RESUMEN
Pyrophosphatases (PPases) are enzymes that catalyze the hydrolysis of pyrophosphate (PPi), a byproduct of the synthesis and degradation of diverse biomolecules. The accumulation of PPi in the cell can result in cell death. Although the substrate is the same, there are variations in the catalysis and features of these enzymes. Two enzyme forms have been identified in bacteria: cytoplasmic or soluble pyrophosphatases and membrane-bound pyrophosphatases, which play major roles in cell bioenergetics. In eukaryotic cells, cytoplasmic enzymes are the predominant form of PPases (c-PPases), while membrane enzymes (m-PPases) are found only in protists and plants. The study of bacterial cytoplasmic and membrane-bound pyrophosphatases has slowed in recent years. These enzymes are central to cell metabolism and physiology since phospholipid and nucleic acid synthesis release important amounts of PPi that must be removed to allow biosynthesis to continue. In this review, two aims were pursued: first, to provide insight into the structural features of PPases known to date and that are well characterized, and to provide examples of enzymes with novel features. Second, the scientific community should continue studying these enzymes because they have many biotechnological applications. Additionally, in this review, we provide evidence that there are m-PPases present in fungi; to date, no examples have been characterized. Therefore, the diversity of PPase enzymes is still a fruitful field of research. Additionally, we focused on the roles of H+/Na+ pumps and m-PPases in cell bioenergetics. Finally, we provide some examples of the applications of these enzymes in molecular biology and biotechnology, especially in plants. This review is valuable for professionals in the biochemistry field of protein structure-function relationships and experts in other fields, such as chemistry, nanotechnology, and plant sciences.
Asunto(s)
Bacterias , Pirofosfatasa Inorgánica , Pirofosfatasa Inorgánica/metabolismo , Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/genética , Bacterias/enzimología , Hongos/enzimología , Difosfatos/metabolismo , Difosfatos/químicaRESUMEN
This work describes a novel analytical method using capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4D) for simultaneous, simple, and rapid determination of three inorganic phosphates (orthophosphate, pyrophosphate, and tripolyphosphate) widely used as food additives and in pharmaceutical formulations. A background electrolyte composed of 0.5 mol L-1 acetic acid provided fast separation (around 3.0 min) and good separation efficiency and peak resolution. Linearity in the concentration range of 10-500 mg L-1 was confirmed by the coefficients of determination (R2) higher than 0.99. The limits of detection varied from 0.41 to 0.58 mg L-1. The accuracy of the proposed method was assessed by recovery tests conducted at three concentration levels in tap water samples, food, and personal hygiene products. Recovery values varying from 81% to 118% were achieved, indicating an acceptable accuracy. The proposed CE-C4D successfully determined the three inorganic phosphates in the analyzed samples.
Asunto(s)
Difosfatos , Conductividad Eléctrica , Electroforesis Capilar , Límite de Detección , Fosfatos , Polifosfatos , Electroforesis Capilar/métodos , Fosfatos/análisis , Fosfatos/química , Difosfatos/análisis , Difosfatos/química , Polifosfatos/análisis , Polifosfatos/química , Reproducibilidad de los Resultados , Modelos Lineales , Análisis de los Alimentos/métodosRESUMEN
Experiments were conducted to evaluate the stability and degradation of NBPT under storage conditions and to quantify urease activity, ammonia losses by volatilization, and agronomic efficiency of urea treated with different urease inhibitors, measured in the field. Experiments included urea treated with 530 mg NBPT kg-1 (UNBPT) in contact with six P-sources (monoammonium phosphate-MAP; single superphosphate; triple superphosphate; P-Agrocote; P-Phusion; P-Policote), with two P-concentrations (30; 70%); the monitoring four N-technologies (SoILC; Limus; Nitrain; Anvol); and the application of conventional urea (UGRAN) or urea treated with urease inhibitors as topdressing in three maize fields, at three N rates. It is concluded that: the mixture of UNBPT and P-fertilizers is incompatible. When MAP granules were coated to control P-release (P-Agrocote), the degradation of NBPT was moderate (approximately 400 mg kg-1 at the end of the storage test). SoILC and Limus solvent technologies extended the NBPT half-life by up to 3.7 and 4.7 months, respectively. Under field, each inhibition technology reduced urease activity, and lowered the intensity of ammonia emission compared to UGRAN by 50-62%. Our results show that the concentration of NBPT is reduced by up to 53.7% for mixing with phosphates. In addition, even with coatings, the storage of mixtures of urea with NBPT and phosphates should be for a time that does not reduce the efficiency of the inhibitor after application, and this time under laboratory conditions was 168 h. The reduction of NBPT concentration in urea is reduced even in isolated storage, our results showed that the half-life time is variable according to the formulation used, being 4.7, 3.7, 2.8 and 2.7 days for Limus, SoILC, Nitrain and Anvol, respectively. The results of these NBPT formulations in the field showed that the average losses by volatilization in the three areas were: 15%, 16%, 17%, 19% and 39% of the N applied, for SoILC, Anvol, Nitrain, Limus and urea, respectively. The rate of nitrogen application affected all agronomic variables, with varied effects in Ingaí. Even without N, yields were higher than 9200 kg ha-1 of grains. The increase in nitrogen rates resulted in linear increases in production and N removal in Luminárias and Ingaí, but in Lavras, production decreased above 95.6 kg ha-1 of N. The highest production in Lavras (13,772 kg ha-1 of grains) occurred with 100 kg ha-1 of N. The application of Anvol reduced the removal of N in Ingaí.
