Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 19(1): 274, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234787

RESUMEN

BACKGROUND: miRNAs are major regulators of gene expression and have proven their role in understanding the genetic regulation of biosynthetic pathways. Stevioside and rebaudioside-A, the two most abundant and sweetest compounds found in leaf extract of Stevia rebaudiana, have been used for many years in treatment of diabetes. It has been found that the crude extract is more potent than the purified extract. Stevioside, being accumulated in higher concentration, imparts licorice like aftertaste. Thus, in order to make the sweetener more potent and palatable, there is a need to increase the intrinsic concentration of steviol glycosides and to alter the ratio of rebaudioside-A to stevioside. Doing so would significantly increase the quality of the sweeteners, and the potential to be used on a wider scale. To do so, in previous report, miRNAs associated with genes of steviol glycosides biosynthetic pathway were identified in S. rebaudiana. In continuation to that in this study, the two miRNAs (miR319g and miRStv_11) targeting key genes of steviol glycosides biosynthetic pathway were modulated and their impact was evaluated on steviol glycosides contents. RESULTS: The over-expression results showed that miRStv_11 induced, while miR319g had repressive action on its target genes. The knock-down constructs for miR319g and miRStv_11 were then prepared and it was demonstrated that the expression of anti-miR319g produced inhibitory effect on its target miRNA, resulting in enhanced expression of its target genes. On the other hand, anti-miRStv_11 resulted in down-regulation of miRStv_11 and its target gene. Further miRStv_11 and anti-miR319gwere co-expressed which resulted in significant increase in stevioside (24.5%) and rebaudioside-A (51%) contents. CONCLUSION: In conclusion, the role of miR319g and miRStv_11 was successfully validated in steviol gycosides biosynthetic pathway gene regulation and their effect on steviol gycosides contents. In this study, we found the positively correlated miRNA-mRNA interaction network in plants, where miRStv_11 enhanced the expression of KAH gene. miRNAs knock-down was also successfully achieved using antisense precursors. Overall, this study thus reveals more complex nature and fundamental importance of miRNAs in biosynthetic pathway related gene networks and hence, these miRNAs can be successfully employed to enhance the ratio of rebaudioside-A to stevioside, thus enhancing the sweetening indices of this plant and making it more palatable.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Glucósidos/biosíntesis , MicroARNs/metabolismo , ARN de Planta/metabolismo , Stevia/metabolismo , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Silenciador del Gen , Glucósidos/química , Glucósidos/genética , MicroARNs/genética , Hojas de la Planta/química , Regiones Promotoras Genéticas , ARN de Planta/genética , Stevia/genética , Edulcorantes/química
3.
Cell Mol Biol (Noisy-le-grand) ; 64(2): 17-22, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29433623

RESUMEN

Stevia rebaudiana Bertoni is One of the most important biologically sourced and low-calorie sweeteners that known as "Sweet Weed". It contains steviol glycosides that they are about 200-300 times sweeter than sucrose. Tissue culture is the best method with high efficiency that can overcome to problems of traditional methods, and it is the most useful tools for studying stress tolerance mechanisms under in vitro conditions to obtain drought tolerance. In the present research, we investigated the impact of life cycle, leaves location and the harvesting time on expression of UGT74G1 and UGT76G1 as well as steviol glycosides accumulation. The highest gene expression of both UGT74G1 and UGT76G1 (207.677 and 208.396 Total Lab unit, respectively) was observed in young leaves in the second vegetative year. Also, the highest amount of stevioside accumulation (13.04) was due to the old leaves in vegetative stage which had significant differences with other effects whereas the lowest accumulation (7.47) was seen at young leaves at vegetative stage. Interestingly, the highest level of rebaudioside a production (15.74) was occurred at the young leaves at vegetative stage. There was significant differences between life cycle and leaves location on steviol glycoside production in stevia.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Regulación de la Expresión Génica de las Plantas/fisiología , Glucósidos/biosíntesis , Estadios del Ciclo de Vida/fisiología , Hojas de la Planta/fisiología , Stevia/crecimiento & desarrollo , Diterpenos de Tipo Kaurano/análisis , Diterpenos de Tipo Kaurano/genética , Genes de Plantas/genética , Glucósidos/análisis , Glucósidos/genética , Stevia/genética , Stevia/metabolismo , Factores de Tiempo
4.
Cell Mol Biol (Noisy-le-grand) ; 64(2): 11-16, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29433622

