazona/farmacología , Rosiglitazona/química , Humanos , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/análisis , Pirimidinas
19.
Mar Drugs ; 22(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38786588

RESUMEN

Red phycoerythrin (R-PE) is a highly valuable protein found in an edible seaweed, Pyropia yezoensis. It is used extensively in biotechnological applications due to its strong fluorescence and stability in diverse environments. However, the current methods for extracting and purifying R-PE are costly and unsustainable. The aim of the present study was to enhance the financial viability of the process by improving the extraction and purification of R-PE from dried P. yezoensis and to further enhance R-PE value by incorporating it into a tandem dye for molecular biology applications. A combination of ultrafiltration, ion exchange chromatography, and gel filtration yielded concentrated (1 mg·mL-1) R-PE at 99% purity. Using purified PE and Cyanine5 (Cy5), an organic tandem dye, phycoerythrin-Cy5 (PE-Cy5), was subsequently established. In comparison to a commercially available tandem dye, PE-Cy5 exhibited 202.3% stronger fluorescence, rendering it suitable for imaging and analyzes that require high sensitivity, enhanced signal-to-noise ratio, broad dynamic range, or shorter exposure times to minimize potential damage to samples. The techno-economic analysis confirmed the financial feasibility of the innovative technique for the extraction and purification of R-PE and PE-Cy5 production.


Asunto(s)
Carbocianinas , Ficoeritrina , Ficoeritrina/química , Ficoeritrina/aislamiento & purificación , Carbocianinas/química , Algas Marinas/química , Colorantes Fluorescentes/química , Cromatografía por Intercambio Iónico/métodos , Cromatografía en Gel/métodos , Ultrafiltración/métodos , Rhodophyta/química , Pigmentos Biológicos/aislamiento & purificación , Pigmentos Biológicos/química , Algas Comestibles , Porphyra
20.
Georgian Med News ; (348): 81-86, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38807397

RESUMEN

The study included the purification of glutathione peroxidase enzyme (GPX) in the serum of women with breast cancer, which involved 60 samples of serum from women with breast cancer, and 30 samples from healthy individuals. The results of the study showed a significant decrease at a probability level of p<0.0001 for the activity of the GPX enzyme in the serum of women with breast cancer. Additionally, the GPX enzyme was purified from the serum of women with breast cancer through precipitation with ammonium sulfate and dialysis, and the use of DEAE-Cellulose ion exchange chromatography and gel filtration chromatography using Sephadex G-100, where a main protein band was separated, which was relied upon in determining the optimal conditions for the partially purified enzyme. The optimal conditions for the partially purified enzyme from the serum of women with breast cancer were determined and the highest activity was for the substrate concentration of 0.1 mM H2O2. The maximum speed Vmax was 3.125IU/L and the Michaelis-Menten constant Km was 0.0179 M using Lineweaver-Burk plot, the optimal pH was at 8.5, temperature at 37°C, and the highest activity time was at 5 minutes.


Asunto(s)
Neoplasias de la Mama , Glutatión Peroxidasa , Humanos , Femenino , Neoplasias de la Mama/enzimología , Glutatión Peroxidasa/sangre , Glutatión Peroxidasa/aislamiento & purificación , Glutatión Peroxidasa/química , Concentración de Iones de Hidrógeno , Peróxido de Hidrógeno/química , Persona de Mediana Edad , Cinética , Temperatura , Cromatografía por Intercambio Iónico , Cromatografía en Gel , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...