Asunto(s)
Amoníaco , Suelo , Amoníaco/metabolismo , Fertilizantes , Ureasa/metabolismo , Urea/farmacología , Urea/metabolismo , Agricultura/métodos , Difosfatos , Tecnología , Nitrógeno/metabolismoRESUMEN
Purinergic signaling is a pathway related to pain underlying mechanisms. Adenosine is a neuromodulator responsible for the regulation of multiple physiological and pathological conditions. Extensive advances have been made to understand the role of adenosine in pain regulation. Here we investigated the effects of purinergic compounds able to modulate adenosine production or catabolism on pain responses induced by Acetic Acid (AA) in zebrafish larvae. We investigated the preventive role of the ecto-5'-nucleotidase inhibitor adenosine 5'-(α,ß-methylene)diphosphate (AMPCP) and adenosine deaminase inhibitor erythro-9-(2-Hydroxy-3-nonyl)-adenine (EHNA) on the AA-pain induced model. The pain responses were evaluated through exploratory and aversive behaviors in zebrafish larvae. The exploratory behavior showed a reduction in the distance covered by animals exposed to 0.0025% and 0.050% AA. The movement and acceleration were reduced when compared to control. The treatment with AMPCP or EHNA followed by AA exposure did not prevent behavioral changes induced by AA for any parameter tested. There were no changes in aversive behavior after the AA-induced pain model. After AA-induced pain, the AMP hydrolysis increased on zebrafish larvae. However, the AMPCP or EHNA exposure did not prevent changes in AMP hydrolysis induced by the AA-induced pain model in zebrafish larvae. Although AMPCP or EHNA did not show differences in the AA-induced pain model, our results revealed changes in AMP hydrolysis, suggesting the involvement of the purinergic system in zebrafish larvae pain responses.
Asunto(s)
5'-Nucleotidasa , Pez Cebra , 5'-Nucleotidasa/metabolismo , Adenina , Adenosina/metabolismo , Inhibidores de la Adenosina Desaminasa , Adenosina Monofosfato/metabolismo , Animales , Difosfatos , Larva/metabolismo , Nucleósidos , Dolor/inducido químicamente , Pez Cebra/metabolismoRESUMEN
PURPOSE: γδ T lymphocytes are non-conventional T cells that participate in protective immunity and tumor surveillance. In healthy humans, the main subset of circulating γδ T cells express the TCRVγ9Vδ2. This subset responds to non-peptide prenyl-pyrophosphate antigens such as (E)-4-hydroxy-3-methyl-but-enyl pyrophosphate (HMBPP). This unique feature of Vγ9Vδ2 T cells makes them a candidate for anti-tumor immunotherapy. In this study, we investigated the response of HMBPP-activated Vγ9Vδ2 T lymphocytes to glioblastoma multiforme (GBM) cells. METHODS: Human purified γδ T cells were stimulated with HMBPP (1 µM) and incubated with GBM cells (U251, U373 and primary GBM cultures) or their conditioned medium. After overnight incubation, expression of CD69 and perforin was evaluated by flow cytometry and cytokines production by ELISA. As well, we performed a meta-analysis of transcriptomic data obtained from The Cancer Genome Atlas. RESULTS: HMBPP-stimulated γδ T cells cultured with GBM or its conditioned medium increased CD69, intracellular perforin, IFN-γ, and TNF-α production. A meta-analysis of transcriptomic data showed that GBM patients display better overall survival when mRNA TRGV9, the Vγ9 chain-encoding gene, was expressed in high levels. Moreover, its expression was higher in low-grade GBM compared to GBM. Interestingly, there was an association between γδ T cell infiltrates and TNF-α expression in the tumor microenvironment. CONCLUSION: GBM cells enhanced Th1-like profile differentiation in phosphoantigen-stimulated γδ T cells. Our results reinforce data that have demonstrated the implication of Vγ9Vδ2 T cells in the control of GBM, and this knowledge is fundamental to the development of immunotherapeutic protocols to treat GBM based on γδ T cells.
