Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14456, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914602

RESUMEN

In recent decades, the food system has been faced with the significant problem of increasing food waste. Therefore, the feed industry, supported by scientific research, is attempting to valorise the use of discarded biomass as co-products for the livestock sector, in line with EU objectives. In parallel, the search for functional products that can ensure animal health and performances is a common fundamental goal for both animal husbandry and feeding. In this context, camelina cake (CAMC), cardoon cake (CC) and cardoon meal (CM), due valuable nutritional profile, represent prospective alternatives. Therefore, the aim of this work was to investigate the antioxidant activity of CAMC, CC and CM following in vitro digestion using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), Ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Total phenolic content (TPC) and angiotensin converting enzyme (ACE) inhibitory activity, actively involved in modulating antioxidant properties, were also studied. Further, a peptidomic analysis was adopted to substantiate the presence of bioactive peptides after in vitro digestion. The results obtained confirmed an interesting nutritional profile of CAMC, CC and CM and relevant antioxidant and ACE inhibitory activities. In particular, considering antioxidant profile, CM and CC revealed a significantly higher (10969.80 ± 18.93 mg TE/100 g and 10451.40 ± 149.17 mg TE/100 g, respectively; p < 0.05) ABTS value than CAMC (9511.18 ± 315.29 mg TE/100 g); a trend also confirmed with the FRAP assay (306.74 ± 5.68 mg FeSO4/100 g; 272.84 ± 11.02 mg FeSO4/100 g; 103.84 ± 3.27 mg FeSO4/100 g, for CC, CM and CAMC, respectively). Similar results were obtained for TPC, demonstrating the involvement of phenols in modulating antioxidant activity. Finally, CAMC was found to have a higher ACE inhibitory activity (40.34 ± 10.11%) than the other matrices. Furthermore, potentially bioactive peptides associated with ACE inhibitory, anti-hypertensive, anti-cancer, antimicrobial, antiviral, antithrombotic, DPP-IV inhibitory and PEP-inhibitory activities were identified in CAMC. This profile was broader than that of CC and CM. The presence of such peptides corroborates the antioxidant and ACE profile of the sample. Although the data obtained report the important antioxidant profile of CAMC, CC, and CM and support their possible use, future investigations, particularly in vivo trials will be critical to evaluate and further investigate their effects on the health and performance of farm animals.


Asunto(s)
Antioxidantes , Cynara , Antioxidantes/farmacología , Antioxidantes/análisis , Antioxidantes/química , Cynara/química , Brassicaceae/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Fenoles/análisis , Fenoles/química , Péptidos/química , Péptidos/análisis , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alimentación Animal/análisis , Proteómica/métodos
2.
Food Chem ; 456: 139945, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38850604

RESUMEN

This study investigated the potential of incorporating cardoon (Cynara cardunculus L.) blades as bioactive and dietary fiber ingredients in vegetable/fruit-based smoothies, within a zero-waste approach. The smoothie formulations were pasteurized by high-pressure (550 MPa for 3 min, HPP) and thermal (90 °C for 30 s, TP) treatments and stored at 4 °C for 50 days. Cardoon-fortified smoothies exhibited higher viscosity, darker color, increased phenolic compound levels, and greater anti-inflammatory and antioxidant activities. Furthermore, the cardoon blade ingredients contributed to a more stable dietary fiber content throughout the smoothies' shelf-life. HPP-processed smoothies did not contain sucrose, suggesting enzymatic activity that resulted in sucrose hydrolysis. All beverage formulations had low or no microbial growth within European limits. In conclusion, the fortification of smoothies with cardoon blades enhanced bioactive properties and quality attributes during their shelf-life, highlighting the potential of this plant material as a potential functional food ingredient in a circular economy context.


