Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112.966
Filtrar
1.
Zhonghua Nei Ke Za Zhi ; 63(7): 674-679, 2024 Jul 01.
Artículo en Chino | MEDLINE | ID: mdl-38951091

RESUMEN

Objective: To summarize the clinical, imaging, and pathological characteristics of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS) to improve the diagnosis of this rare disease. Methods: A retrospective case series was conducted to collect the clinical data and results of genetic testing, muscle biopsy, and imaging studies including computed tomography (CT), magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS) of 35 patients with MELAS admitted to the Nanjing Drum Tower Hospital from 2012 to 2021. Descriptive statistical analysis including mean, standard deviation, and frequency percentage were carried out. Results: The average age of onset of the patients was 30.2±2.3 years; the prevalence of family history was 20%. The two main initial symptoms were limb weakness and convulsions. The clinical manifestations of the neuromuscular system were proximal muscle weakness and exercise intolerance. The endocrine system is the most affected outside the neuromuscular system, with diabetes being the most common condition. Among the five patients who underwent brain CT, four showed hypodense lesions and two had calcified lesions. Brain MRI in 26 patients showed that the lesions more often affected the parietal lobe, basal ganglia, temporal lobe, occipital lobe, and frontal lobe than the infratentorial areas. Twelve of these individuals exhibited different levels of brain atrophy. Among the 10 patients who underwent 1H-MRS, nine showed a decrease in N-acetylaspartate (NAA) levels, eight exhibited abnormal lactate elevation (Lac peaks), whereas six had both reduced NAA levels and the presence of Lac peaks. Thirty-one patients underwent genetic testing; among them, 25 were found to have the mt.3243A>G mutation, while the remaining six exhibited rare gene alterations. Muscle biopsies were performed in 21 patients, and 15 showed abnormal mitochondrial proliferation manifested by ragged red fibers and defective oxidative phosphorylation manifested by cytochrome C oxidase (COX) enzyme-deficient muscle fibers. Conclusion: The clinical manifestations of MELAS syndrome are variable and complex, and early atypical symptoms could be missed or misdiagnosed. A detailed clinical history, imaging MRS analysis, muscle biopsy, and genetic testing are necessary to confirm the accurate diagnosis of MELAS.


Asunto(s)
Síndrome MELAS , Imagen por Resonancia Magnética , Humanos , Síndrome MELAS/diagnóstico , Estudios Retrospectivos , Adulto , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Masculino , Femenino , Espectroscopía de Resonancia Magnética
2.
BMC Med ; 22(1): 266, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38951846

RESUMEN

BACKGROUND: Benzodiazepine use is common, particularly in older adults. Benzodiazepines have well-established acute adverse effects on cognition, but long-term effects on neurodegeneration and dementia risk remain uncertain. METHODS: We included 5443 cognitively healthy (MMSE ≥ 26) participants from the population-based Rotterdam Study (57.4% women, mean age 70.6 years). Benzodiazepine use from 1991 until baseline (2005-2008) was derived from pharmacy dispensing records, from which we determined drug type and cumulative dose. Benzodiazepine use was defined as prescription of anxiolytics (ATC-code: N05BA) or sedative-hypnotics (ATC-code: N05CD) between inception of pharmacy records and study baseline. Cumulative dose was calculated as the sum of the defined daily doses for all prescriptions. We determined the association with dementia risk until 2020 using Cox regression. Among 4836 participants with repeated brain MRI, we further determined the association of benzodiazepine use with changes in neuroimaging markers using linear mixed models. RESULTS: Of all 5443 participants, 2697 (49.5%) had used benzodiazepines at any time in the 15 years preceding baseline, of whom 1263 (46.8%) used anxiolytics, 530 (19.7%) sedative-hypnotics, and 904 (33.5%) used both; 345 (12.8%) participants were still using at baseline assessment. During a mean follow-up of 11.2 years, 726 participants (13.3%) developed dementia. Overall, use of benzodiazepines was not associated with dementia risk compared to never use (HR [95% CI]: 1.06 [0.90-1.25]), irrespective of cumulative dose. Risk estimates were somewhat higher for any use of anxiolytics than for sedative-hypnotics (HR 1.17 [0.96-1.41] vs 0.92 [0.70-1.21]), with strongest associations for high cumulative dose of anxiolytics (HR [95% CI] 1.33 [1.04-1.71]). In imaging analyses, current use of benzodiazepine was associated cross-sectionally with lower brain volumes of the hippocampus, amygdala, and thalamus and longitudinally with accelerated volume loss of the hippocampus and to a lesser extent amygdala. However, imaging findings did not differ by type of benzodiazepines or cumulative dose. CONCLUSIONS: In this population-based sample of cognitively healthy adults, overall use of benzodiazepines was not associated with increased dementia risk, but potential class-dependent adverse effects and associations with subclinical markers of neurodegeneration may warrant further investigation.