Asunto(s)
Glioblastoma , Medios de Cultivo Condicionados , Difosfatos , Humanos , Activación de Linfocitos , Perforina , Receptores de Antígenos de Linfocitos T gamma-delta , Células TH1 , Microambiente Tumoral , Factor de Necrosis Tumoral alfaRESUMEN
Guanosine 5'-diphosphate-3'-diphosphate (ppGpp) is a small molecule nucleotide alarmone that can accumulate under the amino acid starvation state and trigger the stringent response. This study reported the extraction of ppGpp from the Gram-positive bacteria Clavibacter michiganensis through methods using formic acid, lysozyme, or methanol. Following extraction, ppGpp was detected through ultra-high-performance liquid chromatography (UHPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The methanol method showed the highest extraction efficiency for ppGpp among the three methods tested. C. michiganensis cells in exponential growth phase was induced in amino acid starvation by serine hydroxamate (SHX) and used for ppGpp extraction and detection. When using the methanol extraction method, the results showed that ppGpp concentrations in SHX-treated samples were 15.645 nM, 17.656 nM, 20.372 nM, and 19.280 nM at 0 min, 15 min, 30 min and 1 h, respectively, when detected using LC-MS/MS. This is the first report on ppGpp extraction and detection in Clavibacter providing a new idea and approach for nucleotide detection and extraction in bacteria.
Asunto(s)
Difosfatos , Guanosina Tetrafosfato , Aminoácidos , Cromatografía Liquida , Clavibacter/química , Difosfatos/aislamiento & purificación , Guanosina Tetrafosfato/aislamiento & purificación , Metanol , Espectrometría de Masas en TándemRESUMEN
Phosphatases are hydrolytic enzymes that cleave the phosphoester bond of numerous substrates containing phosphorylated residues. The typical classification divides them into acid or alkaline depending on the pH at which they have optimal activity. The histidine phosphatase (HP) superfamily is a large group of functionally diverse enzymes characterized by having an active-site His residue that becomes phosphorylated during catalysis. HP enzymes are relevant biomolecules due to their current and potential application in medicine and biotechnology. Entamoeba histolytica, the causative agent of human amoebiasis, contains a gene (EHI_146950) that encodes a putative secretory acid phosphatase (EhHAPp49), exhibiting sequence similarity to histidine acid phosphatase (HAP)/phytase enzymes, i.e., branch-2 of HP superfamily. To assess whether it has the potential as a biocatalyst in removing phosphate groups from natural substrates, we studied the EhHAPp49 structural and functional features using a computational-experimental approach. Although the combined outcome of computational analyses confirmed its structural similarity with HP branch-2 proteins, the experimental results showed that the recombinant enzyme (rEhHAPp49) has negligible HAP/phytase activity. Nonetheless, results from supplementary activity evaluations revealed that rEhHAPp49 exhibits Mg2+-dependent alkaline pyrophosphatase activity. To our knowledge, this study represents the first computational-experimental characterization of EhHAPp49, which offers further insights into the structure-function relationship and the basis for future research.
Asunto(s)
Entamoeba histolytica/enzimología , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Relación Estructura-Actividad , 6-Fitasa/metabolismo , Sitios de Unión , Dominio Catalítico , Difosfatos/metabolismo , Entamoeba histolytica/genética , Humanos , Simulación del Acoplamiento Molecular , Monoéster Fosfórico Hidrolasas/genética , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMEN
BACKGROUND: Mexico is considered the diversification center for chili species, but these crops are susceptible to infection by pathogens such as Colletotrichum spp., which causes anthracnose disease and postharvest decay in general. Studies have been carried out with isolated strains of Colletotrichum in Capsicum plants; however, under growing conditions, microorganisms generally interact with others, resulting in an increase or decrease of their ability to infect the roots of C. chinense seedlings and thus, cause disease. RESULTS: Morphological changes were evident 24 h after inoculation (hai) with the microbial consortium, which consisted primarily of C. ignotum. High levels of diacylglycerol pyrophosphate (DGPP) and phosphatidic acid (PA) were found around 6 hai. These metabolic changes could be correlated with high transcription levels of diacylglycerol-kinase (CchDGK1 and CchDG31) at 3, 6 and 12 hai and also to pathogen gene markers, such as CchPR1 and CchPR5. CONCLUSIONS: Our data constitute the first evidence for the phospholipids signalling events, specifically DGPP and PA participation in the phospholipase C/DGK (PI-PLC/DGK) pathway, in the response of Capsicum to the consortium, offering new insights on chilis' defense responses to damping-off diseases.
Asunto(s)
Capsicum/inmunología , Colletotrichum/fisiología , Consorcios Microbianos/fisiología , Fosfolípidos/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Transducción de Señal , Capsicum/genética , Capsicum/microbiología , Colletotrichum/aislamiento & purificación , Diacilglicerol Quinasa , Difosfatos/metabolismo , Glicerol/análogos & derivados , Glicerol/metabolismo , Interacciones Huésped-Patógeno , Ácidos Fosfatidicos/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Plantones/genética , Plantones/inmunología , Plantones/microbiología , Fosfolipasas de Tipo C/metabolismoRESUMEN
Trypanosoma cruzi, the causative agent of Chagas' disease, belongs to the Trypanosomatidae family. The parasite undergoes multiple morphological and metabolic changes during its life cycle, in which it can use both glucose and amino acids as carbon and energy sources. The glycolytic pathway is peculiar in that its first six or seven steps are compartmentalized in glycosomes, and has a two-branched auxiliary glycosomal system functioning beyond the intermediate phosphoenolpyruvate (PEP) that is also used in the cytosol as substrate by pyruvate kinase. The pyruvate phosphate dikinase (PPDK) is the first enzyme of one branch, converting PEP, PPi, and AMP into pyruvate, Pi, and ATP. Here we present a kinetic study of PPDK from T. cruzi that reveals its hysteretic behavior. The length of the lag phase, and therefore the time for reaching higher specific activity values is affected by the concentration of the enzyme, the presence of hydrogen ions and the concentrations of the enzyme's substrates. Additionally, the formation of a more active PPDK with more complex structure is promoted by it substrates and the cation ammonium, indicating that this enzyme equilibrates between the monomeric (less active) and a more complex (more active) form depending on the medium. These results confirm the hysteretic behavior of PPDK and are suggestive for its functioning as a regulatory mechanism of this auxiliary pathway. Such a regulation could serve to distribute the glycolytic flux over the two auxiliary branches as a response to the different environments that the parasite encounters during its life cycle.
Asunto(s)
Enfermedad de Chagas/parasitología , Piruvato Ortofosfato Diquinasa/metabolismo , Trypanosoma cruzi/enzimología , Adenosina Monofosfato/metabolismo , Difosfatos/metabolismo , Glucosa/metabolismo , Glucólisis , Concentración de Iones de Hidrógeno , Cinética , Microcuerpos/enzimología , Fosfoenolpiruvato/metabolismo , Piruvato Ortofosfato Diquinasa/química , Piruvatos/metabolismo , Proteínas Recombinantes/metabolismoRESUMEN
Resumen Los bifosfonatos son medicamentos ampliamente conocidos por su efecto antagonista de la resorción ósea y la consecuente reducción del riesgo de fracturas en los pacientes con osteoporosis. La literatura actual provee evidencia en términos de datos clínicos y experimentales que asocian el uso prolongado de estos medicamentos con un aumento en el riesgo de fracturas atípicas de fémur. Para establecer si esta asociación es clínicamente relevante, se requiere realizar estudios posteriores que incluyan la relación entre otros factores que podrían influir en la aparición de este tipo de fracturas como lo es la propia enfermedad osteoporótica, el tipo de bifosfonato utilizado, el mecanismo lesional que originó la fractura, medicamentos concomitantes y patologías asociadas.