Asunto(s)
Cynara , Pasteurización , Cynara/química , Calor , Antioxidantes/química , Alimentos Funcionales/análisis , Manipulación de Alimentos/instrumentación , Frutas/química , Frío , Almacenamiento de Alimentos , Bebidas/análisis
3.
Recent Adv Food Nutr Agric ; 15(1): 74-82, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38305313

RESUMEN

BACKGROUND: Non-alcoholic Fatty liver disease (NAFLD) is becoming a major global health burden in the world. Cynara cardunculus is an edible plant growing wild in the North of Algeria. Its potential as a source of health-promoting compounds is still underexplored. OBJECTIVES: This study aimed to explore the preventive effect of Cynara cardunculus (C. cardunculus) on the NAFLD model. METHODS: Total flavonoid contents (TFC) and in vitro antioxidant effects of butanolic (n- BuTOH) and ethyl acetate (EtOAc) fractions on scavenging the ABTS+ radical, inhibition of lipid peroxidation and reducing power proprieties were assessed. The n-ButOH fraction showed the highest TFC and antioxidant capacity in all realized assays. This fraction is used for anti- NAFLD experiments. Adult male Albinos mice were divided into four groups. Group 1 was normal control. Group 2 was watered with 30% of fructose for three weeks to induce the NAFLD model. Group 3 and Group 4 were co-treated with C. cardunculus n-ButOH fractions and Atorvastatin, respectively for three weeks. Blood and livers were collected for biochemical and histological analysis. RESULTS: The C. cardunculus n-ButOH fractions significantly restored levels of transaminases, triglycerides, cholesterol, LDL, glucose and uric acid. The n-ButOH fraction exerted an improving effect on the body and liver weight and liver index. It also significantly corrected the imbalance in liver MDA and GSH levels. The n-ButOH fractions further ameliorated abnormalities in liver histology through suppression of lipid droplets accumulation. CONCLUSION: This research proves that the flavonoid-rich fraction of C. cardunculus has protective activity against high fructose intake in mice via reversing hyperlipidemia and boosting liver antioxidant capacity.


Asunto(s)
Cynara , Modelos Animales de Enfermedad , Flavonoides , Fructosa , Hígado , Enfermedad del Hígado Graso no Alcohólico , Extractos Vegetales , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flavonoides/análisis , Ratones , Masculino , Cynara/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Fructosa/efectos adversos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Antioxidantes/farmacología , Peroxidación de Lípido/efectos de los fármacos , Humanos
4.
Chem Biodivers ; 21(4): e202400203, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407466

RESUMEN

Wild cardoon (Cynara cardunculus var. sylvestris) is the ancestor of many cultivated forms, including globe artichoke (C. cardunculus var. scolymus). Four organs (receptacles, bracts, leaves and stems) of wild and cultivated artichokes (organic and conventional) were assessed considering their individual phenolic constituents (HPLC-DAD), total phenol-flavonoid content, and pharmaceutical potentials (antibacterial and antioxidant). All three sources of artichokes had the highest concentration of 1,3-dicaffeoylquinic acid (cynarin) in their receptacles and cultivated artichoke receptacles had more cynarin than wild one. On the other hand, receptacles of wild cardoon had the highest 1,5-dicaffeoylquinic acid and caffeic acid than the cultivated ones. Generally, receptacles, stems and leaves of wild cardoon were superior to both cultivated artichokes on antioxidant potential, and total phenol-flavonoid content. The rise in total phenolic content can be attributed to an increase in antioxidant capacity in all artichoke organs. Only the leaves of all different artichokes showed antibacterial activity against Gram-positive bacteria. The investigated wild cardoon was believed to be a true ancestor since a comparison of wild and cultivated varieties revealed similar trends in terms of phenolic profile and biological properties. The nutraceutical industry can profit from this invasive wild cardoon due to their strong antioxidant potential and phenolic content.


Asunto(s)
Cinamatos , Cynara scolymus , Cynara , Fenoles , Antibacterianos/farmacología , Antioxidantes/farmacología , Cynara/química , Cynara scolymus/química , Suplementos Dietéticos/análisis , Flavonoides/farmacología , Fenoles/análisis , Fenoles/química , Fenoles/farmacología
5.
Food Chem ; 423: 136275, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37172504

RESUMEN

Cynara cardunculus L. var. altilis DC. belongs to the Asteraceae family and is widely used. This species is integrated into the Mediterranean diet and has broad applicability due to its rich chemical composition. Its flowers, used as a vegetable coagulant for gourmet cheese production, are rich in aspartic proteases. Leaves are rich in sesquiterpene lactones, the most abundant being cynaropicrin, while stems present a higher abundance of hydroxycinnamic acids. Both classes of compounds exhibit a wide range of bioactive properties. Its chemical composition makes it applicable in other industrial sectors, such as energy (e.g., manufacturing of biodiesel and biofuel) or paper pulp production, among other biotechnological applications. In the last decade, cardoon has been identified as a competitive energy crop, constituting an opportunity for the economic recovery and development of the rural areas of the Mediterranean basin. This article reviews the chemical composition, bioactive properties, and multifaceted industrial applications of cardoon.


