Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.114
Filtrar
1.
Int J Nanomedicine ; 19: 6643-6658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979532

RESUMEN

Purpose: Nanovesicles (NVs) derived from bone mesenchymal stem cells (BMSCs) as drug delivery systems are considered an effective therapeutic strategy for diabetes. However, its mechanism of action remains unclear. Here, we evaluated the efficacy and molecular mechanism of BMSC-derived NVs carrying the curcumin analog H8 (H8-BMSCs-NVs) on hepatic glucose and lipid metabolism in type 2 diabetes (T2D). Subjects and Methods: Mouse BMSCs were isolated by collagenase digestion and H8-BMSCs-NVs were prepared by microvesicle extrusion. The effects of H8-BMSCs-NVs on hepatic glucose and lipid metabolism were observed in a T2D mouse model and a HepG2 cell insulin resistance model. To evaluate changes in potential signaling pathways, the PI3K/AKT/AMPK signaling pathway and expression levels of G6P and PEPCK were assessed by Western blotting. Results: H8-BMSCs-NVs effectively improved lipid accumulation in liver tissues and restored liver dysfunction in T2D mice. Meanwhile, H8-BMSCs-NVs effectively inhibited intracellular lipid accumulation in the insulin resistance models of HepG2 cells. Mechanistic studies showed that H8-BMSCs-NVs activated the PI3K/AKT/AMPK signaling pathway and decreased the expression levels of G6P and PEPCK. Conclusion: These findings demonstrate that H8-BMSCs-NVs improved hepatic glucose and lipid metabolism in T2D mice by activating the PI3K/AKT/AMPK signaling pathway, which provides novel evidence suggesting the potential of H8-BMSCs-NVs in the clinically treatment of T2D patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Metabolismo de los Lípidos , Hígado , Células Madre Mesenquimatosas , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Hep G2 , Glucosa/metabolismo , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Curcumina/farmacología , Curcumina/química , Curcumina/administración & dosificación , Resistencia a la Insulina , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Diabetes Mellitus Experimental/metabolismo
2.
Chem Biol Drug Des ; 104(1): e14583, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991995

RESUMEN

In this work, a series of curcumin derivatives (1a-1h, 2a-2g, and 3a-3c) were synthesized for the suppression of castration-resistant prostate cancer cells. All synthesized compounds were characterized by 1H NMR, 13C NMR, HRMS, and melting point. The in vitro cytotoxicity study shows that compounds 1a, 1e, 1f, 1h, 2g, 3a, and 3c display similar or enhanced cytotoxicity against 22Rv1 and C4-2 cells as compared to ASC-J9, other synthesized compounds display reduced cytotoxicity against 22Rv1 and C4-2 cells as compared to ASC-J9. Molecular docking simulation was performed to study the binding affinity and probable binding modes of the synthesized compounds with androgen receptor. The results show that all synthesized compounds exhibit higher cdocker interaction energies as compared to ASC-J9. Compounds 1h, 2g, and 3c not only show strong cytotoxicity against 22Rv1 and C4-2 cells but also exhibit high binding affinity with androgen receptor. In androgen receptor suppression study, compounds 1f and 2g show similar androgen receptor suppression effect as compared to ASC-J9 on C4-2 cells, compound 3c displays significantly enhanced AR suppression effect as compared to ASC-J9, 1f and 2g. Compounds 1a, 1e, 1f, 1h, 2g, 3a and 3c prepared in this work have significant potential for castration-resistant prostate cancer therapy.


Asunto(s)
Curcumina , Simulación del Acoplamiento Molecular , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Curcumina/farmacología , Curcumina/química , Curcumina/síntesis química , Curcumina/metabolismo , Masculino , Humanos , Receptores Androgénicos/metabolismo , Receptores Androgénicos/química , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/síntesis química , Antagonistas de Receptores Androgénicos/metabolismo , Sitios de Unión , Unión Proteica
3.
Sci Rep ; 14(1): 16059, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992159

RESUMEN

Cholangiocarcinoma (CCA) is often diagnosed late, leading to incomplete tumor removal, drug resistance and reduced chemotherapy efficacy. Curcumin has the potential for anti-cancer activity through various therapeutic properties and can improve the efficacy of chemotherapy. We aimed to investigate the synergistic effect of a combination of curcumin and gemcitabine against CCA, targeting the LAT2/glutamine pathway. This combination synergistically suppressed proliferation in gemcitabine-resistant CCA cells (KKU-213BGemR). It also resulted in a remarkable degree of CCA cell apoptosis and cell cycle arrest, characterized by a high proportion of cells in the S and G2/M phases. Knockdown of SLC7A8 decreased the expressions of glutaminase and glutamine synthetase, resulting in inhibited cell proliferation and sensitized CCA cells to gemcitabine treatment. Moreover, in vivo experiments showed that a combination curcumin and gemcitabine significantly reduced tumor size, tumor growth rate and LAT2 expression in a gemcitabine-resistant CCA xenograft mouse model. Suppression of tumor progression in an orthotopic CCA hamster model provided strong support for clinical application. In conclusion, curcumin synergistically enhances gemcitabine efficacy against gemcitabine-resistant CCA by induction of apoptosis, partly via inhibiting LAT2/glutamine pathway. This approach may be an alternative strategy for the treatment of gemcitabine-resistant in CCA patients.