Asunto(s)
Benzodiazepinas , Demencia , Humanos , Femenino , Demencia/epidemiología , Demencia/inducido químicamente , Masculino , Anciano , Benzodiazepinas/efectos adversos , Benzodiazepinas/administración & dosificación , Persona de Mediana Edad , Imagen por Resonancia Magnética , Países Bajos/epidemiología , Anciano de 80 o más Años , Neuroimagen , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/patología , Estudios Prospectivos , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/inducido químicamente , Hipnóticos y Sedantes/efectos adversos , Factores de Riesgo
3.
Sci Transl Med ; 16(754): eadj5958, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959324

RESUMEN

Pathological tau aggregates cause cognitive decline in neurodegenerative tauopathies, including Alzheimer's disease (AD). These aggregates are prevalent within intracellular compartments. Current tau immunotherapies have shown limited efficacy in clearing intracellular tau aggregates and improving cognition in clinical trials. In this study, we developed toxic tau conformation-specific monoclonal antibody-2 (TTCM2), which selectively recognized pathological tau aggregates in brain tissues from patients with AD, dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). TTCM2 potently inhibited tau-seeding activity, an essential mechanism underlying tauopathy progression. To effectively target intracellular tau aggregates and ensure rapid delivery to the brain, TTCM2 was loaded in micelles (TTCM2-ms) and administered through the intranasal route. We found that intranasally administered TTCM2-ms efficiently entered the brain in hTau-tauopathy mice, targeting pathological tau in intracellular compartments. Moreover, a single intranasal dose of TTCM2-ms effectively cleared pathological tau, elevated synaptic proteins, and improved cognitive functions in aged tauopathy mice. Mechanistic studies revealed that TTCM2-ms cleared intracellular, synaptic, and seed-competent tau aggregates through tripartite motif-containing 21 (TRIM21), an intracellular antibody receptor and E3 ubiquitin ligase known to facilitate proteasomal degradation of cytosolic antibody-bound proteins. TRIM21 was found to be essential for TTCM2-ms-mediated clearance of tau pathology. Our study collectively provides evidence of the effectiveness of nasal tau immunotherapy in targeting and clearing intracellular tau pathology through TRIM21 and enhancing cognition in aged tauopathy mice. This study could be valuable in designing effective tau immunotherapies for AD and other tauopathies.


Asunto(s)
Administración Intranasal , Cognición , Inmunoterapia , Ratones Transgénicos , Tauopatías , Proteínas tau , Animales , Proteínas tau/metabolismo , Tauopatías/terapia , Tauopatías/patología , Tauopatías/metabolismo , Inmunoterapia/métodos , Humanos , Ratones , Envejecimiento/patología , Encéfalo/patología , Encéfalo/metabolismo , Anticuerpos Monoclonales/farmacología , Modelos Animales de Enfermedad , Agregado de Proteínas/efectos de los fármacos
4.
Sci Rep ; 14(1): 15057, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956224

RESUMEN

Image segmentation is a critical and challenging endeavor in the field of medicine. A magnetic resonance imaging (MRI) scan is a helpful method for locating any abnormal brain tissue these days. It is a difficult undertaking for radiologists to diagnose and classify the tumor from several pictures. This work develops an intelligent method for accurately identifying brain tumors. This research investigates the identification of brain tumor types from MRI data using convolutional neural networks and optimization strategies. Two novel approaches are presented: the first is a novel segmentation technique based on firefly optimization (FFO) that assesses segmentation quality based on many parameters, and the other is a combination of two types of convolutional neural networks to categorize tumor traits and identify the kind of tumor. These upgrades are intended to raise the general efficacy of the MRI scan technique and increase identification accuracy. Using MRI scans from BBRATS2018, the testing is carried out, and the suggested approach has shown improved performance with an average accuracy of 98.6%.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/clasificación , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/patología
5.
Diagn Pathol ; 19(1): 90, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956596