Asunto(s)
Proteasas de Ácido Aspártico , Cynara , Cynara/química , Ácido Aspártico Endopeptidasas , Hojas de la Planta , Flores
6.
Molecules ; 28(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985448

RESUMEN

Cynara cardunculus subsp. sylvestris (wild artichoke) is widespread in Sicily, where it has been used for food and medicinal purposes since ancient times; decoctions of the aerial parts of this plant have been traditionally employed as a remedy for different hepatic diseases. In this study, the phenolic profile and cell-free antioxidant properties of the leaf aqueous extract of wild artichokes grown in Sicily (Italy) were investigated. The crude extract was also tested in cells for its antioxidant characteristics and potential oxidative stress inhibitory effects. To resemble the features of the early stage of mild steatosis in humans, human HepG2 cells treated with free fatty acids at the concentration of 1.5 mM were used. HPLC-DAD analysis revealed the presence of several phenolic acids (caffeoylquinic acids) and flavonoids (luteolin and apigenin derivatives). At the same time, DPPH assay showed a promising antioxidant power (IC50 = 20.04 ± 2.52 µg/mL). Biological investigations showed the safety of the crude extract and its capacity to counteract the injury induced by FFA exposure by restoring cell viability and counteracting oxidative stress through inhibiting reactive oxygen species and lipid peroxidation and increasing thiol-group levels. In addition, the extract increased mRNA expression of some proteins implicated in the antioxidant defense (Nrf2, Gpx, and SOD1) and decreased mRNA levels of inflammatory cytokines (IL-6, TNF-α, and IL-1ß), which were modified by FFA treatment. Results suggest that the total phytocomplex contained in wild artichoke leaves effectively modulates FFA-induced hepatic oxidative stress.


Asunto(s)
Asteraceae , Cynara scolymus , Cynara , Humanos , Cynara/química , Cynara scolymus/química , Antioxidantes/química , Asteraceae/metabolismo , Células Hep G2 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fenoles/química , Estrés Oxidativo , Sicilia , ARN Mensajero/metabolismo , Hojas de la Planta/química
7.
Molecules ; 28(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36770795

RESUMEN

The main interest in the valorization of vegetable wastes is due to the peculiarity of their chemical composition in substances that present important properties. Among these substances, antioxidants could replace those industrially manufactured. In the present study, three solvents of different polarities (hexane, ethanol, and water) were applied for the extraction of phenolic compounds from Cynara cardunculus L. waste using two extraction methods: Soxhlet Extraction (SE) and Ultrasonic-Assisted Extraction (UAE). The obtained extracts were then characterized by Fourier-Transform Infrared (FTIR) spectroscopy and spectrophotometric determination of Total Phenolics (TPC), Total Flavonoids (TFC), and Condensed Tannins (CT). Total Antioxidant Capacity (TAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity of ethanol and water extracts of leaves and stems were also evaluated. High extraction yields were obtained by UAE. Water extracts had high yield regardless of the technique used for leaves and stems, and these extracts showed high TAC of 534.72 ± 3.83 mg AAE/g FM for leaves and 215.70 ± 8.87 mg AAE/g FM (mg of ascorbic acid equivalent per g of FM) for stems, and IC50 of 2077.491 µg/mL for leaves and 1248.185 µg/mL for stems. We explain the latter by the high total phenolic contents (TPCs), which reach 579.375 ± 3.662 mg GAE/g FM (mg of gallic acid equivalents per g of fresh matter) for leaves and 264.906 ± 3.500 mg GAE/g FM for stems. These results confirmed that the leaves and stems of the studied cardoon waste were, indeed, interesting sources of natural antioxidants.