Asunto(s)
Apoptosis , Proliferación Celular , Colangiocarcinoma , Curcumina , Desoxicitidina , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Gemcitabina , Glutamina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Animales , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Humanos , Curcumina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones , Glutamina/metabolismo , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal/efectos de los fármacos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Masculino
4.
Helicobacter ; 29(4): e13110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39001634

RESUMEN

BACKGROUND: Antimicrobial-resistant Helicobacter pylori (H. pylori) poses a significant public health concern, especially given the limited therapeutic options for azithromycin-resistant strains. Hence, there is a necessity for new studies to reconsider the use of azithromycin, which has diminished in effectiveness against numerous strains. Thus, we aimed to augment azithromycin's anti-Helicobacter properties by combining it with curcumin in different formulations, including curcumin in clove oil, curcumin nano-gold emulsion, and curcumin nanoemulsion. METHODS: The antimicrobial activities of the investigated compounds, both individually and in combination with other anti-Helicobacter drugs, were evaluated. Their antibiofilm and anti-virulence properties were assessed using both phenotypic and genotypic methods, alongside molecular docking studies. Our findings were further validated through mouse protection assays and histopathological analysis. RESULTS: We observed high anti-Helicobacter activities of curcumin, especially curcumin nanoemulsion. A synergistic effect was detected between curcumin nanoemulsion and azithromycin with fraction inhibitory concentration index (FICI) values <0.5. The curcumin nanoemulsion was the most active anti-biofilm and anti-virulence compound among the examined substances. The biofilm-correlated virulence genes (babA and hopQ) and ureA genes were downregulated (fold change <1) post-treatment with curcumin nanoemulsion. On the protein level, the anti-virulence activities of curcumin nanoemulsion were documented based on molecular docking studies. These findings aligned with histopathological scoring of challenge mice, affirming the superior efficacy of curcumin nanoemulsion/azithromycin combination. CONCLUSION: The anti-Helicobacter activities of all curcumin physical forms pose significant challenges due to their higher  minimum inhibitory concentration (MIC) values exceeding the maximum permissible level. However, using curcumin nanoemulsion at sub-MIC levels could enhance the anti-Helicobacter activity of azithromycin and exhibit anti-virulence properties, thereby improving patient outcomes and addressing resistant pathogens. Therefore, more extensive studies are necessary to assess the safety of incorporating curcumin nanoemulsion into H. pylori treatment.


Asunto(s)
Antibacterianos , Azitromicina , Biopelículas , Curcumina , Infecciones por Helicobacter , Simulación del Acoplamiento Molecular , Azitromicina/farmacología , Azitromicina/química , Animales , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Biopelículas/efectos de los fármacos , Curcumina/farmacología , Curcumina/química , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/genética , Pruebas de Sensibilidad Microbiana , Sinergismo Farmacológico , Productos Biológicos/farmacología , Productos Biológicos/química , Virulencia/efectos de los fármacos , Femenino
5.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000554

RESUMEN

Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancers and is highly aggressive. Despite an initial positive response to chemotherapy, most patients experience rapid disease progression leading to relapse and metastasis. This is attributed to the presence of breast cancer stem cells (BCSCs) within the tumor, which are characterized by self-renewal, pluripotency, and resistance mechanisms. Targeting BCSCs has become critical as conventional therapies fail to eradicate them due to a lack of specific targets. Curcumin, a polyphenol derived from turmeric (Curcuma longa), exhibits anticancer effects against breast cancer cells and BCSCs. The use of curcumin derivatives has been suggested as an approach to overcome the bioavailability and solubility problems of curcumin in humans, thereby increasing its anticancer effects. The aim of this study was to evaluate the cellular and molecular effects of six synthetic compounds derived from the natural polyphenol epigallocatechin gallate (EGCG) (TL1, TL2) and curcumin derivatives (TL3, TL4, TL5, and TL6) on a TNBC mesenchymal stem-like cell line. The activity of the compounds against BCSCs was also determined by a mammosphere inhibition assay and studying different BCSC markers by Western blotting. Finally, a drug combination assay was performed with the most promising compounds to evaluate their potential synergistic effects with the chemotherapeutic agents doxorubicin, cisplatin, and paclitaxel. The results showed that compounds exhibited specific cytotoxicity against the TNBC cell line and BCSCs. Interestingly, the combination of the curcumin derivative TL3 with doxorubicin and cisplatin displayed a synergistic effect in TNBC cells.


