RESUMEN
The insecticidal sesquiterpenes cadina-4,10(15)-dien-3-one and aromadendr-1(10)-en-9-one were administered to the fungus Cyathus africanus ATCC 35853. Biotransformation of the former produced (4R)-9α-hydroxycadin-10(15)-en-3-one, while the latter gave 2ß-hydroxyaromadendr-1(10)-en-9-one, 2α-hydroxyaromadendr-1(10)-en-9-one and 10α-hydroxy-1ß,2ß-epoxyaromadendran-9-one. The bioconversion of santonin led to the production of two analogues, 11,13-dihydroxysantonin and the hitherto unreported 8α,13-dihydroxysantonin, while cedrol yielded 3ß,8ß-dihydroxycedrane and 3α,8ß-dihydroxycedrane. Stemod-12-ene, a diterpene, was transformed to 2-oxostemar-13-ene, a hitherto unknown analogue with a rearranged carbon framework. When methyl betulonate, a triterpenoid belonging to the lupane family, was supplied to the fungus 18α-ursane and 18α-oleanane derivatives, namely 19ß-hydroxy-3-oxo-18α-oleanan-28-oic acid and 19α-hydroxy-3-oxo-18α-ursan-28-oic acids, were generated. There are no previous reports of fungal transformation of a triterpene in which a skeletal rearrangement occurred. All substrate administration experiments were done in the presence of the terpene cyclase inhibitor chlorocholine chloride (CCC), using the single phase - pulse feed method.