RESUMEN

Stevia rebaudiana (Bertoni) is a non-caloric sweetener belonging to Asteraceae family. Stevia compounds such as steviol glycosides (SGs) are 200 times sweeter than sugar. Stevioside and rebaudioside A are the two major steviol glycosides. Nitrogen is an essential element for plant growth and development. In this study the effects of nitrogen influenced by different concentrations of NH4NO3 (0, 825 and 1650 mg/l) and KNO3 (0, 950 and 1900 mg/l) is examined in MS medium. To analysis the UGT74G1 and UGT76G1 genes expression, involved in the synthesis of SGs, RT-qPCR technique was performed. Data showed that there were significant differences between all media. The shoot length, seedlings dry weight and leaf fresh weight of stevia increased with applying NH4NO3 along with KNO3. The highest expression of UGT74G1 gene, was observed in plantlets grown on MS medium with 0 mg/l NH4NO3 and 950 mg/l KNO3 (1.291 total lab unit) but the highest expression of UGT76G1 gene, was observed in plantlets grown on MS medium added by 1650 mg/l NH4NO3 +950 mg/l KNO3 (1.08 total lab unit). Moreover, the lowest value of UGT74G1 gene expression were revealed in MS medium added by 1650 mg/l NH4NO3 +0 mg/l KNO3 (0.80 total lab unit) and the lowest values of UGT76G1 gene expression seen in MS medium with 0 mg/l NH4NO3 +950 mg/l KNO3 (0.85 total lab unit) concentrations. The results of this study could be valuable in stevia breeding programs through glycosides biosynthesis pathways.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/efectos de los fármacos , Glucósidos/biosíntesis , Nitratos/farmacología , Compuestos de Potasio/farmacología , Stevia/efectos de los fármacos , Medios de Cultivo/farmacología , Diterpenos de Tipo Kaurano/genética , Glucósidos/genética , Fitomejoramiento , Hojas de la Planta/química , Brotes de la Planta/química , Plantones/química , Stevia/genética , Técnicas de Cultivo de Tejidos
5.
Cell Mol Biol (Noisy-le-grand) ; 64(2): 32-38, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29433626

RESUMEN

Stevia rebaudiana Bertoni is a kind of perennial medicinal plant with sweetening properties which belongs to Asteraceae family. Its leaves with fundamental glycoside compounds consist of both a sugar part and a non-sugar sector. One of the glycoside compounds is Rebaudioside- A which has a greater importance in business. This experiment was conducted to evaluate the effects of Ag2O, CrO3, PbO, Fe2O3, BaO and TiO2 on the expression pattern of these genes in the Stevia rebaudiana. Rebaudioside- A biosynthesis was repeated 3 times with concentrations of 50, 100 and 200µM. Also, the results of the study pertaining to the expression pattern of these genes showed that metal oxides have led to an increase in the expression of the regulatory genes involved in biosynthesis of Rebaudioside- A. According to the expression profile, it was found that its effect on DXR, HDS, HDR, IDI and CPPS genes is more than other genes. The peak HPLC indicated for stevioside and Rebaudioside- A represents an increase in the production of this active ingredient under the influence of all treatments. In general, the expression profile of these genes and the results of HPLC show that whatever going to the end of the pathway of production of Rebaudioside- A, the activity of the enzymes increases under the influence of these treatments, and eventually a greater amount of Rebaudioside- A will be produced. This process shows that metal oxides will have a significant effect on the biosynthesis of Rebaudioside- A.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metales/farmacología , Óxidos/farmacología , Stevia/efectos de los fármacos , Diterpenos de Tipo Kaurano/genética , Genes de Plantas , Glucósidos/biosíntesis , Glucósidos/genética , Hojas de la Planta/química , Stevia/genética , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba
6.
Cell Mol Biol (Noisy-le-grand) ; 63(8): 33-37, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28886311