Asunto(s)
Curcumina , Células Madre Neoplásicas , Polifenoles , Neoplasias de la Mama Triple Negativas , Humanos , Curcumina/farmacología , Curcumina/análogos & derivados , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Polifenoles/farmacología , Polifenoles/química , Línea Celular Tumoral , Femenino , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Catequina/análogos & derivados , Catequina/farmacología , Catequina/química
6.
J Nanobiotechnology ; 22(1): 400, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972995

RESUMEN

Considerable attention has been directed towards exploring the potential efficacy of miR-155 in the realm of cancer immunotherapy. Elevated levels of miR-155 in dendritic cells (DCs) have been shown to enhance their maturation, migration, cytokine secretion, and their ability to promote T cell activation. In addition, overexpression of mir155 in M2 macrophages boost the polarization towards the M1 phenotype. Conversely, miR-155 has the propensity to induce the accumulation of immunosuppressive cells like regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in the tumor tissue. To account for this discrepancy, it is imperative to get help from a drug that could deal with immunosuppressive effect. Curcumin (CUR) exhibits the capacity to prompt Tregs converse into T helper 1 cells, fostering the polarization of M2 tumor-associated macrophage towards the M1 phenotype, and impeding the recruitment and aggregation of MDSCs within the tumor microenvironment. Nonetheless, CUR is known to exert an immunosuppressive impact on DCs by hindering the expression of maturation markers, cytokines, and chemokines, thereby prevent DCs response to immunostimulatory agents. Hence, a reactive oxygen species/glutathione dual responsive drug conveyance platform (CUR/miR155@DssD-Hb NPs) was devised to co-deliver CUR and miR155, with the aim of exploring their synergistic potential in bolstering a sustained and robust anti-tumor immune response. In vitro and in vivo results have suggested that CUR/miR155@DssD-Hb NPs can effectively inhibit the viability of 4T1 and B16F10 tumor cells, trigger the release of damage associated molecular patterns, stimulate DCs maturation, subsequent activation of CD8+ T cells, diminish immunosuppressive cell populations (MDSCs, Tregs, M2 TAMs and exhausted T cells), promote the formation of long-term immunity and lessen the formation of metastatic nodules in the lungs. In summary, the co-delivery system integrating CUR and miR155 (CUR/miR155@DssD-Hb NPs) demonstrates promise as a promising strategy for the immunotherapy of melanoma and triple negative breast cancer.


Asunto(s)
Curcumina , Células Dendríticas , Inmunoterapia , MicroARNs , Nanopartículas , Especies Reactivas de Oxígeno , Curcumina/farmacología , Curcumina/química , MicroARNs/genética , Animales , Ratones , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Inmunoterapia/métodos , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Línea Celular Tumoral , Femenino , Ratones Endogámicos C57BL , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos BALB C , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Humanos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología
7.
Org Biomol Chem ; 22(29): 5948-5959, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38979663

RESUMEN

The most prominent pathophysiological hallmark of Alzheimer's disease is the aggregation of amyloid-ß (Aß) peptides into senile plaques. Curcumin and its derivatives exhibit a high affinity for binding to Aß fibrils, effectively inhibiting their growth. This property holds promise for both therapeutic applications and diagnostic molecular imaging. In this study, curcumin was functionalized with perfluoro-tert-butyl groups to create candidate molecular probes specifically targeted to Aß fibrils for use in 19F-magnetic resonance imaging. Two types of fluorinated derivatives were considered: mono-substituted (containing nine fluorine atoms per molecule) and disubstituted (containing eighteen fluorine atoms). The linker connecting the perfluoro moiety with the curcumin scaffold was evaluated for its impact on binding affinity and water solubility. All mono-substituted compounds and one disubstituted compound exhibited a binding affinity toward Aß fibrils on the same order of magnitude as reference curcumin. The insertion of a charged carboxylate group into the linker enhanced the water solubility of the probes. Compound Curc-Glu-F9 (with one L-glutamyl moiety and a perfluoro-tert-butyl group), showed the best properties in terms of binding affinity towards Aß fibrils, water solubility, and intensity of the 19F-NMR signal in the Aß oligomer bound form.


Asunto(s)
Péptidos beta-Amiloides , Curcumina , Placa Amiloide , Curcumina/química , Curcumina/farmacología , Curcumina/síntesis química , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Halogenación , Humanos , Solubilidad , Imagen por Resonancia Magnética con Fluor-19 , Estructura Molecular
8.
Molecules ; 29(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998962

RESUMEN

Cancer is one of the deadliest diseases to humanity. There is significant progress in treating this disease, but developing some drugs that can fight this disease remains a challenge in the field of medical research. Thirteen new 1,2,3-triazole linked tetrahydrocurcumin derivatives were synthesized by click reaction, including a 1,3-dipolar cycloaddition reaction of tetrahydrocurcumin baring mono-alkyne with azides in good yields, and their in vitro anticancer activity against four cancer cell lines, including human cervical carcinoma (HeLa), human lung adenocarcinoma (A549), human hepatoma carcinoma (HepG2), and human colon carcinoma (HCT-116) were investigated using MTT(3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetraz-olium bromide) assay. The newly synthesized compounds had their structures identified using NMR HRMS and IR techniques. Some of prepared compounds, including compounds 4g and 4k, showed potent cytotoxic activity against four cancer cell lines compared to the positive control of cisplatin and tetrahydrocurcumin. Compound 4g exhibited anticancer activity with a IC50 value of 1.09 ± 0.17 µM against human colon carcinoma HCT-116 and 45.16 ± 0.92 µM against A549 cell lines compared to the positive controls of tetrahydrocurcumin and cisplatin. Moreover, further biological examination in HCT-116 cells showed that compound 4g can arrest the cell cycle at the G1 phase. A docking study revealed that the potential mechanism by which 4g exerts its anti-colon cancer effect may be through inhabiting the binding of APC-Asef. Compound 4g can be used as a promising lead for further exploration of potential anticancer agents.