RESUMEN

BACKGROUND: Cerebral echinococcosis is relatively rare, and it is important to distinguish cerebral cystic echinococcosis (CCE) from cerebral alveolar echinococcosis (CAE) in terms of pathological diagnosis. We aim to describe the different clinicopathological features among patients with CCE and CAE. METHODS: We collected 27 cases of cerebral echinococcosis which were diagnosed in the Department of Pathology of the First Affiliated Hospital of Xinjiang Medical University from January 1, 2012, to June 30, 2023. We compared the patients' clinical characteristics, MRI features, and pathologic manifestations of CCE and CAE. RESULTS: Among 27 cases of cerebral echinococcosis, 23 cases were CAE and 4 cases were CCE. The clinical manifestations of both CCE and CAE patients mainly included headache (21 patients, 77.78%), limb movement disorders (6 patients, 22.22%), epileptic seizures (4 patients, 14.81%) and visual disturbances (2 patients, 7.41%). The average onset age of CAE cases was 34.96 ± 11.11 years, which was 9.00 ± 7.26 years in CCE cases. All CAE patients presented with multiple involvements in the brain and extracranial organs while all CCE patients observed a solitary lesion in the brain and 3 CCE cases had no extracranial involvement. Lesions of CCE in MRI showed a single isolated circular, which was well demarcated from the surrounding tissues and with no obvious edema around the lesions, whereas CAE lesions presented as multiple intracranial lesions, with blurred edges and edema around the lesions, and multiple small vesicles could be observed in the lesions. The edge of CAE lesions could be enhanced, while CCE lesions have no obvious enhancement. CCE foci were clear cysts with a wall of about 0.1 cm. Microscopically, the walls of the cysts were characterized by an eosinophilic keratin layer, which was flanked on one side by basophilic germinal lamina cells, which were sometimes visible as protocephalic nodes. While the CAE lesion was a nodular structure with a rough and uneven nodule surface, and the cut section was cystic and solid; microscopically, the CAE lesion had areas of coagulative necrosis, and the proto-cephalic nodes were barely visible. Inflammatory cell areas consisting of macrophages, lymphocytes, epithelioid cells, plasma cells, eosinophils, and fibroblasts can be seen around the lesion. Brain tissues in the vicinity of the inflammatory cell areas may show apoptosis, degeneration, necrosis, and cellular edema, while brain tissues a little farther away from the lesion show a normal morphology. CONCLUSIONS: With the low incidence of brain echinococcosis, the diagnosis of echinococcosis and the differential diagnosis of CAE and CCE are challenging for pathologists. Grasping the different clinical pathology characteristics of CAE and CCE is helpful for pathologists to make accurate diagnoses.


Asunto(s)
Equinococosis , Humanos , Adulto , Masculino , Femenino , Persona de Mediana Edad , China/epidemiología , Equinococosis/patología , Adulto Joven , Imagen por Resonancia Magnética , Diagnóstico Diferencial , Encefalopatías/parasitología , Encefalopatías/patología , Adolescente , Encéfalo/patología , Encéfalo/parasitología
6.
Hum Genomics ; 18(1): 75, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956648

RESUMEN

BACKGROUND: Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual "omics" signature that distinguishes subjects with varying cognitive profiles. RESULTS: We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging. CONCLUSIONS: These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.


Asunto(s)
Envejecimiento Cognitivo , Metilación de ADN , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Metilación de ADN/genética , Femenino , Masculino , Herencia Multifactorial/genética , Anciano , Persona de Mediana Edad , Estudios Transversales , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Factores de Riesgo , Imagen por Resonancia Magnética , Envejecimiento/genética , Envejecimiento/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Puntuación de Riesgo Genético
7.
Hum Brain Mapp ; 45(10): e26765, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958401

RESUMEN

As a potential preclinical stage of Alzheimer's dementia, subjective cognitive decline (SCD) reveals a higher risk of future cognitive decline and conversion to dementia. However, it has not been clear whether SCD status increases the clinical progression of older adults in the context of amyloid deposition, cerebrovascular disease (CeVD), and psychiatric symptoms. We identified 99 normal controls (NC), 15 SCD individuals who developed mild cognitive impairment in the next 2 years (P-SCD), and 54 SCD individuals who did not (S-SCD) from ADNI database with both baseline and 2-year follow-up data. Total white matter hyperintensity (WMH), WMH in deep (DWMH) and periventricular (PWMH) regions, and voxel-wise grey matter volumes were compared among groups. Furthermore, using structural equation modelling method, we constructed path models to explore SCD-related brain changes longitudinally and to determine whether baseline SCD status, age, and depressive symptoms affect participants' clinical outcomes. Both SCD groups showed higher baseline amyloid PET SUVR, baseline PWMH volumes, and larger increase of PWMH volumes over time than NC. In contrast, only P-SCD had higher baseline DWMH volumes and larger increase of DWMH volumes over time than NC. No longitudinal differences in grey matter volume and amyloid was observed among NC, S-SCD, and P-SCD. Our path models demonstrated that SCD status contributed to future WMH progression. Further, baseline SCD status increases the risk of future cognitive decline, mediated by PWMH; baseline depressive symptoms directly contribute to clinical outcomes. In conclusion, both S-SCD and P-SCD exhibited more severe CeVD than NC. The CeVD burden increase was more pronounced in P-SCD. In contrast with the direct association of depressive symptoms with dementia severity progression, the effects of SCD status on future cognitive decline may manifest via CeVD pathologies. Our work highlights the importance of multi-modal longitudinal designs in understanding the SCD trajectory heterogeneity, paving the way for stratification and early intervention in the preclinical stage. PRACTITIONER POINTS: Both S-SCD and P-SCD exhibited more severe CeVD at baseline and a larger increase of CeVD burden compared to NC, while the burden was more pronounced in P-SCD. Baseline SCD status increases the risk of future PWMH and DWMH volume accumulation, mediated by baseline PWMH and DWMH volumes, respectively. Baseline SCD status increases the risk of future cognitive decline, mediated by baseline PWMH, while baseline depression status directly contributes to clinical outcome.