RESUMEN

Stevia rebaudiana (Bert.) Bertoni is known as sweet plant which it contains a high level of steviol glycosides in the leaves.  This plant has been used from centuries ago as a sweetener for tea. One of the most important steviol glycosides is stevioside that is attractive for diabetic persons. Tissue culture is the only rapid process for the mass propagation of stevia. One of the most important factors in the medium is sucrose that is a necessary for plant growth. In the present study, we use nodal segments of the stem as explants in mediums with different sucrose concentration (50 mM, 100mM and 150mM). Several morphological traits were measured in a 28 day period. Results analysis showed a significant variation between treatments. The highest growth rate, rooting and leaf production was obtained in medium with 100mM sucrose. The correlation between measured traits was significant at the 0.01 level. To investigation of UGT74G1, UGT76G1, UGT85C2 and KS genes expression that are involved in the synthesis of SGs, RT- PCR was done with the housekeeping gene of as internal control. There were significant differences between all media. The results showed thatsucrose 100 mM containing media was more desirable than others for expression of UGT76G1 and UGT85C2 genes. Whereas, the best medium for expression of UGT74G1 was sucrose 150 mM and sucrose 50 mM for KS gene. Totally, it seems that sucrose at a concentration of 100 mMprovides the best condition for stevia growth and steviol glycosides production.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Glucósidos/biosíntesis , Stevia/efectos de los fármacos , Sacarosa/farmacología , Medios de Cultivo/química , Medios de Cultivo/farmacología , Diterpenos de Tipo Kaurano/genética , Glucósidos/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Stevia/genética , Stevia/crecimiento & desarrollo , Stevia/metabolismo , Sacarosa/metabolismo , Edulcorantes , Técnicas de Cultivo de Tejidos
7.
Sci Rep ; 7(1): 11835, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928460

RESUMEN

Stevia is a natural source of commercially important steviol glycosides (SGs), which share biosynthesis route with gibberellic acids (GAs) through plastidal MEP and cytosolic MVA pathways. Ontogeny-dependent deviation in SGs biosynthesis is one of the key factor for global cultivation of Stevia, has not been studied at transcriptional level. To dissect underlying molecular mechanism, we followed a global transcriptome sequencing approach and generated more than 100 million reads. Annotation of 41,262 de novo assembled transcripts identified all the genes required for SGs and GAs biosynthesis. Differential gene expression and quantitative analysis of important pathway genes (DXS, HMGR, KA13H) and gene regulators (WRKY, MYB, NAC TFs) indicated developmental phase dependent utilization of metabolic flux between SGs and GAs synthesis. Further, identification of 124 CYPs and 45 UGTs enrich the genomic resources, and their PPI network analysis with SGs/GAs biosynthesis proteins identifies putative candidates involved in metabolic changes, as supported by their developmental phase-dependent expression. These putative targets can expedite molecular breeding and genetic engineering efforts to enhance SGs content, biomass and yield. Futuristically, the generated dataset will be a useful resource for development of functional molecular markers for diversity characterization, genome mapping and evolutionary studies in Stevia.


Asunto(s)
Diterpenos de Tipo Kaurano , Regulación de la Expresión Génica de las Plantas/fisiología , Glicósidos , Hojas de la Planta , Proteínas de Plantas , Stevia , Diterpenos de Tipo Kaurano/biosíntesis , Diterpenos de Tipo Kaurano/genética , Glicósidos/biosíntesis , Glicósidos/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Stevia/genética , Stevia/crecimiento & desarrollo , Transcripción Genética/fisiología
8.
Methods Mol Biol ; 1391: 289-301, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27108325

RESUMEN

Stevia (Stevia rebaudiana Bertoni) is a medicinal plant having sweet, diterpenoid glycosides known as steviol glycosides which are 200-300 times sweeter than sucrose (0.4 % solution). They are synthesized mainly in the leaves via plastid localized 2-C-methyl-D-erythrose-4-phosphate pathway (MEP pathway). Fifteen genes are involved in the formation of these glycosides. In the present protocol, a method for the quantification of transcripts of these genes is shown. The work involves RNA extraction and cDNA preparation, and therefore, procedures for the confirmation of DNA-free cDNA preparation have also been illustrated. Moreover, details of plant treatments are not mentioned as this protocol may apply to relative gene expression profile in any medicinal plant with any treatment. The treatments are numbered as T0 (Control), T1, T2, T3, and T4.


Asunto(s)
Vías Biosintéticas , Diterpenos de Tipo Kaurano/genética , Genes de Plantas , Glucósidos/genética , Stevia/genética , ADN Complementario/genética , ADN de Plantas/genética , Diterpenos de Tipo Kaurano/metabolismo , Expresión Génica , Glucósidos/metabolismo , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Metabolismo Secundario , Stevia/crecimiento & desarrollo , Stevia/metabolismo , Transcriptoma
9.
Plant Physiol Biochem ; 102: 151-60, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26943021

RESUMEN

Ent-kaurene (KS) synthases and ent-kaurene-like (KSL) synthases are involved in the biosynthesis of phytoalexins and/or gibberellins which play a role in plant immunity and development. The relationship between expression of five synthase genes (HvKSL1, HvKS2, HvKS4, HvKS5, HvKSL4) and plant colonization by the endophytic fungus Piriformospora indica was assessed in barley (Hordeum vulgare). The KS gene family is differently up-regulated at 1, 3 and 7 day after P. indica inoculation. By comparison, the HvKSL4 gene expression pattern is more significantly affected by UV irradiation and P. indica colonization. The characterizations of two silencing lines (HvKSL1-RNAi, HvKSL4-RNAi) also were analyzed. HvKSL1-RNAi and HvKSL4-RNAi lines in the first generation lead to less dark green leaves and slower plant development. Further, reduced spikelet fertility in progenies of RNAi plants heterozygous for HvKSL1 were observed, but not for HvKSL4. T2 generation of HvKSL1-RNAi line showed semi-dwarf phenotype while the wild type phenotype could be restored by applying GA3. Silencing of HvKSL4 and HvKSL1 resulted in reduced colonization by P. indica especially in the HvKSL1-RNAi line. These results probably suggest the presence of two ent-KS synthase in barley, one (HvKSL1) that participates in the biosynthesis of GAs and another (HvKSL4) that is involved in the biosynthesis of phytoalexins.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Basidiomycota/crecimiento & desarrollo , Hordeum/enzimología , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/genética , Basidiomycota/genética , Diterpenos de Tipo Kaurano/genética , Diterpenos de Tipo Kaurano/metabolismo , Hordeum/genética , Proteínas de Plantas/genética
10.
Biosci Biotechnol Biochem ; 80(1): 67-73, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26264414

RESUMEN

Stevioside and rebaudioside A are the chief diterpene glycosides present in the leaves of Stevia rebaudiana. Rebaudioside A imparts a desirable sweet taste, while stevioside produces a residual bitter aftertaste. Enzymatic synthesis of rebaudioside A from stevioside can increase the ratio of rebaudioside A to stevioside in steviol glycoside products, providing a conceivable strategy to improve the organoleptic properties of steviol glycoside products. Here, we demonstrate the efficient conversion of stevioside to rebaudioside A by coupling the activities of recombinant UDP-glucosyltransferase UGT76G1 from S. rebaudiana and sucrose synthase AtSUS1 from Arabidopsis thaliana. The conversion occurred via regeneration of UDP-glucose by AtSUS1. UDP was applicable as the initial material instead of UDP-glucose for UDP-glucose recycling. The amount of UDP could be greatly reduced in the reaction mixture. Rebaudioside A yield in 30 h with 2.4 mM stevioside, 7.2 mM sucrose, and 0.006 mM UDP was 78%.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Glucósidos/biosíntesis , Glucosiltransferasas/genética , Stevia/química , Edulcorantes/metabolismo , Clonación Molecular , Diterpenos de Tipo Kaurano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Tecnología de Alimentos/métodos , Expresión Génica , Glucósidos/genética , Glucosiltransferasas/metabolismo , Humanos , Hojas de la Planta/química , Hojas de la Planta/enzimología , Plásmidos/química , Plásmidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Stevia/enzimología , Sacarosa/metabolismo , Sacarosa/farmacología , Percepción del Gusto/fisiología , Uridina Difosfato/metabolismo , Uridina Difosfato/farmacología , Uridina Difosfato Glucosa/metabolismo , Uridina Difosfato Glucosa/farmacología
11.
J Biotechnol ; 214: 95-102, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26392384

RESUMEN

The ent-kaurene is a dedicated precursor pool and is responsible for synthesizing natural sweeteners such as steviol glycosides. In this study, to produce ent-kaurene in Escherichia coli, we modularly constructed and expressed two ent-kaurene genes encoding ent-copalyl diphosphate synthase (CPPS) and ent-kaurene synthase (KS) from Stevia rebaudiana known as a typical plant producing steviol glycoside. The CPPS and KS from S. rebaudiana were functionally expressed in a heterologous host E. coli. Furthermore, in order to enhance ent-kaurene production in E. coli, six geranylgeranyl diphosphate synthases (GGPPS) from various microorganisms and eight strains of E. coli as host were compared by measuring ent-kaurene production. The highest ent-kaurene production of approximately 41.1mg/L was demonstrated in E. coli strain MG1655 co-expressing synthetic CPPS-KS module and GGPPS from Rhodobacter sphaeroides. The ent-kaurene production was further increased up to 179.6 mg/L by overexpression of the three key enzymes for isoprenoid precursor, 1-deoxyxylulose-5-phosphate synthase (DXS), farnesyl diphosphate synthase (IspA) and isopentenyl diphosphate isomerase (IDI) from E. coli. Finally, the highest titer of ent-kaurene (578 mg/L) with a specific yield of ent-kaurene of 143.5mg/g dry cell weight was obtained by culturing E. coli strain MG1655 co-expressing the ent-kaurene module, DXS, IDI and IspA in 1L bioreactor containing 20 g/L glycerol.


Asunto(s)
Diterpenos de Tipo Kaurano/genética , Diterpenos de Tipo Kaurano/metabolismo , Escherichia coli/genética , Ingeniería Metabólica/métodos , Stevia/genética , Escherichia coli/metabolismo , Fermentación , Redes y Vías Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Plant J ; 83(5): 783-93, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26119826

RESUMEN

Grindelia robusta or gumweed, is a medicinal herb of the sunflower family that forms a diverse suite of diterpenoid natural products. Its major constituents, grindelic acid and related grindelane diterpenoids accumulate in a resinous exudate covering the plants' surfaces, most prominently the unopened composite flower. Recent studies demonstrated potential pharmaceutical applications for grindelic acid and its synthetic derivatives. Mining of the previously published transcriptome of G. robusta flower tissue identified two additional diterpene synthases (diTPSs). We report the in vitro and in vivo functional characterization of an ent-kaurene synthase of general metabolism (GrTPS4) and a class II diTPS (GrTPS2) of specialized metabolism that converts geranylgeranyl diphosphate (GGPP) into labda-7,13E-dienyl diphosphate as verified by nuclear magnetic resonance (NMR) analysis. Tissue-specific transcript abundance of GrTPS2 in leaves and flowers accompanied by the presence of an endocyclic 7,13 double bond in labda-7,13E-dienyl diphosphate suggest that GrTPS2 catalyzes the first committed reaction in the biosynthesis of grindelic acid and related grindelane metabolites. With the formation of labda-7,13E-dienyl diphosphate, GrTPS2 adds an additional function to the portfolio of monofunctional class II diTPSs, which catalytically most closely resembles the bifunctional labda-7,13E-dien-15-ol synthase of the lycopod Selaginella moellendorffii. Together with a recently identified functional diTPS pair of G. robusta producing manoyl oxide, GrTPS2 lays the biosynthetic foundation of the diverse array of labdane-related diterpenoids in the genus Grindelia. Knowledge of these natural diterpenoid metabolic pathways paves the way for developing biotechnology approaches toward producing grindelic acid and related bioproducts.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Diterpenos de Tipo Kaurano/metabolismo , Diterpenos/metabolismo , Grindelia/genética , Grindelia/metabolismo , Liasas Intramoleculares/metabolismo , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/genética , Diterpenos de Tipo Kaurano/genética , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Liasas Intramoleculares/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Nicotiana/genética
13.
Plant Physiol Biochem ; 89: 100-6, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25734328