Asunto(s)
Antineoplásicos , Curcumina , Simulación del Acoplamiento Molecular , Triazoles , Humanos , Curcumina/farmacología , Curcumina/análogos & derivados , Curcumina/química , Curcumina/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Células A549 , Células HCT116 , Células Hep G2
9.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000093

RESUMEN

Deoxynivalenol (DON) is a mycotoxin produced by Fusarium graminearum, and curcumin (CUR) is a natural polyphenolic compound found in turmeric. However, the combined treatment of CUR and DON to explore the mitigating effect of CUR on DON and their combined mechanism of action is not clear. Therefore, in this study, we established four treatment groups (CON, CUR, DON and CUR + DON) to investigate their mechanism in the porcine intestinal epithelial cells (IPEC-J2). In addition, the cross-talk and alleviating potential of CUR interfering with DON-induced cytotoxic factors were evaluated by in vitro experiments; the results showed that CUR could effectively inhibit DON-exposed activated TNF-α/NF-κB pathway, attenuate DON-induced apoptosis, and alleviate DON-induced endoplasmic reticulum stress and oxidative stress through PERK/CHOP pathways, which were verified at both mRNA and protein levels. In conclusion, these promising findings may contribute to the future use of CUR as a novel feed additive to protect livestock from the harmful effects of DON.


Asunto(s)
Apoptosis , Curcumina , Estrés del Retículo Endoplásmico , Tricotecenos , Tricotecenos/farmacología , Tricotecenos/toxicidad , Animales , Curcumina/farmacología , Porcinos , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Línea Celular , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Breast Cancer Res ; 26(1): 114, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978121

RESUMEN

The protein Bcl-2, well-known for its anti-apoptotic properties, has been implicated in cancer pathogenesis. Identifying the primary gene responsible for promoting improved cell survival and development has provided compelling evidence for preventing cellular death in the progression of malignancies. Numerous research studies have provided evidence that the abundance of Bcl-2 is higher in malignant cells, suggesting that suppressing Bcl-2 expression could be a viable therapeutic approach for cancer treatment. In this study, we acquired a compound collection using a database that includes constituents from Traditional Chinese Medicine (TCM). Initially, we established a pharmacophore model and utilized it to search the TCM database for potential compounds. Compounds with a fitness score exceeding 0.75 were selected for further analysis. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis identified six compounds with favorable therapeutic characteristics. The compounds that successfully passed the initial screening process based on the pharmacodynamic model were subjected to further evaluation. Extra-precision (XP) docking was employed to identify the compounds with the most favorable XP docking scores. Further analysis using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method to calculate the overall free binding energy. The binding energy between the prospective ligand molecule and the target protein Bcl-2 was assessed by a 100 ns molecular dynamics simulation for curcumin and Epigallocatechin gallate (EGCG). The findings of this investigation demonstrate the identification of a molecular structure that effectively inhibits the functionality of the Bcl-2 when bound to the ligand EGCG. Consequently, this finding presents a novel avenue for the development of pharmaceuticals capable of effectively addressing both inflammatory and tumorous conditions.


Asunto(s)
Catequina , Curcumina , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-bcl-2 , Catequina/análogos & derivados , Catequina/farmacología , Catequina/química , Catequina/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Humanos , Curcumina/farmacología , Curcumina/química , Curcumina/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Unión Proteica , Farmacóforo
11.
Drug Des Devel Ther ; 18: 2869-2881, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006191

RESUMEN

Background: Parkinson's disease (PD) is the most prevalent movement disorder. Curcumin, a polyphenol with hydrophobic properties, has been proved against Parkinson. Our previous study suggested that curcumin's effectiveness in treating Parkinson's disease may be linked to the gut-brain axis, although the specific mechanism by which curcumin exerts neuroprotective effects in the brain remains unknown. Methods: The therapeutic efficacy of curcumin was evaluated using behavioral tests, immunofluorescence of tyrosine hydroxylase (TH). Network pharmacology and transcriptomics predicted the mechanisms of curcumin in PD. Activation of the phosphatidylinositol 3-kinase PI3K/AKT pathway was confirmed by quantitative polymerase chain reaction (qPCR) and immunofluorescence. Results: Curcumin restored the dyskinesia and dopaminergic neurons damage of MPTP-induced mice. Curcumin against Parkinson's disease by regulating inflammation, oxidative stress, and aging. The mechanisms of these were associated with activation of PI3K / AKT pathway. Conclusion: In conclusion, the neuroprotective mechanisms of curcumin activate PI3K / AKT pathway in Parkinson's disease was revealed by our study.