Asunto(s)
Disfunción Cognitiva , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Humanos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología , Femenino , Masculino , Anciano , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Estudios Longitudinales , Autoevaluación Diagnóstica , Depresión/diagnóstico por imagen , Depresión/patología
8.
J Neuroinflammation ; 21(1): 169, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961424

RESUMEN

BACKGROUND: Understanding the mechanism behind sepsis-associated encephalopathy (SAE) remains a formidable task. This study endeavors to shed light on the complex cellular and molecular alterations that occur in the brains of a mouse model with SAE, ultimately unraveling the underlying mechanisms of this condition. METHODS: We established a murine model using intraperitoneal injection of lipopolysaccharide (LPS) in wild type and Anxa1-/- mice and collected brain tissues for analysis at 0-hour, 12-hour, 24-hour, and 72-hour post-injection. Utilizing advanced techniques such as single-nucleus RNA sequencing (snRNA-seq) and Stereo-seq, we conducted a comprehensive characterization of the cellular responses and molecular patterns within the brain. RESULTS: Our study uncovered notable temporal differences in the response to LPS challenge between Anxa1-/- (annexin A1 knockout) and wild type mice, specifically at the 12-hour and 24-hour time points following injection. We observed a significant increase in the proportion of Astro-2 and Micro-2 cells in these mice. These cells exhibited a colocalization pattern with the vascular subtype Vas-1, forming a distinct region known as V1A2M2, where Astro-2 and Micro-2 cells surrounded Vas-1. Moreover, through further analysis, we discovered significant upregulation of ligands and receptors such as Timp1-Cd63, Timp1-Itgb1, Timp1-Lrp1, as well as Ccl2-Ackr1 and Cxcl2-Ackr1 within this region. In addition, we observed a notable increase in the expression of Cd14-Itgb1, Cd14-Tlr2, and Cd14-C3ar1 in regions enriched with Micro-2 cells. Additionally, Cxcl10-Sdc4 showed broad upregulation in brain regions containing both Micro-2 and Astro-2 cells. Notably, upon LPS challenge, there was an observed increase in Anxa1 expression in the mouse brain. Furthermore, our study revealed a noteworthy increase in mortality rates following Anxa1 knockdown. However, we did not observe substantial differences in the types, numbers, or distribution of other brain cells between Anxa1-/- and wildtype mice over time. Nevertheless, when comparing the 24-hour post LPS injection time point, we observed a significant decrease in the proportion and distribution of Micro-2 and Astro-2 cells in the vicinity of blood vessels in Anxa1-/- mice. Additionally, we noted reduced expression levels of several ligand-receptor pairs including Cd14-Tlr2, Cd14-C3ar1, Cd14-Itgb1, Cxcl10-Sdc4, Ccl2-Ackr1, and Cxcl2-Ackr1. CONCLUSIONS: By combining snRNA-seq and Stereo-seq techniques, our study successfully identified a distinctive cellular colocalization, referred to as a special pathological niche, comprising Astro-2, Micro-2, and Vas-1 cells. Furthermore, we observed an upregulation of ligand-receptor pairs within this niche. These findings suggest a potential association between this cellular arrangement and the underlying mechanisms contributing to SAE or the increased mortality observed in Anxa1 knockdown mice.


Asunto(s)
Astrocitos , Encéfalo , Modelos Animales de Enfermedad , Lipopolisacáridos , Ratones Noqueados , Microglía , Encefalopatía Asociada a la Sepsis , Animales , Ratones , Lipopolisacáridos/toxicidad , Encefalopatía Asociada a la Sepsis/patología , Encefalopatía Asociada a la Sepsis/genética , Encefalopatía Asociada a la Sepsis/metabolismo , Microglía/metabolismo , Microglía/patología , Encéfalo/patología , Encéfalo/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Análisis de Secuencia de ARN/métodos , Ratones Endogámicos C57BL , Transcriptoma , Masculino
9.
Commun Biol ; 7(1): 811, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965360

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.


Asunto(s)
Encéfalo , Senescencia Celular , Herpes Simple , Herpesvirus Humano 1 , Esclerosis Múltiple , Animales , Ratones , Encéfalo/virología , Encéfalo/patología , Encéfalo/metabolismo , Esclerosis Múltiple/virología , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/patogenicidad , Herpes Simple/virología , Herpes Simple/patología , Femenino , Ratones Endogámicos C57BL , Encefalomielitis Autoinmune Experimental/virología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Fenotipo , Sistema Nervioso Central/virología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Médula Espinal/virología , Médula Espinal/metabolismo , Médula Espinal/patología , Biomarcadores/metabolismo , Encefalitis por Herpes Simple/virología , Encefalitis por Herpes Simple/patología , Encefalitis por Herpes Simple/metabolismo
10.
Neurotox Res ; 42(4): 32, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38949693

RESUMEN

Nonketotic hyperglycinemia (NKH) is an inherited disorder of amino acid metabolism biochemically characterized by the accumulation of glycine (Gly) predominantly in the brain. Affected patients usually manifest with neurological symptoms including hypotonia, seizures, epilepsy, lethargy, and coma, the pathophysiology of which is still not completely understood. Treatment is limited and based on lowering Gly levels aiming to reduce overstimulation of N-methyl-D-aspartate (NMDA) receptors. Mounting in vitro and in vivo animal and human evidence have recently suggested that excitotoxicity, oxidative stress, and bioenergetics disruption induced by Gly are relevant mechanisms involved in the neuropathology of NKH. This brief review gives emphasis to the deleterious effects of Gly in the brain of patients and animal models of NKH that may offer perspectives for the development of novel adjuvant treatments for this disorder.