Asunto(s)
Antioxidantes , Cynara , Antioxidantes/química , Cynara/química , Extractos Vegetales/química , Hojas de la Planta/química , Solventes/química , Agua/análisis , Etanol/análisis , Flavonoides/análisis
8.
Molecules ; 27(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36557905

RESUMEN

This study investigates the bioactive properties of different extracts of cardoon leaves in rescuing neuronal development arrest in an in vitro model of Rett syndrome (RTT). Samples were obtained from plants harvested at different maturity stages and extracted with two different methodologies, namely Naviglio® and supercritical carbon dioxide (scCO2). While scCO2 extracts more hydrophobic fractions, the Naviglio® method extracts phenolic compounds and less hydrophobic components. Only the scCO2 cardoon leaves extract obtained from plants harvested in spring induced a significant rescue of neuronal atrophy in RTT neurons, while the scCO2 extract from the autumn harvest stimulated dendrite outgrowth in Wild-Type (WT) neurons. The scCO2 extracts were the richest in squalene, 3ß-taraxerol and lupeol, with concentrations in autumn harvest doubling those in spring harvest. The Naviglio® extract was rich in cynaropicrin and exerted a toxic effect at 20 µM on both WT and RTT neurons. When cynaropicrin, squalene, lupeol and 3ß-taraxerol were tested individually, no positive effect was observed, whereas a significant neurotoxicity of cynaropicrin and lupeol was evident. In conclusion, cardoon leaves extracts with high content of hydrophobic bioactive molecules and low cynaropicrin and lupeol concentrations have pharmacological potential to stimulate neuronal development in RTT and WT neurons in vitro.


Asunto(s)
Cynara , Síndrome de Rett , Cynara/química , Escualeno , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
Food Res Int ; 156: 111330, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35651080

RESUMEN

In the present study petioles were collected from cultivated cardoon (Cynara cardunculus L. var altilis) plants in central Greece at sixteen harvest dates (samples P1-P16) and nine growth stages (principal growth stages (PGS) 1-9). The main objective of this study was to study the influence of petioles' growth cycle on their chemical composition. The lipidic content, fatty acids, free sugars, organic acids, and tocopherol composition were analyzed. A total of 27 fatty acids were identified, being the palmitic acid (C16:0, 12.42-50%) the most abundant, except for samples P4 and P5 where linoleic acid revealed the highest relative abundance (C18:2n6c, 46.5 and 39.05%, respectively). The α-, ß-, and γ-tocopherols were the identified isoforms of vitamin E, with sample P1 recording the highest tocopherol content. The detected organic acids were oxalic, quinic, malic, citric, and fumaric acids with the highest content being observed in sample P1. Sucrose was the major sugar in all the analyzed samples, followed by fructose, glucose, trehalose, and raffinose. The obtained results allowed us to characterize the chemical composition of cardoon petioles throughout its growth cycle and, consequently, to valorize the species through the exploitation of underutilized plant tissues.


Asunto(s)
Cynara , Antioxidantes , Carbohidratos , Cynara/química , Ácidos Grasos , Tocoferoles
10.
Neurochem Res ; 47(7): 1888-1903, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35426598

RESUMEN

This study aimed to evaluate the effect of Cynara cardunculus leaf ethanol extract on inflammatory and oxidative stress parameters in the hypothalamus, prefrontal cortex, hippocampus, striatum, cerebral cortex and liver of high-fat diet-induced obese mice. Food intake, body weight, visceral fat weight, and liver weight were also evaluated. Male Swiss mice were divided into control (low-fat purified diet) and obese (high-fat purified diet) groups. After 6 weeks, mice were divided into control + saline, control + C. cardunculus leaf ethanol extract, obese + saline, obese + C. cardunculus leaf ethanol extract. Cynara cardunculus leaf ethanol extract (1600 mg/kg/day) or saline was administered orally for 4 weeks. Brain structures (hypothalamus, hippocampus, prefrontal cortex, striatum and cerebral cortex) and liver were removed. Treatment with C. cardunculus leaf ethanol extract did not affect body weight but did reduce visceral fat. Obesity can cause inflammation and oxidative stress and increase the activity of antioxidant enzymes in brain structures. Treatment with ethanolic extract of C. cardunculus leaves partially reversed the changes in inflammatory damage parameters and oxidative damage parameters and attenuated changes in the antioxidant defense. The C. cardunculus leaf ethanol extract benefited from the brains of obese animals by partially reversing the changes caused by the consumption of a high-fat diet and the consequent obesity. These results corroborate those of studies indicating that the C. cardunculus leaf ethanol extract can contribute to the treatment of obesity.


Asunto(s)
Cynara scolymus , Cynara , Animales , Antioxidantes/farmacología , Cynara/química , Cynara scolymus/química , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Etanol/efectos adversos , Masculino , Ratones , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA