Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.187
Filtrar
1.
Bull Exp Biol Med ; 177(3): 333-338, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39126545

RESUMEN

We studied the effect of enteral administration of the glucocorticoid deflazacort (DFC, 1.2 mg/kg per day, 28 days) on the state of skeletal muscles and tissue ultrastructure, as well as the composition of the colon microbiota in dystrophin-deficient mdx mice. DFC has been shown to reduce the intensity of degeneration/regeneration cycles in muscle fibers of mdx mice. This effect of DFC was accompanied by normalization of the size of sarcomeres of skeletal muscles of mdx mice, improvement of the ultrastructure of the subsarcolemmal population of mitochondria, and an increase in the number of organelles, as well as normalization of the number of contact interactions between the sarcoplasmic reticulum and mitochondria. In addition, DFC had a corrective effect on the colon microbiota of mdx mice, which manifested in an increase in the number of the Bifidobacterium genus microorganisms and a decrease in the level of E. coli with reduced enzymatic activity.


Asunto(s)
Colon , Microbioma Gastrointestinal , Glucocorticoides , Ratones Endogámicos mdx , Músculo Esquelético , Pregnenodionas , Animales , Ratones , Colon/efectos de los fármacos , Colon/microbiología , Colon/patología , Colon/ultraestructura , Pregnenodionas/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/ultraestructura , Músculo Esquelético/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Glucocorticoides/farmacología , Distrofina/genética , Distrofina/deficiencia , Distrofina/metabolismo , Bifidobacterium/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/ultraestructura , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura
2.
Behav Brain Funct ; 20(1): 21, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182120

RESUMEN

BACKGROUND: The Duchenne and Becker muscular dystrophies (DMD, BMD) are neuromuscular disorders commonly associated with diverse cognitive and behavioral comorbidities. Genotype-phenotype studies suggest that severity and risk of central defects in DMD patients increase with cumulative loss of different dystrophins produced in CNS from independent promoters of the DMD gene. Mutations affecting all dystrophins are nevertheless rare and therefore the clinical evidence on the contribution of the shortest Dp71 isoform to cognitive and behavioral dysfunctions is limited. In this study, we evaluated social, emotional and locomotor functions, and fear-related learning in the Dp71-null mouse model specifically lacking this short dystrophin. RESULTS: We demonstrate the presence of abnormal social behavior and ultrasonic vocalization in Dp71-null mice, accompanied by slight changes in exploratory activity and anxiety-related behaviors, in the absence of myopathy and alterations of learning and memory of aversive cue-outcome associations. CONCLUSIONS: These results support the hypothesis that distal DMD gene mutations affecting Dp71 may contribute to the emergence of social and emotional problems that may relate to the autistic traits and executive dysfunctions reported in DMD. The present alterations in Dp71-null mice may possibly add to the subtle social behavior problems previously associated with the loss of the Dp427 dystrophin, in line with the current hypothesis that risk and severity of behavioral problems in patients increase with cumulative loss of several brain dystrophin isoforms.


Asunto(s)
Distrofina , Ratones Noqueados , Conducta Social , Animales , Distrofina/genética , Distrofina/deficiencia , Ratones , Masculino , Emociones/fisiología , Miedo/fisiología , Miedo/psicología , Conducta Animal/fisiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ansiedad/genética , Ansiedad/psicología
3.
Orphanet J Rare Dis ; 19(1): 311, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182149

RESUMEN

BACKGROUND: An increasing number of clinical trials for new therapeutic strategies are underway or being considered for dystrophinopathy. Having detailed data on the natural progression of this condition is crucial for assessing the effectiveness of new drugs. However, there's a lack of data regarding the long-term data on the natural course and how it's managed in China. In this study, we offer a comprehensive overview of clinical and molecular findings, as well as treatment outcomes in the Chinese population. METHODS: Institutional data on all patients with dystrophinopathy from August 2011 to August 2021 were retrospectively reviewed. The data included geographic distribution, age at diagnosis, molecular findings, and treatment options, such as corticosteroids, cardiac interventions, and clinical outcomes. RESULTS: In total, 2097 patients with dystrophinopathy, including 1703 cases of Duchenne muscular dystrophy (DMD), 311 cases of Becker muscular dystrophy (BMD), 46 cases of intermediate muscular dystrophy (IMD), and 37 cases categorized as "pending" (individuals with an undetermined phenotype), were registered in the Children's Hospital of Fudan University database for dystrophinopathy from August 2011 to August 2021. The spectrum of identified variants included exonic deletions (66.6%), exonic duplications (10.7%), nonsense variants (10.3%), splice-site variants (4.5%), small deletions (3.5%), small insertions/duplications (1.8%), and missense variants (0.9%). Four deep intronic variants and two inversion variants were identified. Regarding treatment, glucocorticoids were administered to 54.4% of DMD patients and 39.1% of IMD patients. The median age at loss of ambulation was 2.5 years later in DMD patients who received glucocorticoid treatment. Overall, one cardiac medicine at least was prescribed to 7.4% of DMD patients, 8.3% of IMD patients, and 2.6% of BMD patients. Additionally, ventilator support was required by four DMD patients. Eligibility for exon skipping therapy was found in 55.3% of DMD patients, with 12.9%, 10%, and 9.6% of these patients being eligible for skipping exons 51, 53, and 45, respectively. CONCLUSIONS: This is one of the largest studies to have evaluated the natural history of dystrophinopathy in China, which is particularly conducive to the recruitment of eligible patients for clinical trials and the provision of real-world data to support drug development.


Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/tratamiento farmacológico , Masculino , Estudios Retrospectivos , Niño , Femenino , Preescolar , Adolescente , Distrofina/genética , China , Bases de Datos Factuales , Lactante , Distrofias Musculares/genética , Distrofias Musculares/tratamiento farmacológico , Adulto Joven
4.
Life Sci Alliance ; 7(11)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39117454

RESUMEN

Structural variants (SVs) of unknown significance are great challenges for prenatal risk assessment, especially when involving dose-sensitive genes such as DMD The pathogenicities of 5'-terminal DMD duplications in the database remain controversial. Four prenatal cases with Xp21.1 duplications were identified by routine prenatal genomic testing, encompassing the 5'-UTR to exons 1-2 in family 1 and family 2, and to exons 1-9 in family 3. The duplication in family 4 was non-contiguous covering the 5'-UTR to exon 1 and exons 3-7. All were traced to unaffected males in the family pedigrees. A new genome-wide approach of optical genome mapping was performed in families 1, 2, and 3 to delineate the breakpoints and orientation of the duplicated fragments. The extra copies were tandemly inserted into the upstream of DMD, preserving the integrity of ORF from the second copy. The pathogenicities were thus reclassified as likely benign. Our data highlight the importance of structural delineation by optical genome mapping in prenatal risk assessment of incidentally identified SVs involving DMD and other similar large dose-sensitive genes.


Asunto(s)
Distrofina , Linaje , Humanos , Femenino , Masculino , Medición de Riesgo/métodos , Embarazo , Distrofina/genética , Diagnóstico Prenatal/métodos , Mapeo Cromosómico/métodos , Cromosomas Humanos X/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/diagnóstico , Duplicación Cromosómica/genética , Exones/genética , Duplicación de Gen/genética , Adulto
5.
Yi Chuan ; 46(7): 570-580, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39016090

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe X-linked recessive genetic disorder caused by mutations in the DMD gene, which leads to a deficiency of the dystrophin protein. The main mutation types of this gene include exon deletions and duplications, point mutations, and insertions. These mutations disrupt the normal expression of dystrophin, ultimately leading to the disease. In this study, we reported a case of DMD caused by an insertion mutation in exon 59 (E59) of the DMD gene. The affected child exhibited significant abnormalities in related biochemical markers, early symptoms of DMD, and multiple gray hair. His mother and sister were carriers with slightly abnormal biochemical markers. The mother had mild clinical symptoms, while the sister had no clinical symptoms. Other family members were genetically and physically normal. Sequencing and sequence alignment revealed that the inserted fragment was an Alu element from the AluYa5 subfamily. This insertion produced two stop codons and a polyadenylate (polyA) tail. To understand the impact of this insertion on the DMD gene and its association with clinical symptoms, exonic splicing enhancer (ESE) prediction indicated that the insertion did not affect the splicing of E59. Therefore, we speculated that the insertion sequence would be present in the mRNA sequence of the DMD gene. The two stop codons and polyA tail likely terminate translation, preventing the production of functional dystrophin protein, which may be the mechanism leading to DMD. In addition to typical DMD symptoms, the child also exhibited premature graying of hair. This study reports, for the first time, a case of DMD caused by the insertion of an Alu element into the coding region of the DMD gene. This finding provides clues for studying gene mutations induced by Alu sequence insertion and expands the understanding of DMD gene mutations.


Asunto(s)
Elementos Alu , Distrofina , Distrofia Muscular de Duchenne , Mutagénesis Insercional , Distrofia Muscular de Duchenne/genética , Humanos , Elementos Alu/genética , Distrofina/genética , Masculino , Secuencia de Bases , Cabello/metabolismo , Femenino , Exones/genética , Niño , Datos de Secuencia Molecular
6.
Medicina (Kaunas) ; 60(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39064489

RESUMEN

Muscular dystrophies (MDs) are a heterogeneous group of diseases of genetic origin characterized by progressive skeletal muscle degeneration and weakness. There are several types of MDs, varying in terms of age of onset, severity, and pattern of the affected muscles. However, all of them worsen over time, and many patients will eventually lose their ability to walk. In addition to skeletal muscle effects, patients with MDs may present cardiac and respiratory disorders, generating complications that could lead to death. Interdisciplinary management is required to improve the surveillance and quality of life of patients with an MD. At present, pharmacological therapy is only available for Duchene muscular dystrophy (DMD)-the most common type of MD-and is mainly based on the use of corticosteroids. Other MDs caused by alterations in dystrophin-associated proteins (DAPs) are less frequent but represent an important group within these diseases. Pharmacological alternatives with clinical potential in patients with MDs and other proteins associated with dystrophin have been scarcely explored. This review focuses on drugs and molecules that have shown beneficial effects, mainly in experimental models involving alterations in DAPs. The mechanisms associated with the effects leading to promising results regarding the recovery or maintenance of muscle strength and reduction in fibrosis in the less-common MDs (i.e., with respect to DMD) are explored, and other therapeutic targets that could contribute to maintaining the homeostasis of muscle fibers, involving different pathways, such as calcium regulation, hypertrophy, and maintenance of satellite cell function, are also examined. It is possible that some of the drugs explored here could be used to affordably improve the muscular function of patients until a definitive treatment for MDs is developed.


Asunto(s)
Distrofias Musculares , Humanos , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/fisiopatología , Distrofina , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/fisiopatología , Complejo de Proteínas Asociado a la Distrofina
7.
Nat Commun ; 15(1): 5927, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009678

RESUMEN

Duchenne muscular dystrophy (DMD) affecting 1 in 3500-5000 live male newborns is the frequently fatal genetic disease resulted from various mutations in DMD gene encoding dystrophin protein. About 70% of DMD-causing mutations are exon deletion leading to frameshift of open reading frame and dystrophin deficiency. To facilitate translating human DMD-targeting CRISPR therapeutics into patients, we herein establish a genetically humanized mouse model of DMD by replacing exon 50 and 51 of mouse Dmd gene with human exon 50 sequence. This humanized mouse model recapitulats patient's DMD phenotypes of dystrophin deficiency and muscle dysfunction. Furthermore, we target splicing sites in human exon 50 with adenine base editor to induce exon skipping and robustly restored dystrophin expression in heart, tibialis anterior and diaphragm muscles. Importantly, systemic delivery of base editor via adeno-associated virus in the humanized male mouse model improves the muscle function of DMD mice to the similar level of wildtype ones, indicating the therapeutic efficacy of base editing strategy in treating most of DMD types with exon deletion or point mutations via exon-skipping induction.


Asunto(s)
Adenina , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Distrofina , Exones , Edición Génica , Distrofia Muscular de Duchenne , Animales , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofina/genética , Distrofina/metabolismo , Exones/genética , Humanos , Masculino , Edición Génica/métodos , Ratones , Adenina/metabolismo , Músculo Esquelético/metabolismo , Dependovirus/genética , Terapia Genética/métodos
8.
Nucleic Acids Res ; 52(15): 8687-8701, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39011883

RESUMEN

Nonsense mutations account for >10% of human genetic disorders, including cystic fibrosis, Alagille syndrome, and Duchenne muscular dystrophy. A nonsense mutation results in the expression of a truncated protein, and therapeutic strategies aim to restore full-length protein expression. Most strategies under development, including small-molecule aminoglycosides, suppressor tRNAs, or the targeted degradation of termination factors, lack mRNA target selectivity and may poorly differentiate between nonsense and normal stop codons, resulting in off-target translation errors. Here, we demonstrate that antisense oligonucleotides can stimulate readthrough of disease-causing nonsense codons, resulting in high yields of full-length protein in mammalian cellular lysate. Readthrough efficiency depends on the sequence context near the stop codon and on the precise targeting position of an oligonucleotide, whose interaction with mRNA inhibits peptide release to promote readthrough. Readthrough-inducing antisense oligonucleotides (R-ASOs) enhance the potency of non-specific readthrough agents, including aminoglycoside G418 and suppressor tRNA, enabling a path toward target-specific readthrough of nonsense mutations in CFTR, JAG1, DMD, BRCA1 and other mutant genes. Finally, through systematic chemical engineering, we identify heavily modified fully functional R-ASO variants, enabling future therapeutic development.


Asunto(s)
Codón sin Sentido , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Oligonucleótidos Antisentido , ARN Mensajero , Codón sin Sentido/genética , Oligonucleótidos Antisentido/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Distrofina/genética , Células HEK293 , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Gentamicinas
9.
J Physiol ; 602(15): 3641-3660, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38980963

RESUMEN

Limited knowledge exists regarding the chronic effect of muscular exercise on muscle function in a murine model of severe Duchenne muscular dystrophy (DMD). Here we determined the effects of 1 month of voluntary wheel running (WR), 1 month of enforced treadmill running (TR) and 1 month of mechanical overloading resulting from the removal of the synergic muscles (OVL) in mice lacking both dystrophin and desmin (DKO). Additionally, we examined the effect of activin receptor administration (AR). DKO mice, displaying severe muscle weakness, atrophy and greater susceptibility to contraction-induced functional loss, were exercised or treated with AR at 1 month of age and in situ force production of lower leg muscle was measured at the age of 2 months. We found that TR and OVL increased absolute maximal force and the rate of force development of the plantaris muscle in DKO mice. In contrast, those of the tibialis anterior (TA) muscle remained unaffected by TR and WR. Furthermore, the effects of TR and OVL on plantaris muscle function in DKO mice closely resembled those in mdx mice, a less severe murine DMD model. AR also improved absolute maximal force and the rate of force development of the TA muscle in DKO mice. In conclusion, exercise training improved plantaris muscle weakness in severely affected dystrophic mice. Consequently, these preclinical results may contribute to fostering further investigations aimed at assessing the potential benefits of exercise for DMD patients, particularly resistance training involving a low number of intense muscle contractions. KEY POINTS: Very little is known about the effects of exercise training in a murine model of severe Duchenne muscular dystrophy (DMD). One reason is that it is feared that chronic muscular exercise, particularly that involving intense muscle contractions, could exacerbate the disease. In DKO mice lacking both dystrophin and desmin, characterized by severe lower leg muscle weakness, atrophy and fragility in comparison to the less severe DMD mdx model, we found that enforced treadmill running improved absolute maximal force of the plantaris muscle, while that of tibialis anterior muscle remained unaffected by both enforced treadmill and voluntary wheel running. Furthermore, mechanical overloading, a non-physiological model of chronic resistance exercise, reversed plantaris muscle weakness. Consequently, our findings may have the potential to alleviate concerns and pave the way for exploring the prescription of endurance and resistance training as a viable therapeutic approach for the treatment of dystrophic patients. Additionally, such interventions may serve in mitigating the pathophysiological mechanisms induced by physical inactivity.


Asunto(s)
Desmina , Distrofina , Músculo Esquelético , Condicionamiento Físico Animal , Carrera , Animales , Masculino , Ratones , Desmina/genética , Desmina/metabolismo , Distrofina/genética , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Contracción Muscular , Fuerza Muscular , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , Carrera/fisiología
10.
Nature ; 632(8023): 192-200, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39020181

RESUMEN

Gene replacement using adeno-associated virus (AAV) vectors is a promising therapeutic approach for many diseases1,2. However, this therapeutic modality is challenged by the packaging capacity of AAVs (approximately 4.7 kilobases)3, limiting its application for disorders involving large coding sequences, such as Duchenne muscular dystrophy, with a 14 kilobase messenger RNA. Here we developed a new method for expressing large dystrophins by utilizing the protein trans-splicing mechanism mediated by split inteins. We identified several split intein pairs that efficiently join two or three fragments to generate a large midi-dystrophin or the full-length protein. We show that delivery of two or three AAVs into dystrophic mice results in robust expression of large dystrophins and significant physiological improvements compared with micro-dystrophins. Moreover, using the potent myotropic AAVMYO4, we demonstrate that low total doses (2 × 1013 viral genomes per kg) are sufficient to express large dystrophins in striated muscles body-wide with significant physiological corrections in dystrophic mice. Our data show a clear functional superiority of large dystrophins over micro-dystrophins that are being tested in clinical trials. This method could benefit many patients with Duchenne or Becker muscular dystrophy, regardless of genotype, and could be adapted to numerous other disorders caused by mutations in large genes that exceed the AAV capacity.


Asunto(s)
Distrofina , Terapia Genética , Inteínas , Distrofia Muscular de Duchenne , Empalme de Proteína , Animales , Humanos , Masculino , Ratones , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Distrofina/biosíntesis , Distrofina/deficiencia , Distrofina/genética , Distrofina/metabolismo , Terapia Genética/métodos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Inteínas/genética , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Empalme de Proteína/genética
11.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063034

RESUMEN

Duchenne and Becker muscular dystrophies, caused by pathogenic variants in DMD, are the most common inherited neuromuscular conditions in childhood. These diseases follow an X-linked recessive inheritance pattern, and mainly males are affected. The most prevalent pathogenic variants in the DMD gene are copy number variants (CNVs), and most patients achieve their genetic diagnosis through Multiplex Ligation-dependent Probe Amplification (MLPA) or exome sequencing. Here, we investigated a female patient presenting with muscular dystrophy who remained genetically undiagnosed after MLPA and exome sequencing. RNA sequencing (RNAseq) from the patient's muscle biopsy identified an 85% reduction in DMD expression compared to 116 muscle samples included in the cohort. A de novo balanced translocation between chromosome 17 and the X chromosome (t(X;17)(p21.1;q23.2)) disrupting the DMD and BCAS3 genes was identified through trio whole genome sequencing (WGS). The combined analysis of RNAseq and WGS played a crucial role in the detection and characterisation of the disease-causing variant in this patient, who had been undiagnosed for over two decades. This case illustrates the diagnostic odyssey of female DMD patients with complex structural variants that are not detected by current panel or exome sequencing analysis.


Asunto(s)
Cromosomas Humanos X , Distrofina , Genómica , Distrofia Muscular de Duchenne , Translocación Genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/diagnóstico , Femenino , Distrofina/genética , Cromosomas Humanos X/genética , Genómica/métodos , Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Transcriptoma/genética , Cromosomas Humanos Par 17/genética
12.
Neurobiol Dis ; 199: 106586, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950712

RESUMEN

OBJECTIVE: The glymphatic system serves as a perivascular pathway that aids in clearing liquid and solute waste from the brain, thereby enhancing neurological function. Disorders in glymphatic drainage contribute to the development of vasogenic edema following cerebral ischemia, although the molecular mechanisms involved remain poorly understood. This study aims to determine whether a deficiency in dystrophin 71 (DP71) leads to aquaporin-4 (AQP4) depolarization, contributing to glymphatic dysfunction in cerebral ischemia and resulting in brain edema. METHODS: A mice model of middle cerebral artery occlusion and reperfusion was used. A fluorescence tracer was injected into the cortex and evaluated glymphatic clearance. To investigate the role of DP71 in maintaining AQP4 polarization, an adeno-associated virus with the astrocyte promoter was used to overexpress Dp71. The expression and distribution of DP71 and AQP4 were analyzed using immunoblotting, immunofluorescence, and co-immunoprecipitation techniques. The behavior ability of mice was evaluated by open field test. Open-access transcriptome sequencing data were used to analyze the functional changes of astrocytes after cerebral ischemia. MG132 was used to inhibit the ubiquitin-proteasome system. The ubiquitination of DP71 was detected by immunoblotting and co-immunoprecipitation. RESULTS: During the vasogenic edema stage following cerebral ischemia, a decline in the efflux of interstitial fluid tracer was observed. DP71 and AQP4 were co-localized and interacted with each other in the perivascular astrocyte endfeet. After cerebral ischemia, there was a notable reduction in DP71 protein expression, accompanied by AQP4 depolarization and proliferation of reactive astrocytes. Increased DP71 expression restored glymphatic drainage and reduced brain edema. AQP4 depolarization, reactive astrocyte proliferation, and the behavior of mice were improved. After cerebral ischemia, DP71 was degraded by ubiquitination, and MG132 inhibited the decrease of DP71 protein level. CONCLUSION: AQP4 depolarization after cerebral ischemia leads to glymphatic clearance disorder and aggravates cerebral edema. DP71 plays a pivotal role in regulating AQP4 polarization and consequently influences glymphatic function. Changes in DP71 expression are associated with the ubiquitin-proteasome system. This study offers a novel perspective on the pathogenesis of brain edema following cerebral ischemia.


Asunto(s)
Acuaporina 4 , Edema Encefálico , Isquemia Encefálica , Distrofina , Sistema Glinfático , Animales , Acuaporina 4/metabolismo , Acuaporina 4/genética , Ratones , Sistema Glinfático/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Edema Encefálico/metabolismo , Distrofina/metabolismo , Distrofina/deficiencia , Masculino , Astrocitos/metabolismo , Ratones Endogámicos C57BL , Infarto de la Arteria Cerebral Media/metabolismo
13.
Physiol Rep ; 12(13): e16145, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001580

RESUMEN

The dystrophin protein has well-characterized roles in force transmission and maintaining membrane integrity during muscle contraction. Studies have reported decreased expression of dystrophin in atrophying muscles during wasting conditions, and that restoration of dystrophin can attenuate atrophy, suggesting a role in maintaining muscle mass. Phosphorylation of S3059 within the cysteine-rich region of dystrophin enhances binding between dystrophin and ß-dystroglycan, and mimicking phosphorylation at this site by site-directed mutagenesis attenuates myotube atrophy in vitro. To determine whether dystrophin phosphorylation can attenuate muscle wasting in vivo, CRISPR-Cas9 was used to generate mice with whole body mutations of S3059 to either alanine (DmdS3059A) or glutamate (DmdS3059E), to mimic a loss of, or constitutive phosphorylation of S3059, on all endogenous dystrophin isoforms, respectively. Sciatic nerve transection was performed on these mice to determine whether phosphorylation of dystrophin S3059 could attenuate denervation atrophy. At 14 days post denervation, atrophy of tibialis anterior (TA) but not gastrocnemius or soleus muscles, was partially attenuated in DmdS3059E mice relative to WT mice. Attenuation of atrophy was associated with increased expression of ß-dystroglycan in TA muscles of DmdS3059E mice. Dystrophin S3059 phosphorylation can partially attenuate denervation-induced atrophy, but may have more significant impact in less severe modes of muscle wasting.


Asunto(s)
Distrofina , Músculo Esquelético , Atrofia Muscular , Animales , Fosforilación , Ratones , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/inervación , Músculo Esquelético/patología , Distrofina/metabolismo , Distrofina/genética , Masculino , Desnervación Muscular/métodos , Ratones Endogámicos C57BL
14.
Nat Commun ; 15(1): 6141, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034316

RESUMEN

Current gene therapy for Duchenne muscular dystrophy (DMD) utilizes adeno-associated virus (AAV) to deliver micro-dystrophin (µDys), which does not provide full protection for striated muscles as it lacks many important functional domains of full-length (FL) dystrophin. Here we develop a triple vector system to deliver FL-dystrophin into skeletal and cardiac muscles. We split FL-dystrophin into three fragments linked to two orthogonal pairs of split intein, allowing efficient assembly of FL-dystrophin. The three fragments packaged in myotropic AAV (MyoAAV4A) restore FL-dystrophin expression in both skeletal and cardiac muscles in male mdx4cv mice. Dystrophin-glycoprotein complex components are also restored at the sarcolemma of dystrophic muscles. MyoAAV4A-delivered FL-dystrophin significantly improves muscle histopathology, contractility, and overall strength comparable to µDys, but unlike µDys, it also restores defective cavin 4 localization and associated signaling in mdx4cv heart. Therefore, our data support the feasibility of a mutation-independent FL-dystrophin gene therapy for DMD, warranting further clinical development.


Asunto(s)
Distrofina , Terapia Genética , Músculo Esquelético , Distrofia Muscular de Duchenne , Animales , Masculino , Ratones , Dependovirus/genética , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Miocardio/metabolismo , Miocardio/patología , Sarcolema/metabolismo
15.
Cells ; 13(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39056750

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy-the leading cause of death-inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.


Asunto(s)
Cardiomiopatías , Mitocondrias , Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patología , Humanos , Cardiomiopatías/terapia , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/etiología , Animales , Mitocondrias/metabolismo , Distrofina/metabolismo , Distrofina/genética , Distrofina/deficiencia
16.
Neurogenetics ; 25(3): 201-213, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850354

RESUMEN

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive allelic muscle diseases caused by dystrophin gene mutations. Eight hundred thirty-seven patients admitted between 1997 and 2022 were included in the study. Two hundred twenty patients were analyzed by multiplex PCR (mPCR) alone. Five hundred ninety-five patients were investigated by multiplex ligation-dependent probe amplification (MLPA), and 54 patients were examined by sequencing. Deletion was detected in 60% (132/220) of the cases in the mPCR group only and in 58.3% (347/595) of the cases with MLPA analysis. The rates of deletion and duplication were 87.7% and 12.3%, respectively, in the MLPA analysis. Single exon deletions were the most common mutation type. The introns 43-55 (81.8%) and exons 2-21 (13.1%) regions were detected as hot spots in deletions. It was determined that 89% of the mutations were suitable for exon skipping therapy. The reading frame rule did not hold in 7.6% of D/BMD cases (17/224). We detected twenty-five pathogenic/likely pathogenic variants in sequencing, five of which were novel variants. Nonsense mutation was the most common small mutation (44%). 21% of DMD patients were familial. We detected germline mosaicism in four families (4.3%) in the large rearrangement group and one gonosomal mosaicism in a family with a nonsense mutation. This is the largest study examining genotype and phenotype data in Turkish D/BMD families investigated by MLPA analysis. The reading frame hypothesis is not valid in all cases. Sharing the genotype and phenotype characteristics of these cases in the literature will shed light on the molecular structure of DMD and guide gene therapy research. In genetic counseling, carrier screening in the family and possible gonadal mosaicism should be emphasized.


Asunto(s)
Distrofina , Exones , Distrofia Muscular de Duchenne , Fenotipo , Humanos , Distrofia Muscular de Duchenne/genética , Turquía , Masculino , Distrofina/genética , Niño , Femenino , Adolescente , Preescolar , Exones/genética , Estudios de Asociación Genética/métodos , Mutación , Adulto , Genotipo , Adulto Joven , Reacción en Cadena de la Polimerasa Multiplex
17.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892293

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked progressive disorder associated with muscle wasting and degeneration. The disease is caused by mutations in the gene that encodes dystrophin, a protein that links the cytoskeleton with cell membrane proteins. The current treatment methods aim to relieve the symptoms of the disease or partially rescue muscle functionality. However, they are insufficient to suppress disease progression. In recent years, studies have uncovered an important role for non-coding RNAs (ncRNAs) in regulating the progression of numerous diseases. ncRNAs, such as micro-RNAs (miRNAs), bind to their target messenger RNAs (mRNAs) to suppress translation. Understanding the mechanisms involving dysregulated miRNAs can improve diagnosis and suggest novel treatment methods for patients with DMD. This review presents the available evidence on the role of altered expression of miRNAs in the pathogenesis of DMD. We discuss the involvement of these molecules in the processes associated with muscle physiology and DMD-associated cardiomyopathy.


Asunto(s)
MicroARNs , Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Animales , Distrofina/genética , Distrofina/metabolismo , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Músculo Esquelético/patología
18.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892308

RESUMEN

Sarcospan (SSPN) is a 25-kDa transmembrane protein that is broadly expressed at the cell surface of many tissues, including, but not limited to, the myofibers from skeletal and smooth muscles, cardiomyocytes, adipocytes, kidney epithelial cells, and neurons. SSPN is a core component of the dystrophin-glycoprotein complex (DGC) that links the intracellular actin cytoskeleton with the extracellular matrix. It is also associated with integrin α7ß1, the predominant integrin expressed in skeletal muscle. As a tetraspanin-like protein with four transmembrane spanning domains, SSPN functions as a scaffold to facilitate protein-protein interactions at the cell membrane. Duchenne muscular dystrophy, Becker muscular dystrophy, and X-linked dilated cardiomyopathy are caused by the loss of dystrophin at the muscle cell surface and a concomitant loss of the entire DGC, including SSPN. SSPN overexpression ameliorates Duchenne muscular dystrophy in the mdx murine model, which supports SSPN being a viable therapeutic target. Other rescue studies support SSPN as a biomarker for the proper assembly and membrane expression of the DGC. Highly specific and robust antibodies to SSPN are needed for basic research on the molecular mechanisms of SSPN rescue, pre-clinical studies, and biomarker evaluations in human samples. The development of SSPN antibodies is challenged by the presence of its four transmembrane domains and limited antigenic epitopes. To address the significant barrier presented by limited commercially available antibodies, we aimed to generate a panel of robust SSPN-specific antibodies that can serve as a resource for the research community. We created antibodies to three SSPN protein epitopes, including the intracellular N- and C-termini as well as the large extracellular loop (LEL) between transmembrane domains 3 and 4. We developed a panel of rabbit antibodies (poly- and monoclonal) against an N-terminal peptide fragment of SSPN. We used several assays to show that the rabbit antibodies recognize mouse SSPN with a high functional affinity and specificity. We developed mouse monoclonal antibodies against the C-terminal peptide and the large extracellular loop of human SSPN. These antibodies are superior to commercially available antibodies and outperform them in various applications, including immunoblotting, indirect immunofluorescence analysis, immunoprecipitation, and an ELISA. These newly developed antibodies will significantly improve the quality and ease of SSPN detection for basic and translational research.


Asunto(s)
Proteínas de la Membrana , Investigación Biomédica Traslacional , Animales , Humanos , Ratones , Distrofina/metabolismo , Distrofina/inmunología , Distrofina/genética , Integrinas/metabolismo , Integrinas/inmunología , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Distrofia Muscular de Duchenne/inmunología , Distrofia Muscular de Duchenne/metabolismo
19.
Nat Commun ; 15(1): 4935, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858388

RESUMEN

Cell polarity mechanisms allow the formation of specialized membrane domains with unique protein compositions, signalling properties, and functional characteristics. By analyzing the localization of potassium channels and proteins belonging to the dystrophin-associated protein complex, we reveal the existence of distinct planar-polarized membrane compartments at the surface of C. elegans muscle cells. We find that muscle polarity is controlled by a non-canonical Wnt signalling cascade involving the ligand EGL-20/Wnt, the receptor CAM-1/Ror, and the intracellular effector DSH-1/Dishevelled. Interestingly, classical planar cell polarity proteins are not required for this process. Using time-resolved protein degradation, we demonstrate that -while it is essentially in place by the end of embryogenesis- muscle polarity is a dynamic state, requiring continued presence of DSH-1 throughout post-embryonic life. Our results reveal the unsuspected complexity of the C. elegans muscle membrane and establish a genetically tractable model system to study cellular polarity and membrane compartmentalization in vivo.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Polaridad Celular , Distrofina , Músculos , Vía de Señalización Wnt , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Distrofina/metabolismo , Distrofina/genética , Músculos/metabolismo , Proteínas Dishevelled/metabolismo , Proteínas Dishevelled/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Membrana Celular/metabolismo , Complejo de Proteínas Asociado a la Distrofina/metabolismo , Complejo de Proteínas Asociado a la Distrofina/genética , Proteínas Wnt/metabolismo , Transducción de Señal
20.
Genes Brain Behav ; 23(3): e12895, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38837620

RESUMEN

Duchenne muscular dystrophy is a severe neuromuscular disorder that is caused by mutations in the DMD gene, resulting in a disruption of dystrophin production. Next to dystrophin expression in the muscle, different isoforms of the protein are also expressed in the brain and lack of these isoforms leads to cognitive and behavioral deficits in patients. It remains unclear how the loss of the shorter dystrophin isoform Dp140 affects these processes. Using a variety of behavioral tests, we found that mdx and mdx4cv mice (which lack Dp427 or Dp427 + Dp140, respectively) exhibit similar deficits in working memory, movement patterns and blood-brain barrier integrity. Neither model showed deficits in spatial learning and memory, learning flexibility, anxiety or spontaneous behavior, nor did we observe differences in aquaporin 4 and glial fibrillary acidic protein. These results indicate that in contrast to Dp427, Dp140 does not play a crucial role in processes of learning, memory and spontaneous behavior.


Asunto(s)
Barrera Hematoencefálica , Distrofina , Distrofia Muscular de Duchenne , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatología , Distrofina/genética , Distrofina/metabolismo , Masculino , Ratones Endogámicos mdx , Ratones Endogámicos C57BL , Acuaporina 4/genética , Acuaporina 4/metabolismo , Memoria a Corto Plazo , Memoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...