Asunto(s)
Curcumina , Ratones Endogámicos C57BL , Farmacología en Red , Fármacos Neuroprotectores , Enfermedad de Parkinson , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Curcumina/farmacología , Curcumina/química , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Ratones , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Transcriptoma/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad
12.
BMC Vet Res ; 20(1): 316, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014404

RESUMEN

This study aimed to evaluate the impacts of supplemental dietary curcumin on post-partum uterine involution using pulsed-wave Doppler ultrasonography in postpartum goats. Ten pluriparous Zaraibi goats were used and divided into two groups. Group 1 (n = 5; control) received only a base diet. Group 2 (n = 5; treated) received a base diet supplemented with curcumin (200 mg/kg diet) daily for 28 days, starting from day 1 postpartum (PP) till day 28 PP. Uterine morphometrical changes (uterine horn diameter; UHD and caruncle diameter; CD), uterine hemodynamics (resistance and pulsatility indices (RI and PI), systolic/ diastolic ratio (S/D), peak systolic velocity (PSV), end-diastolic velocity (EDV), blood flow volume (BFV), and blood flow rate (BFR)), and progesterone level were evaluated. Results revealed that the diameter of the uterine horn decreased rapidly from day 1 to day 10 PP (> 50%) but more steadily from day 14 to day 28 PP in both groups. After day 21 PP, there was nearly no reduction in UHD and CD in both groups. The treated group had lower values of the RI and PI (P < 0.05) than the control group. Regarding the BFR and BFV in the treated group, there was a significant increase (P < 0.05) on day 17 PP, then started to decrease till day 28 PP. While in the control group, there was a significant decrease (P < 0.05) in BFR and BFV from day 1 PP till day 28 PP. In conclusion, the incorporation of curcumin in the diet of PP Zaraibi goats improved reproductive performance via improvements in uterine morphometric changes as well as blood perfusion.


Asunto(s)
Curcumina , Suplementos Dietéticos , Cabras , Periodo Posparto , Útero , Animales , Femenino , Cabras/fisiología , Curcumina/farmacología , Curcumina/administración & dosificación , Útero/efectos de los fármacos , Útero/diagnóstico por imagen , Útero/irrigación sanguínea , Periodo Posparto/efectos de los fármacos , Dieta/veterinaria , Ultrasonografía Doppler de Pulso/veterinaria , Alimentación Animal/análisis , Progesterona/sangre
13.
J Nanobiotechnology ; 22(1): 420, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014462

RESUMEN

Triple negative breast cancer (TNBC) has the characteristics of low immune cell infiltration, high expression of tumor programmed death ligand 1 (PD-L1), and abundant cancer stem cells. Systemic toxicity of traditional chemotherapy drugs due to poor drug selectivity, and chemotherapy failure due to tumor drug resistance and other problems, so it is particularly important to find new cancer treatment strategies for TNBC with limited treatment options. Both the anti-tumor natural drugs curcumin and ginsenoside Rg3 can exert anti-tumor effects by inducing immunogenic cell death (ICD) of tumor cells, reducing PD-L1 expression, and reducing cancer stem cells. However, they have the disadvantages of poor water solubility, low bioavailability, and weak anti-tumor effect of single agents. We used vinyl ether bonds to link curcumin (Cur) with N-O type zwitterionic polymers and at the same time encapsulated ginsenoside Rg3 to obtain hyperbranched zwitterionic drug-loaded micelles OPDEA-PGED-5HA@Cur@Rg3 (PPH@CR) with pH response. In vitro cell experiments and in vivo animal experiments have proved that PPH@CR could not only promote the maturation of dendritic cells (DCs) and increase the CD4+ T cells and CD8+ T cells by inducing ICD in tumor cells but also reduce the expression of PD-L1 in tumor tissues, and reduce cancer stem cells and showed better anti-tumor effects and good biological safety compared with free double drugs, which is a promising cancer treatment strategy.


Asunto(s)
Antineoplásicos , Antígeno B7-H1 , Curcumina , Ginsenósidos , Animales , Curcumina/farmacología , Curcumina/química , Ginsenósidos/química , Ginsenósidos/farmacología , Humanos , Concentración de Iones de Hidrógeno , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Femenino , Antígeno B7-H1/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Micelas , Ratones Endogámicos BALB C , Polímeros/química , Polímeros/farmacología , Células Dendríticas/efectos de los fármacos , Nanopartículas/química , Células Madre Neoplásicas/efectos de los fármacos , Portadores de Fármacos/química , Óxidos/química , Óxidos/farmacología
14.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(4): 541-552, 2024 Apr 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39019783