Asunto(s)
Metabolismo Energético , Glicina , Hiperglicinemia no Cetósica , Estrés Oxidativo , Hiperglicinemia no Cetósica/patología , Hiperglicinemia no Cetósica/metabolismo , Animales , Humanos , Estrés Oxidativo/fisiología , Metabolismo Energético/fisiología , Glicina/metabolismo , Encéfalo/metabolismo , Encéfalo/patología
11.
Neurology ; 103(3): e209524, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38981074

RESUMEN

BACKGROUND AND OBJECTIVES: Temporal lobe epilepsy (TLE) is assumed to follow a steady course that is similar across patients. To date, phenotypic and temporal diversities of TLE evolution remain unknown. In this study, we aimed at simultaneously characterizing these sources of variability based on cross-sectional data. METHODS: We studied consecutive patients with TLE referred for evaluation by neurologists to the Montreal Neurological Institute epilepsy clinic, who underwent in-patient video EEG monitoring and multimodal imaging at 3 Tesla, comprising 3D T1 and fluid-attenuated inversion recovery and 2D diffusion-weighted MRI. The cohort included patients with drug-resistant epilepsy and patients with drug-responsive epilepsy. The neuropsychological evaluation included Wechsler Adult Intelligence Scale-III and Leonard tapping task. The control group consisted of participants without TLE recruited through advertisement and who underwent the same MRI acquisition as patients. Based on surface-based analysis of key MRI markers of pathology (gray matter morphology and white matter microstructure), the Subtype and Stage Inference algorithm estimated subtypes and stages of brain pathology to which individual patients were assigned. The number of subtypes was determined by running the algorithm 100 times and estimating mean and SD of disease trajectories and the consistency of patients' assignments based on 1,000 bootstrap samples. Effect of normal aging was subtracted from patients. We examined associations with clinical and cognitive parameters and utility for individualized predictions. RESULTS: We studied 82 patients with TLE (52 female, mean age 35 ± 10 years; 11 drug-responsive) and 41 control participants (23 male, mean age 32 ± 8 years). Among 57 operated, 43/37/20 had Engel-I outcome/hippocampal sclerosis/hippocampal isolated gliosis, respectively. We identified 3 trajectory subtypes: S1 (n = 35), led by ipsilateral hippocampal atrophy and gliosis, followed by white-matter damage; S2 (n = 27), characterized by bilateral neocortical atrophy, followed by ipsilateral hippocampal atrophy and gliosis; and S3 (n = 20), typified by bilateral limbic white-matter damage, followed by bilateral hippocampal gliosis. Patients showed high assignability to their subtypes and stages (>90% bootstrap agreement). S1 had the highest proportions of patients with early disease onset (effect size d = 0.27 vs S2, d = 0.73 vs S3), febrile convulsions (χ2 = 3.70), drug resistance (χ2 = 2.94), a positive MRI (χ2 = 8.42), hippocampal sclerosis (χ2 = 7.57), and Engel-I outcome (χ2 = 1.51), pFDR < 0.05 across all comparisons. S2 and S3 exhibited the intermediate and lowest proportions, respectively. Verbal IQ and digit span were lower in S1 (d = 0.65 and d = 0.50, pFDR < 0.05) and S2 (d = 0.76 and d = 1.09, pFDR < 0.05), compared with S3. We observed progressive decline in sequential motor tapping in S1 and S3 (T = -3.38 and T = -4.94, pFDR = 0.027), compared with S2 (T = 2.14, pFDR = 0.035). S3 showed progressive decline in digit span (T = -5.83, p = 0.021). Supervised classifiers trained on subtype and stage outperformed subtype-only and stage-only models predicting drug response in 73% ± 1.0% (vs 70% ± 1.4% and 63% ± 1.3%) and 76% ± 1.6% for Engel-I outcome (vs 71% ± 0.8% and 72% ± 1.1%), pFDR < 0.05 across all comparisons. DISCUSSION: Cross-sectional MRI-derived models provide reliable prognostic markers of TLE disease evolution, which follows distinct trajectories, each associated with divergent patterns of hippocampal and whole-brain structural alterations, as well as cognitive and clinical profiles.


Asunto(s)
Progresión de la Enfermedad , Epilepsia del Lóbulo Temporal , Imagen por Resonancia Magnética , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Estudios Transversales , Electroencefalografía , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/patología , Adulto Joven , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Pruebas Neuropsicológicas
12.
Age Ageing ; 53(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38984695

RESUMEN

PURPOSE: This study aimed to develop a normal brain ageing model based on magnetic resonance imaging and radiomics, therefore identifying radscore, an imaging indicator representing white matter heterogeneity and exploring the significance of radscore in detecting people's cognitive changes. METHODS: Three hundred sixty cognitively normal (CN) subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database and 105 CN subjects from the Parkinson's Progression Markers Initiative database were used to develop the model. In ADNI, 230 mild cognitive impairment (MCI) subjects were matched with 230 CN old-aged subjects to evaluate their heterogeneity difference. One hundred four MCI subjects with 48 months of follow-up were divided into low and high heterogeneity groups. Kaplan-Meier survival curve analysis was used to observe the importance of heterogeneity results for predicting MCI progression. RESULTS: The area under the receiver operating characteristic curve of the model in the training, internal test and external test sets was 0.7503, 0.7512 and 0.7514, respectively. There was a significantly positive correlation between age and radscore of CN subjects (r = 0.501; P < .001). The radscore of MCI subjects was significantly higher than that of matched CN subjects (P < .001). The median radscore ratios of MCI to CN from four age groups (66-70y, 71-75y, 76-80y and 81-85y) were 1.611, 1.760, 1.340 and 1.266, respectively. The probability to progression of low and high heterogeneity groups had a significant difference (P = .002). CONCLUSION: When radscore is significantly higher than that of normal ageing, it is necessary to alert the possibility of cognitive impairment and deterioration.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Humanos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico , Anciano , Masculino , Femenino , Anciano de 80 o más Años , Envejecimiento/psicología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Factores de Riesgo , Factores de Edad , Valor Predictivo de las Pruebas , Cognición , Bases de Datos Factuales , Estudios de Casos y Controles , Medición de Riesgo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Radiómica
13.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38984704

RESUMEN

This study utilized Mendelian randomization to explore the impact of hypertensive disorders of pregnancy and their subtypes on brain structures, using genome-wide association study data from the FinnGen consortium for hypertensive disorders of pregnancy exposure and brain structure data from the ENIGMA consortium as outcomes. The inverse-variance weighted method, along with Cochran's Q test, Mendelian randomization-Egger regression, Mendelian randomization-PRESSO global test, and the leave-one-out approach, were applied to infer causality and assess heterogeneity and pleiotropy. Findings indicate hypertensive disorders of pregnancy are associated with structural brain alterations, including reduced cortical thickness in areas like the insula, isthmus cingulate gyrus, superior temporal gyrus, temporal pole, and transverse temporal gyrus, and an increased surface area in the superior frontal gyrus. Specific associations were found for hypertensive disorders of pregnancy subtypes: chronic hypertension with superimposed preeclampsia increased cortical thickness in the supramarginal gyrus; preeclampsia/eclampsia led to thinner cortex in the lingual gyrus and larger hippocampal volume and superior parietal lobule surface area. Chronic hypertension was associated with reduced cortical thickness in the caudal and rostral anterior cingulate and increased surface area of the cuneus and thickness of the pars orbitalis cortex. Gestational hypertension showed no significant brain region changes. These insights clarify hypertensive disorders of pregnancies' neurological and cognitive effects by identifying affected brain regions.


Asunto(s)
Encéfalo , Estudio de Asociación del Genoma Completo , Hipertensión Inducida en el Embarazo , Análisis de la Aleatorización Mendeliana , Humanos , Femenino , Embarazo , Hipertensión Inducida en el Embarazo/patología , Hipertensión Inducida en el Embarazo/genética , Hipertensión Inducida en el Embarazo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
15.
Cells ; 13(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38994948

RESUMEN

Excessive inflammatory reactions and oxidative stress are well-recognized molecular findings in autism and these processes can affect or be affected by the epigenetic landscape. Nonetheless, adequate therapeutics are unavailable, as patient-specific brain molecular markers for individualized therapies remain challenging. METHODS: We used iPSC-derived neurons and astrocytes of patients with autism vs. controls (5/group) to examine whether they replicate the postmortem brain expression/epigenetic alterations of autism. Additionally, DNA methylation of 10 postmortem brain samples (5/group) was analyzed for genes affected in PSC-derived cells. RESULTS: We found hyperexpression of TGFB1, TGFB2, IL6 and IFI16 and decreased expression of HAP1, SIRT1, NURR1, RELN, GPX1, EN2, SLC1A2 and SLC1A3 in the astrocytes of patients with autism, along with DNA hypomethylation of TGFB2, IL6, TNFA and EN2 gene promoters and a decrease in HAP1 promoter 5-hydroxymethylation in the astrocytes of patients with autism. In neurons, HAP1 and IL6 expression trended alike. While HAP1 promoter was hypermethylated in neurons, IFI16 and SLC1A3 promoters were hypomethylated and TGFB2 exhibited increased promoter 5-hydroxymethlation. We also found a reduction in neuronal arborization, spine size, growth rate, and migration, but increased astrocyte size and a reduced growth rate in autism. In postmortem brain samples, we found DNA hypomethylation of TGFB2 and IFI16 promoter regions, but DNA hypermethylation of HAP1 and SLC1A2 promoters in autism. CONCLUSION: Autism-associated expression/epigenetic alterations in iPSC-derived cells replicated those reported in the literature, making them appropriate surrogates to study disease pathogenesis or patient-specific therapeutics.


Asunto(s)
Astrocitos , Trastorno Autístico , Encéfalo , Metilación de ADN , Epigénesis Genética , Células Madre Pluripotentes Inducidas , Neuronas , Humanos , Astrocitos/metabolismo , Astrocitos/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Trastorno Autístico/genética , Trastorno Autístico/patología , Trastorno Autístico/metabolismo , Neuronas/metabolismo , Neuronas/patología , Metilación de ADN/genética , Encéfalo/patología , Encéfalo/metabolismo , Masculino , Femenino , Regiones Promotoras Genéticas/genética , Forma de la Célula , Niño , Regulación de la Expresión Génica , Proteína Reelina
16.
Cells ; 13(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38994950

RESUMEN

The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.


Asunto(s)
Encéfalo , Neuropéptidos , Estrés Psicológico , Humanos , Neuropéptidos/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Estrés Psicológico/metabolismo
17.
Cells ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38994979

RESUMEN

HIV-associated neurocognitive disorders (HAND) persist under antiretroviral therapy as a complex pathology that has been difficult to study in cellular and animal models. Therefore, we generated an ex vivo human brain slice model of HIV-1 infection from surgically resected adult brain tissue. Brain slice cultures processed for flow cytometry showed >90% viability of dissociated cells within the first three weeks in vitro, with parallel detection of astrocyte, myeloid, and neuronal populations. Neurons within brain slices showed stable dendritic spine density and mature spine morphologies in the first weeks in culture, and they generated detectable activity in multi-electrode arrays. We infected cultured brain slices using patient-matched CD4+ T-cells or monocyte-derived macrophages (MDMs) that were exposed to a GFP-expressing R5-tropic HIV-1 in vitro. Infected slice cultures expressed viral RNA and developed a spreading infection up to 9 days post-infection, which were significantly decreased by antiretrovirals. We also detected infected myeloid cells and astrocytes within slices and observed minimal effect on cellular viability over time. Overall, this human-centered model offers a promising resource to study the cellular mechanisms contributing to HAND (including antiretroviral toxicity, substance use, and aging), infection of resident brain cells, and new neuroprotective therapeutics.


Asunto(s)
Encéfalo , Infecciones por VIH , VIH-1 , Humanos , Encéfalo/virología , Encéfalo/patología , VIH-1/fisiología , Infecciones por VIH/virología , Infecciones por VIH/patología , Adulto , Neuronas/virología , Neuronas/metabolismo , Macrófagos/virología , Macrófagos/metabolismo , Astrocitos/virología , Linfocitos T CD4-Positivos/virología , Técnicas de Cultivo de Tejidos
18.
Alzheimers Res Ther ; 16(1): 148, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961512

RESUMEN

BACKGROUND: Leveraging Alzheimer's disease (AD) imaging biomarkers and longitudinal cognitive data may allow us to establish evidence of cognitive resilience (CR) to AD pathology in-vivo. Here, we applied latent class mixture modeling, adjusting for sex, baseline age, and neuroimaging biomarkers of amyloid, tau and neurodegeneration, to a sample of cognitively unimpaired older adults to identify longitudinal trajectories of CR. METHODS: We identified 200 Harvard Aging Brain Study (HABS) participants (mean age = 71.89 years, SD = 9.41 years, 59% women) who were cognitively unimpaired at baseline with 2 or more timepoints of cognitive assessment following a single amyloid-PET, tau-PET and structural MRI. We examined latent class mixture models with longitudinal cognition as the dependent variable and time from baseline, baseline age, sex, neocortical Aß, entorhinal tau, and adjusted hippocampal volume as independent variables. We then examined group differences in CR-related factors across the identified subgroups from a favored model. Finally, we applied our favored model to a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 160, mean age = 73.9 years, SD = 7.6 years, 60% women). RESULTS: The favored model identified 3 latent subgroups, which we labelled as Normal (71% of HABS sample), Resilient (22.5%) and Declining (6.5%) subgroups. The Resilient subgroup exhibited higher baseline cognitive performance and a stable cognitive slope. They were differentiated from other groups by higher levels of verbal intelligence and past cognitive activity. In ADNI, this model identified a larger Normal subgroup (88.1%), a smaller Resilient subgroup (6.3%) and a Declining group (5.6%) with a lower cognitive baseline. CONCLUSION: These findings demonstrate the value of data-driven approaches to identify longitudinal CR groups in preclinical AD. With such an approach, we identified a CR subgroup who reflected expected characteristics based on previous literature, higher levels of verbal intelligence and past cognitive activity.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Femenino , Masculino , Anciano , Proteínas tau/metabolismo , Estudios Longitudinales , Estudios Transversales , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Cognición/fisiología , Persona de Mediana Edad , Reserva Cognitiva/fisiología , Biomarcadores , Neuroimagen/métodos
19.
Alzheimers Res Ther ; 16(1): 153, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970077

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder where pathophysiological changes begin decades before the onset of clinical symptoms. Analysis of brain atrophy patterns using structural MRI and multivariate data analysis are an effective tool in identifying patients with subjective cognitive decline (SCD) at higher risk of progression to AD dementia. Atrophy patterns obtained from models trained to classify advanced AD versus normal subjects, may not be optimal for subjects at an early stage, like SCD. In this study, we compared the accuracy of the SCD progression prediction using the 'severity index' generated using a standard classification model trained on patients with AD dementia versus a new model trained on ß-amyloid (Aß) positive patients with amnestic mild cognitive impairment (aMCI). METHODS: We used structural MRI data of 504 patients from the Swedish BioFINDER-1 study cohort (cognitively normal (CN), Aß-negative = 220; SCD, Aß positive and negative = 139; aMCI, Aß-positive = 106; AD dementia = 39). We applied multivariate data analysis to create two predictive models trained to discriminate CN individuals from either individuals with Aß positive aMCI or AD dementia. Models were applied to individuals with SCD to classify their atrophy patterns as either high-risk "disease-like" or low-risk "CN-like". Clinical trajectory and model accuracy were evaluated using 8 years of longitudinal data. RESULTS: In predicting progression from SCD to MCI or dementia, the standard, dementia-based model, reached 100% specificity but only 10.6% sensitivity, while the new, aMCI-based model, reached 72.3% sensitivity and 60.9% specificity. The aMCI-based model was superior in predicting progression from SCD to MCI or dementia, reaching a higher receiver operating characteristic area under curve (AUC = 0.72; P = 0.037) in comparison with the dementia-based model (AUC = 0.57). CONCLUSION: When predicting conversion from SCD to MCI or dementia using structural MRI data, prediction models based on individuals with milder levels of atrophy (i.e. aMCI) may offer superior clinical value compared to standard dementia-based models.


Asunto(s)
Atrofia , Encéfalo , Disfunción Cognitiva , Demencia , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Atrofia/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/diagnóstico , Anciano , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Demencia/diagnóstico por imagen , Demencia/patología , Persona de Mediana Edad , Anciano de 80 o más Años , Estudios de Cohortes , Pruebas Neuropsicológicas , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología
20.
J Obstet Gynaecol ; 44(1): 2371956, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38984803

RESUMEN

BACKGROUD: Neurological disorders are common in preterm (PT) born individuals. Diffusion tensor imaging (DTI) studies using tract-based spatial statistics (TBSS) effectively detect microstructural white matter (WM) abnormalities in the brain. We conducted this systematic review to integrate the findings of TBSS studies to determine the most consistent WM alterations in PT born individuals. METHODS: PubMed, Embase, Web of Science and Science Direct were searched. DTI studies using TBSS in PT born individuals were screened up to October 2022. The systematic review included studies reporting alterations in FA values for the entire brain in a stereotactic space, with three coordinates (x, y, z), according to the seed-based d mapping method. RESULTS: The search strategy identified seventeen studies that fulfilled our inclusion criteria, with a total of 911 PT-born individuals and 563 matched controls were analysed. Of the seventeen studies, eight were dedicated to 650 adults, five to 411 children and four to 413 infants. Ten studies recruited 812 individuals born very prematurely (GA <29 weeks), six studies recruited 386 moderately premature individuals (GA = 29-32 weeks) and one study recruited 276 individuals born late prematurely (GA >32 weeks). This meta-analysis of six studies including 388 individuals highlighted four brain regions in which fractional anisotropy (FA) was lower in PT group than in people born at term. The quantitative meta-analysis found that the most robust WM alterations were located in the corpus callosum (CC), the bilateral thalamus and the left superior longitudinal fasciculus (SLF) II. Significant changes in FA reflect WM abnormalities in PT born individuals from infant to young adulthood. CONCLUSIONS: Significant changes in FA reflect WM abnormalities in individuals born PT from infancy to young adulthood. The abnormal development of the CC, bilateral thalamus and left SLF may play a vital role in the neurodevelopment of PT individuals.


Neurological disorders are prevalent in preterm (PT) born individuals. The use of tract-based spatial statistics (TBSS) in diffusion tensor imaging (DTI) studies has proven effective in detecting microstructural abnormalities of the white matter (WM) of the brain. In order to determine the most consistent alterations in WM among those born prematurely, we have screened DTI studies using TBSS in this PT born population up until October 2022. The meta-analysis identified four brain regions where fractional anisotropy (FA) was lower in the PT group than in those born at term. The quantitative meta-analysis identified the corpus callosum, the bilateral thalamus and the left superior longitudinal fasciculus II. As the most robust WM alterations. Various studies have demonstrated the links between PT birth, intelligence quotient, gestational age and subject age.


Asunto(s)
Imagen de Difusión Tensora , Recien Nacido Prematuro , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Anisotropía , Recién Nacido , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Nacimiento Prematuro , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Adulto , Masculino , Niño , Lactante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...