Abstract Bisphosphonates are medications that are widely known for their antagonizing effect on bone resorption and their consequent reduction in the risk of fractures in patients with osteoporosis. Current literature provides evidence in terms of experimental and clinical data associating prolonged use of these drugs with an increase in the risk of atypical femur fractures. To establish if this association is clinically relevant, there lies a need for further studies that take into account other factors that might influence the occurrence of these type of fractures, like the osteoporotic disease itself, age, intake of other drugs and associated systemic illnesses.
Asunto(s)
Humanos , Difosfatos/efectos adversos , Alendronato/análisis , Fracturas del Fémur , OsteoporosisRESUMEN
Background Anemia is a clinical condition frequently seen in patients with inflammatory bowel disease, which is responsible for a significant loss of quality of life. Objective To assess the efficacy and safety of using oral liposomal iron to treat iron deficiency anemia in inflammatory bowel disease patients, as well as assess the impact of this treatment on psychometric scores. Methods Patients with inactive/mildly active inflammatory bowel disease were screened for anemia in this interventional pilot study conducted from November 2016 to March 2018. Patients with mild anemia were treated with oral liposomal iron for 8 weeks. Main outcome measure The primary endpoint of the study was the response to liposomal oral iron therapy. Treatment response was defined as patients who achieved a hemoglobin increase of ≥ 1 g/dL and/or hemoglobin normalization by the 8th week of treatment. Results Out of 200 screened patients, 40 (20%) had anemia. Of the 21 patients who completed treatment, 13 (62%) responded to oral liposomal iron replacement therapy (mean increases of hemoglobin from 11.4 to 12.6 g/dL). The transferrin saturation index increased by an average of 10.2 (p = 0.006) and the quality of life by 26.3 (p < 0.0001). There was also a mean reduction of 9.2 in the perception of fatigue (p < 0.0001). Conclusion Treatment with oral liposomal iron is effective in improving mild iron deficiency anemia and quality of life, as well as in decreasing fatigue in patients with inactive or mildly active inflammatory bowel disease.
Asunto(s)
Anemia Ferropénica/tratamiento farmacológico , Anemia Ferropénica/etiología , Difosfatos/uso terapéutico , Enfermedades Inflamatorias del Intestino/complicaciones , Hierro/uso terapéutico , Calidad de Vida , Adolescente , Adulto , Difosfatos/administración & dosificación , Difosfatos/efectos adversos , Portadores de Fármacos , Fatiga/tratamiento farmacológico , Fatiga/etiología , Femenino , Hemoglobinas/análisis , Humanos , Hierro/administración & dosificación , Hierro/efectos adversos , Liposomas , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Transferrina/análisis , Adulto JovenRESUMEN
The signaling lipids phosphatidic acid (PA) and diacylglycerol pyrophosphate (DGPP) are involved in regulating the stress response in plants. PA and DGPP are anionic lipids consisting of a negatively charged phosphomonoester or pyrophosphate group attached to diacylglycerol, respectively. Changes in the pH modulate the protonation of their head groups modifying the interaction with other effectors. Here, we examine in a controlled system how the presence of Ca2+ modulates the surface organization of dioleyl diacylglycerol pyrophosphate (DGPP) and its interaction with dioleoyl phosphatidic acid (DOPA) at different pHs. Both lipids formed expanded monolayers at pH 5 and 8. At acid and basic pHs, monolayers formed by DOPA or DGPP became denser when Ca2+ was added to the subphase. At pH 5, Ca2+ also induced an increase of surface potential of both lipids. Conversely, at pH 8 the effects induced by the presence of Ca2+ on the surface potential were reversed. Mixed monolayers of DOPA and DGPP showed a non-ideal behavior. The addition of even tiny amounts of DGPP to DOPA films caused a reduction of the mean molecular area. This effect was more evident at pH 8 compared to pH 5. Our finding suggests that low amounts of DGPP in an film enriched in DOPA could lead to a local increase in film packing with a concomitant change in the local polarization, further regulated by local pH. This fact may have implications for the assigned role of PA as a pH-sensing phospholipid or during its interaction with proteins.