RESUMEN

Stevia rebaudiana (Bertoni) produces steviol glycosides (SGs)--stevioside (stev) and rebaudioside-A (reb-A) that are valued as low calorie sweeteners. Inoculation with arbuscular mycorrhizal fungi (AMF) augments SGs production, though the effect of this interaction on SGs biosynthesis has not been studied at molecular level. In this study transcription profiles of eleven key genes grouped under three stages of the SGs biosynthesis pathway were compared. The transcript analysis showed upregulation of genes encoding 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway enzymes viz.,1-deoxy-D-xylulose 5-phospate synthase (DXS), 1-deoxy-D-xylulose 5-phospate reductoisomerase (DXR) and 2-C-methyl-D-erytrithol 2,4-cyclodiphosphate synthase (MDS) in mycorrhizal (M) plants. Zn and Mn are imperative for the expression of MDS and their enhanced uptake in M plants could be responsible for the increased transcription of MDS. Furthermore, in the second stage of SGs biosynthesis pathway, mycorrhization enhanced the transcription of copalyl diphosphate synthase (CPPS) and kaurenoic acid hydroxylase (KAH). Their expression is decisive for SGs biosynthesis as CPPS regulates flow of metabolites towards synthesis of kaurenoid precursors and KAH directs these towards steviol synthesis instead of gibberellins. In the third stage glucosylation of steviol to reb-A by four specific uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) occurs. While higher transcription of all the three characterized UGTs in M plants explains augmented production of SGs; higher transcript levels of UGT76G1, specifically improved reb-A to stev ratio implying increased sweetness. The work signifies that AM symbiosis upregulates the transcription of all eleven SGs biosynthesis genes as a result of improved nutrition and enhanced sugar concentration due to increased photosynthesis in M plants.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Genes de Plantas , Glucósidos/biosíntesis , Glicosiltransferasas/metabolismo , Micorrizas , Proteínas de Plantas/metabolismo , Stevia/metabolismo , Simbiosis , Diterpenos de Tipo Kaurano/genética , Eritritol/análogos & derivados , Eritritol/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucósidos/genética , Glicósidos/biosíntesis , Glicósidos/genética , Glicosiltransferasas/genética , Manganeso/metabolismo , Fotosíntesis , Proteínas de Plantas/genética , Stevia/enzimología , Stevia/genética , Fosfatos de Azúcar/metabolismo , Edulcorantes , Transcripción Genética , Uridina Difosfato/metabolismo , Zinc/metabolismo
14.
Dev Dyn ; 243(9): 1067-73, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24975237

RESUMEN

BACKGROUND: Stevioside is a diterpene glycoside found in Stevia rebaudiana Bertoni (Asteraceae) and is 200-300 times sweeter than sucrose. It is synthesized through a plastid localized 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. Fifteen genes are involved in the formation of steviol glycosides (stevioside and rebaudioside A). In the present investigation, micropropagated plants were allowed to harden for one month during which transcriptional profiling of candidate genes was carried out. Sampling from all the plants was carried out during hardening at different time intervals (day 10, 20, and 30) along with control plants (day 0). Stevioside content was also measured. RESULTS: Of 15 genes, 9 were up-regulated two-fold or greater. Nine genes were expressed at higher levels after 30 days than in the untreated controls. Moreover, these transcriptional differences were correlated with a significant enhancement in stevioside content from 0- (11.48%) to 30- (13.57%) day-old plants. CONCLUSIONS: MEP pathway genes in stevia are expressed at higher levels during hardening, a change to vegetative growth from reproductive growth. Although there were higher transcript levels of candidate genes at the initial phase of hardening, the highest stevioside content was found after 30 days of hardening, suggesting translational/posttranslational regulatory mechanisms.


Asunto(s)
Diterpenos de Tipo Kaurano/genética , Regulación de la Expresión Génica de las Plantas , Stevia/genética , Perfilación de la Expresión Génica , Hojas de la Planta/genética
15.
Crit Rev Food Sci Nutr ; 52(11): 988-98, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22823347

RESUMEN

Stevia rebaudiana, a perennial herb from the Asteraceae family, is known to the scientific world for its sweetness and steviol glycosides (SGs). SGs are the secondary metabolites responsible for the sweetness of Stevia. They are synthesized by SG biosynthesis pathway operating in the leaves. Most of the genes encoding the enzymes of this pathway have been cloned and characterized from Stevia. Out of various SGs, stevioside and rebaudioside A are the major metabolites. SGs including stevioside have also been synthesized by enzymes and microbial agents. These are non-mutagenic, non-toxic, antimicrobial, and do not show any remarkable side-effects upon consumption. Stevioside has many medical applications and its role against diabetes is most important. SGs have made Stevia an important part of the medicinal world as well as the food and beverage industry. This article presents an overview on Stevia and the importance of SGs.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Glucósidos/biosíntesis , Glicósidos/biosíntesis , Stevia/química , Clonación Molecular , Diterpenos de Tipo Kaurano/genética , Diterpenos de Tipo Kaurano/farmacología , Glucósidos/genética , Glucósidos/farmacología , Glicósidos/genética , Glicósidos/farmacología , Hojas de la Planta/química , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...