RESUMEN

OBJECTIVES: Super-enhancer-associated genes may be closely related to the progression of osteosarcoma, curcumin exhibits a certain inhibitory effect on tumors such as osteosarcoma. This study aims to investigate the effects of curcumin on osteosarcoma in vitro and in vivo, and to determine whether curcumin can inhibit the progression of osteosarcoma by suppressing the expression of super-enhancer-associated genes LIM and senescent cell antigen-like-containing domain 1 (LIMS1), secreted protein acidic and rich in cysteine (SPARC), and sterile alpha motif domain containing 4A (SAMD4A). METHODS: Human osteosarcoma cell lines (MG63 cells or U2OS cells) were treated with 5 to 50 µmol/L curcumin for 24, 48, and 72 hours, followed by the methyl thiazolyl tetrazolium (MTT) assay to detect cell viability. Cells were incubated with dimethyl sulfoxide (DMSO) or curcumin (2.5, 5.0 µmol/L) for 7 days, and a colony formation assay was used to measure in vitro cell proliferation. After treatment with DMSO or curcumin (10, 15 µmol/L), a scratch healing assay and a transwell migration assay were performed to evaluate cell migration ability. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR) and Western blotting were used to detect mRNA and protein expression levels of LIMS1, SPARC, and SAMD4A in the cells. An osteosarcoma-bearing nude mouse model was established, and curcumin was administered via gavage for 14 days to assess the impact of curcumin on tumor volume and weight in vivo. Real-time RT-PCR was used to measure mRNA expression levels of LIMS1, SPARC, and SAMD4A in the cancer and adjacent tissues from 12 osteosarcoma patients. RESULTS: After treating cells with different concentrations of curcumin for 24, 48, and 72 hours, cell viability were all significantly decreased. Compared with the DMSO group, the colony formation rates in the 2.5 µmol/L and 5.0 µmol/L curcumin groups significantly declined (both P<0.01). The scratch healing assay showed that, compared with the DMSO group, the migration rates of cells in the 10 µmol/L and 15 µmol/L curcumin groups were significantly reduced. The exception was the 10 µmol/L curcumin group at 24 h, where the migration rate of U2OS cells did not show a statistically significant difference (P>0.05), while all other differences were statistically significant (P<0.01 or P<0.001). The transwell migration assay results showed that the number of migrating cells in the 10 µmol/L and 15 µmol/L curcumin groups was significantly lower than that in the DMSO group (both P<0.001). In the in vivo tumor-bearing mouse experiment, the curcumin group showed a reduction in tumor mass (P<0.01) and a significant reduction in tumor volume (P<0.001) compared with the control group. Compared with the DMSO group, the mRNA expression levels of LIMS1, SPARC, and SAMD4A in the 10 µmol/L and 15 µmol/L curcumin groups were significantly down-regulated (all P<0.05). Additionally, the protein expression level of LIMS1 in U2OS cells in the 10 µmol/L curcumin group was significantly lower than that in the DMSO group (P<0.05). Compared with adjacent tissues, the mRNA expression level of SPARC in osteosarcoma tissues was significantly increased (P<0.001), while the mRNA expression levels of LIMS1 and SAMD4A did not show statistically significant differences (both P>0.05). CONCLUSIONS: Curcumin inhibits the proliferation and migration of osteosarcoma both in vitro and in vivo, which may be associated with the inactivation of super-enhancer-associated gene LIMS1.


Asunto(s)
Neoplasias Óseas , Movimiento Celular , Proliferación Celular , Curcumina , Ratones Desnudos , Osteonectina , Osteosarcoma , Osteosarcoma/genética , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/metabolismo , Curcumina/farmacología , Humanos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Ratones , Osteonectina/genética , Osteonectina/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/farmacología , Ratones Endogámicos BALB C
15.
Sci Rep ; 14(1): 16636, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025941

RESUMEN

In therapies, curcumin is now commonly formulated in liposomal form, administered through injections or creams. This enhances its concentration at the cellular level compared to its natural form ingestion. Due to its hydrophobic nature, curcumin is situated in the lipid part of the membrane, thereby modifying its properties and influencing processes The aim of the research was to investigate whether the toxicity of specific concentrations of curcumin, assessed through biochemical tests for the SK-N-SH and H-60 cell lines, is related to structural changes in the membranes of these cells, caused by the localization of curcumin in their hydrophobic regions. Biochemical tests were performed using spectrophotometric methods. Langmuir technique were used to evaluate the interaction of the curcumin with the studied lipids. Direct introduction of curcumin into the membranes alters their physicochemical parameters. The extent of these changes depends on the initial properties of the membrane. In the conducted research, it has been demonstrated that curcumin may exhibit toxicity to human cells. The mechanism of this toxicity is related to its localization in cell membranes, leading to their dysfunction. The sensitivity of cells to curcumin presence depends on the saturation level of their membranes; the more rigid the membrane, the lower the concentration of curcumin causes its disruption.