Asunto(s)
Calcio/química , Difosfatos/química , Glicerol/análogos & derivados , Concentración de Iones de Hidrógeno , Ácidos Fosfatidicos/química , Glicerol/química , Electricidad Estática , Propiedades de SuperficieAsunto(s)
Amiloidosis/diagnóstico por imagen , Corazón/diagnóstico por imagen , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/diagnóstico por imagen , Cardiomiopatías/diagnóstico por imagen , Difosfatos , Ecocardiografía , Soplos Cardíacos/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Imagen Multimodal , Pronóstico , SístoleRESUMEN
The use of the thermodynamic formalism in the investigation of biochemical reactions constitutes one of the key analysis in bioenergetics, and the first step in such analysis is the selection of the adequate reference state. For biochemistry majors, thermodynamic analysis based on the chemical reference state is used in Physical Chemistry courses, while the biological and biochemical reference states are used in Biochemistry courses. As these definitions are introduced in different courses, it is difficult that students can understand the need to select a reference state as a first step in the energy analysis of a system. The lack of suitable examples in textbooks to illustrate the importance of the adequate selection of the reference state in a thermodynamic analysis, promoted the present analysis of the energetic role of pyrophosphate (PPi) in comparison with adenosine-triphosphate in different ambient conditions, namely, the early PPi world (better described by the chemical reference state), the enclosed systems like the cells (better described by the biological reference state), and the actual thioester world (better described by the biochemical reference state). This example not only provides a new interesting point of view on the evolution of two biochemical fuels but also represents a biochemical example in which the use of different reference states can illustrate a single process from different points of views.
Asunto(s)
Adenosina Trifosfato/metabolismo , Bioquímica/educación , Química Física/educación , Difosfatos/metabolismo , Animales , Bioquímica/normas , Química Física/normas , Metabolismo Energético , Humanos , Hidrólisis , Valores de Referencia , Estudiantes , Termodinámica , UruguayRESUMEN
Purpose To compare Fructose-1,6-Bisphosphate (FBP) to Histidine-Tryptophan-Ketoglutarate (HTK) in liver preservation at cold ischemia. Methods Male rats (Sprague-Dawley: 280-340g) divided into three groups (n=7): Control; Fructose-1,6-bisphosphate (FBP); Histidine-Tryptophan-Ketoglutarate (HTK). Animals underwent laparotomy-thoracotomy for perfusion of livers with saline. Livers were removed and deposited into solutions. Mitochondria were isolated to determine State 3 (S3), State 4 (S4), Respiratory Control Ratio (RCR) and Swelling (S). Liver enzymes (AST, ALT, LDH) were determined in solution. At tissue, Malondialdehyde (MDA) and Nitrate (NOx) were determined. All parameters were analyzed at 0.6 and 24 hours of hypothermic preservation. Statistics analysis were made by Mann-Whitney test (p 0.05). Results Regarding ALT, there was a difference between FBP-6h/HTK-6h, lower in HTK. Regarding AST, there was a significant difference between FBP-24h/HTK-24h, lower in FBP. Regarding NOx, there was a difference between 0h and 6h, as well as 0h and 24h for both solutions. Regarding S3, there was a significant difference in 24h compared to Control-0h for both solutions, and a significant difference between FBP-6h/FBP-24h. Regarding S4, there was a difference between Control-0h/HTK-24h and FBP-24h/HTK-24h, higher in HTK. There was a difference between Control-0h/FBP-24h for Swelling, higher in FBP. Conclusion Fructose-1,6-Bisphosphate showed better performance at nitrate and aspartate aminotransferase compared to histidine-tryptophan-ketoglutarate.(AU)
Asunto(s)
Animales , Ratas , Isquemia Fría/métodos , Isquemia Fría/veterinaria , Difosfatos/análisis , Difosfatos/química , Histidina/análogos & derivados , Histidina/análisis , Preservación de Órganos/veterinaria , Hígado/químicaRESUMEN