Asunto(s)
Membrana Celular , Curcumina , Neuroblastoma , Curcumina/farmacología , Curcumina/química , Humanos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patología , Línea Celular Tumoral , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Leucemia/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Interacciones Hidrofóbicas e Hidrofílicas
16.
Chin J Dent Res ; 27(2): 169-174, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38953482

RESUMEN

OBJECTIVE: To evaluate the effect of entrapment of curcumin within liposomal formulation and the sustained release attitude of the formulated liposomal gel on periodontal defects in diabetic patients in clinical and biochemical terms. METHODS: Thirty diabetic patients with periodontitis were randomly assigned to three equal groups and ten healthy participants were assigned as the control group. Group I was subjected to scaling and root planing (SRP) with application of sustained release liposomal curcumin gel. Group II was subjected to scaling and root planning with application of curcumin gel. Group III was subjected to scaling and root planning with application of placebo gel. Group IV (control group), no intervention was done. The following parameters were evaluated before treatment and after 6 and 12 weeks: plaque index (PI), gingival index (GI), probing depth (PD), clinical attachment level (CAL), tumour necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1ß) and total antioxidant capacity (TAC). RESULTS: All study groups showed improvement in clinical and biochemical parameters that are statistically significant. Upon comparing the results of treatment modalities, the highest improvement was achieved in group I followed by group II then group III. CONCLUSION: Sustained release liposomal curcumin gel enhanced the antioxidant capacity, decreased the inflammatory mediators and showed more improvement in clinical outcome for treatment of periodontitis in diabetic patients.


Asunto(s)
Curcumina , Preparaciones de Acción Retardada , Liposomas , Humanos , Curcumina/uso terapéutico , Curcumina/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Adulto , Raspado Dental , Periodontitis/tratamiento farmacológico , Aplanamiento de la Raíz , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa , Antioxidantes/uso terapéutico , Antioxidantes/administración & dosificación , Índice Periodontal
17.
J Biochem Mol Toxicol ; 38(7): e23760, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953502

RESUMEN

Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy. Curcumin (CUR) and piperine (PP) show a protective effect on neurodegenerative and neurological diseases. This research was designed to measure several biochemical parameters in the brain tissue of CP-applied rats to investigate the impact of combined CUR-PP administration. The study evaluated six groups of eight rats: Group 1 was the control; Groups 2 and 3 were administered 200 or 300 mg/kg CUR-PP via oral gavage; Group 4 received only 200 mg/kg CP on day 1; Groups 5 and 6 received CP + CUR-PP for 7 days. Data from all parameters indicated that CP caused brain damage. Phosphorylated TAU (pTAU), amyloid-beta peptide 1-42 (Aß1-42), glutamate (GLU), and gamma amino butyric acid (GABA) parameters were the same in Groups 4, 5, and 6. On the other hand, 8-hydroxy-2-deoxyguanosine (8-OHdG), nitric oxide (NO), interleukin-6 (IL-6), nuclear factor kappa beta (NF-kß), malondialdehyde (MDA), and tumor necrosis factor-alpha (TNF-α) levels in the CP + CUR-PP groups were lower than those in the CP group (p < 0.05). However, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH) parameters were higher in the CP + CUR-PP groups compared to the CP group (p < 0.05). It is thought that the similarity of Groups 5 and 6 with Group 4 in Aß1-42, pTAU, GLU, and GABA parameters hinder the determination of treatment protection however, they might have a therapeutic effect if the applied dose or study duration were changed. This study attempted to evaluate the effects of a CUR-PP combination on CP-induced brain damage in rats by measuring biochemical parameters and performing histopathological examinations. Based on the findings, this CUR-PP combination could be considered an alternative medicine option in cases with conditions similar to those evaluated in this study.


Asunto(s)
Alcaloides , Benzodioxoles , Lesiones Encefálicas , Curcumina , Ciclofosfamida , Piperidinas , Alcamidas Poliinsaturadas , Animales , Alcamidas Poliinsaturadas/farmacología , Benzodioxoles/farmacología , Curcumina/farmacología , Piperidinas/farmacología , Alcaloides/farmacología , Ratas , Ciclofosfamida/toxicidad , Ciclofosfamida/efectos adversos , Masculino , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/prevención & control , Ratas Wistar , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Estrés Oxidativo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología
18.
PLoS One ; 19(7): e0299135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008500

RESUMEN

OBJECTIVES: Meta-analysis was conducted to examine the effect of supplemental curcumin intake on skeletal muscle injury status and to propose an optimal intervention program. METHODS: In accordance with the procedures specified in the PRISMA statement for systematic reviews and meta-analyses of randomized controlled trials, the Review Manager 5.3 was used to analyze the results of creatine kinase (CK), muscle soreness, interleukin-6 (IL-6), and range of motion (ROM) as outcome indicators in the 349 subjects included in the 14 articles. RESULTS: The effect size of curcumin supplementation on muscle soreness, mean difference (MD) = -0.61; the relationship between curcumin supplementation and muscle soreness for time of measurement (I2 = 83.6%)、the relationship between curcumin supplementation and muscle soreness for period of intervention (I2 = 26.2%)、the relationship between whether one had been trained (I2 = 0%) and supplementation dose (I2 = 0%) were not heterogeneous for the relationship between curcumin supplementation and muscle soreness; The effect size on CK, MD = -137.32; the relationship between curcumin supplementation and CK (I2 = 79.7%)、intervention period (I2 = 91.9%)、whether or not trained (I2 = 90.7%)、and no heterogeneity in the relationship between curcumin supplementation and CK for the time of measurement (I2 = 0%); The effect size MD = 4.10 for the effect on ROM; The effect size for IL-6 was MD = -0.33. CONCLUSIONS: This meta-analysis highlights that curcumin supplementation significantly mitigates skeletal muscle damage, with notable improvements in CK levels, muscle soreness, IL-6 levels, and ROM. The results highlight the importance of curcumin dosage and timing, revealing that prolonged supplementation yields the best results, especially for untrained individuals or those less exposed to muscle-damaging exercise. For muscle soreness and ROM enhancement, a pre-emptive, low-dose regimen is beneficial, while immediate post-exercise supplementation is most effective at reducing CK and IL-6 levels.


Asunto(s)
Creatina Quinasa , Curcumina , Suplementos Dietéticos , Interleucina-6 , Músculo Esquelético , Mialgia , Curcumina/farmacología , Curcumina/administración & dosificación , Curcumina/uso terapéutico , Humanos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Mialgia/tratamiento farmacológico , Creatina Quinasa/sangre , Interleucina-6/sangre , Interleucina-6/metabolismo , Rango del Movimiento Articular/efectos de los fármacos
19.
Reprod Fertil Dev ; 362024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38870343

RESUMEN

Context Carbon tetrachloride (CCl4 ) is a chemical that is still widely used in industry and has been shown to cause structural defects in rat testicles through oxidative stress. Aims In our study, the effect of curcumin on CCl4 -mediated testicular damage was investigated. Methods Twenty-four adult Wistar albino male rats weighing 300-350g were divided into four groups: control group (olive oil was applied by gavage every consecutive day for 3weeks); curcumin and CCl4 +curcumin groups (200mg/kg curcumin dissolved in olive oil was given by gavage once a day, every consecutive day for 3weeks); and CCl4 and CCl4 +curcumin groups (0.5mL/kg CCl4 was dissolved in olive oil at a ratio of 1/1 and given by i.p. injection every other day for 3weeks). Tissue samples were examined histopathologically, histomorphometrically, immunohistochemically and biochemically. Key results CCl4 disrupted both testicular morphology and testosterone synthesis, whereas curcumin treatment resulted in an improvement in testicular morphology and biochemical parameters, as well as a decrease in caspase-3 and tumour necrosis factor-α expression. Conclusions Curcumin has a protective effect on testicular tissue damage caused by CCl4 with its anti-inflammatory, antiapoptotic and antioxantioxidant properties. Implications Curcumin can prevent testicular damage due to CCl4 , an environmental pollutant.


Asunto(s)
Tetracloruro de Carbono , Curcumina , Estrés Oxidativo , Ratas Wistar , Testículo , Testosterona , Animales , Masculino , Curcumina/farmacología , Testículo/efectos de los fármacos , Testículo/patología , Testículo/metabolismo , Testosterona/sangre , Ratas , Estrés Oxidativo/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Enfermedades Testiculares/prevención & control , Enfermedades Testiculares/patología , Enfermedades Testiculares/inducido químicamente , Enfermedades Testiculares/metabolismo
20.
Carbohydr Polym ; 341: 122330, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38876726

RESUMEN

Polyelectrolyte complexes (PECs) were elaborated from chitosan as cationic polymer and carboxy-methylpullulan (CMP), hyaluronic acid (HA) and their derivatives grafted with aminoguaiacol (G) with different degrees of substitution (DSGA) with the aim of obtaining nanogels for drug delivery. For each couple of polysaccharides, the charge ratios giving the smaller size with the lower PDI were selected to produce PECs. CMP_CHIT and CMP-G_CHIT PECs had smaller sizes (220-280 nm) than HA_CHIT and HA-G_CHIT PECs (280-390 nm). PECs were stable at 4 °C during 28 days at pH 5. In phosphate buffer saline (PBS) at pH 7.4, at 4 °C, a better stability of PECs based on CMP-G derivatives was observed. The hydrophobic associations between aminoguaiacol groups (highlighted by measurements of pyrene fluorescence) led to a better PECs' stabilization in PBS. The PECs' antioxidant and antibacterial activities were demonstrated and related to the DSGA. Diclofenac and curcumin were used as drug models: their loading reached 260 and 53 µg/mg PEC, respectively. The release of diclofenac in PBS at 37 °C followed a quasi-Fickian diffusion mechanism with release constant between 0.88 and 1.04 h-1. The curcumin release followed a slow linear increase in PBS/EtOH (60/40 V/V) with an effect of DSGA.


Asunto(s)
Antibacterianos , Quitosano , Curcumina , Ácido Hialurónico , Ácido Hialurónico/química , Quitosano/química , Quitosano/análogos & derivados , Curcumina/química , Curcumina/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Guayacol/química , Guayacol/análogos & derivados , Guayacol/farmacología , Diclofenaco/química , Diclofenaco/farmacología , Portadores de Fármacos/química , Polielectrolitos/química , Sistemas de Liberación de Medicamentos/métodos , Nanogeles/química , Glucanos/química , Escherichia coli/efectos de los fármacos , Liberación de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...