Purpose. To compare Fructose-1,6-Bisphosphate (FBP) to Histidine-Tryptophan-Ketoglutarate (HTK) in liver preservation at cold ischemia.. Methods. Male rats (Sprague-Dawley: 280-340g) divided into three groups (n=7): Control; Fructose-1,6-bisphosphate (FBP); Histidine-Tryptophan-Ketoglutarate (HTK). Animals underwent laparotomy-thoracotomy for perfusion of livers with saline. Livers were removed and deposited into solutions. Mitochondria were isolated to determine State 3 (S3), State 4 (S4), Respiratory Control Ratio (RCR) and Swelling (S). Liver enzymes (AST, ALT, LDH) were determined in solution. At tissue, Malondialdehyde (MDA) and Nitrate (NOx) were determined. All parameters were analyzed at 0.6 and 24 hours of hypothermic preservation. Statistics analysis were made by Mann-Whitney test (p<0.05).. Results. Regarding ALT, there was a difference between FBP-6h/HTK-6h, lower in HTK. Regarding AST, there was a significant difference between FBP-24h/HTK-24h, lower in FBP. Regarding NOx, there was a difference between 0h and 6h, as well as 0h and 24h for both solutions. Regarding S3, there was a significant difference in 24h compared to Control-0h for both solutions, and a significant difference between FBP-6h/FBP-24h. Regarding S4, there was a difference between Control-0h/HTK-24h and FBP-24h/HTK-24h, higher in HTK. There was a difference between Control-0h/FBP-24h for Swelling, higher in FBP.. Conclusion. Fructose-1,6-Bisphosphate showed better performance at nitrate and aspartate aminotransferase compared to histidine-tryptophan-ketoglutarate.(AU)
Asunto(s)
Animales , Ratas , Ratas/lesiones , Difosfatos/análisis , Histidina/análisis , Isquemia Fría , Hígado/anomalíasRESUMEN
Bordetella bronchiseptica, known to infect animals and rarely humans, expresses a lipopolysaccharide that plays an essential role in host interactions, being critical for early clearance of the bacteria. On a B. bronchiseptica 9.73 isolate, mutants defective in the expression of genes involved in the biosynthesis of the core region were previously constructed. Herein, a comparative detailed structural analysis of the expressed lipids A by MALDI-TOF mass spectrometry was performed. The Bb3394 LPS defective in a 2-amino-2-deoxy-D-galacturonic acid lateral residue of the core presented a penta-acylated diglucosamine backbone modified with two glucosamine phosphates, similar to the wild-type lipid A. In contrast, BbLP39, resulting in the interruption of the LPS core oligosaccharide synthesis, presented lipid A species consisting in a diglucosamine backbone N-substituted with C14:0(3-O-C12:0) in C-2 and C14:0(3-O-C14:0) in C-2', O-acylated with C14:0(3-O-C10:0(3-OH) in C-3' and with a pyrophosphate in C-1. Regarding Bb3398 also presenting a rough LPS, the lipid A is formed by a hexa-acylated diglucosamine backbone carrying one pyrophosphate group in C-1 and one phosphate in C-4', both substituted with ethanolamine groups. As far as we know, this is the first description of a phosphoethanolamine modification in B. bronchiseptica lipid A. Our results demonstrate that although gene deletions were not directed to the lipid A moiety, each mutant presented different modifications. MALDI-TOF mass spectrometry was an excellent tool to highlight the structural diversity of the lipid A structures biosynthesized during its transit through the periplasm to the final localization in the outer surface of the outer membrane. Graphical Abstract.
Asunto(s)
Bordetella bronchiseptica/genética , Glicosiltransferasas/genética , Lípido A/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bordetella bronchiseptica/química , Bordetella bronchiseptica/metabolismo , Difosfatos/química , Glucosamina/química , Glicosiltransferasas/química , Lípido A/análisis , Lípido A/genética , Mutación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en TándemRESUMEN
Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite.
Asunto(s)
Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Difosfatos/metabolismo , Estabilidad de Enzimas , Pirofosfatasa Inorgánica/genética , Mutagénesis , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/metabolismoRESUMEN
The world demand for phosphate has gradually increased over the last decades, currently achieving alarming levels considering available rock reserves. The use of soil microorganisms, such as arbuscular mycorrhizal fungi (AMF), has been suggested as a promising alternative to improve phosphorus-use efficiency. However, the effect of the source of phosphorus on the interactions within the soil microbial community remains unclear. Here, we evaluated the links between the total dry matter content of sugarcane and the interactions within the soil microbial community under different phosphate sources, with/without AMF inoculation. The phosphate sources were Simple Superphosphate (SS, 18% of P2O5), Catalão rock phosphate (CA, 2.93% of P2O5) and Bayovar rock phosphate (BA, 14% of P2O5). The results indicated that the BA source led to the largest total dry matter content. The phosphate source affected total dry matter and the structure of the soil microbial communities. The bacterial interactions increased across sources with high percentage of P2O5, while the fungal interactions decreased. The interactions between bacterial and fungal microorganisms allowed to identify the percentage of P2O5 resulting in the highest total sugarcane dry matter. Our findings suggested the soil microbial interactions as a potential microbial indicator helping to improve the agricultural management.