Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Database (Oxford) ; 20242024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39197058

RESUMEN

The Australian Biosecurity Genomic Database (ABGD) is a curated collection of reference viral genome sequences based on the Australian National Notifiable Disease List of Terrestrial Animals. It was created to facilitate the screening of high-throughput sequencing (HTS) data for the potential presence of viruses associated with notifiable disease. The database includes a single verified sequence (the exemplar species sequence, where relevant) for each of the 60 virus species across 21 viral families that are associated with or cause these notifiable diseases, as recognized by the World Organisation for Animal Health. The open-source ABGD on GitHub provides usage guidance documents and is intended to support building a culture in Australian HTS communities that promotes the use of quality-assured, standardized, and verified databases for Australia's national biosecurity interests. Future expansion of the database will include the addition of more strains or subtypes for highly variable viruses, viruses causing diseases of aquatic animals, and genomes of other types of pathogens associated with notifiable diseases, such as bacteria. Database URL: https://github.com/ausbiopathgenDB/AustralianBiosecurityGenomicDatabase.


Asunto(s)
Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Australia , Genoma Viral , Genómica/métodos , Virus/genética , Enfermedades de los Animales/genética , Enfermedades de los Animales/virología
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806334

RESUMEN

The major goal of animal breeding is the genetic enhancement of economic traits. The CRISPR/Cas system, which includes nuclease-mediated and base editor mediated genome editing tools, provides an unprecedented approach to modify the mammalian genome. Thus, farm animal genetic engineering and genetic manipulation have been fundamentally revolutionized. Agricultural animals with traits of interest can be obtained in just one generation (and without long time selection). Here, we reviewed the advancements of the CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) genome editing tools and their applications in animal breeding, especially in improving disease resistance, production performance, and animal welfare. Additionally, we covered the regulations on genome-edited animals (GEAs) and ways to accelerate their use. Recommendations for how to produce GEAs were also discussed. Despite the current challenges, we believe that genome editing breeding and GEAs will be available in the near future.


Asunto(s)
Enfermedades de los Animales , Edición Génica , Enfermedades de los Animales/genética , Animales , Sistemas CRISPR-Cas/genética , Resistencia a la Enfermedad/genética , Endonucleasas/genética , Ingeniería Genética , Mamíferos/genética
3.
PLoS Pathog ; 17(11): e1010033, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780568

RESUMEN

Contagious cancers are a rare pathogenic phenomenon in which cancer cells gain the ability to spread between genetically distinct hosts. Nine examples have been identified across marine bivalves, dogs and Tasmanian devils, but the Tasmanian devil is the only mammalian species known to have given rise to two distinct lineages of contagious cancer, termed Devil Facial Tumour 1 (DFT1) and 2 (DFT2). Remarkably, DFT1 and DFT2 arose independently from the same cell type, a Schwann cell, and while their ultra-structural features are highly similar they exhibit variation in their mutational signatures and infection dynamics. As such, DFT1 and DFT2 provide a unique framework for investigating how a common progenitor cell can give rise to distinct contagious cancers. Using a proteomics approach, we show that DFT1 and DFT2 are derived from Schwann cells in different differentiation states, with DFT2 carrying a molecular signature of a less well differentiated Schwann cell. Under inflammatory signals DFT1 and DFT2 have different gene expression profiles, most notably involving Schwann cell markers of differentiation, reflecting the influence of their distinct origins. Further, DFT2 cells express immune cell markers typically expressed during nerve repair, consistent with an ability to manipulate their extracellular environment, facilitating the cell's ability to transmit between individuals. The emergence of two contagious cancers in the Tasmanian devil suggests that the inherent plasticity of Schwann cells confers a vulnerability to the formation of contagious cancers.


Asunto(s)
Enfermedades de los Animales/patología , Diferenciación Celular , Enfermedades Transmisibles/patología , Neoplasias Faciales/veterinaria , Regulación Neoplásica de la Expresión Génica , Proteoma/metabolismo , Células de Schwann/patología , Enfermedades de los Animales/genética , Enfermedades de los Animales/metabolismo , Animales , Variación Biológica Poblacional , Enfermedades Transmisibles/genética , Enfermedades Transmisibles/metabolismo , Neoplasias Faciales/clasificación , Perfilación de la Expresión Génica , Marsupiales , Proteoma/análisis , Células de Schwann/metabolismo , Transcriptoma
4.
Viruses ; 13(6)2021 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199268

RESUMEN

White Spot Disease (WSD) presents a major barrier to penaeid shrimp production. Mechanisms underlying White Spot Syndrome Virus (WSSV) susceptibility in penaeids are poorly understood due to limited information related to early infection. We investigated mRNA and miRNA transcription in Penaeus vannamei over 36 h following infection. Over this time course, 6192 transcripts and 27 miRNAs were differentially expressed-with limited differential expression from 3-12 h post injection (hpi) and a more significant transcriptional response associated with the onset of disease symptoms (24 hpi). During early infection, regulated processes included cytoskeletal remodelling and alterations in phagocytic activity that may assist WSSV entry and translocation, novel miRNA-induced metabolic shifts, and the downregulation of ATP-dependent proton transporter subunits that may impair cellular recycling. During later infection, uncoupling of the electron transport chain may drive cellular dysfunction and lead to high mortalities in infected penaeids. We propose that post-transcriptional silencing of the immune priming gene Dscam (downregulated following infections) by a novel shrimp miRNA (Pva-pmiR-78; upregulated) as a potential mechanism preventing future recognition of WSSV that may be suppressed in surviving shrimp. Our findings improve our understanding of WSD pathogenesis in P. vannamei and provide potential avenues for future development of prophylactics and treatments.


Asunto(s)
Interacciones Huésped-Patógeno/genética , MicroARNs/genética , Penaeidae/genética , Penaeidae/virología , ARN Mensajero/genética , Virus del Síndrome de la Mancha Blanca 1 , Enfermedades de los Animales/genética , Enfermedades de los Animales/patología , Enfermedades de los Animales/virología , Animales , Biología Computacional , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/química , Modelos Biológicos , ARN Mensajero/química , Transcriptoma , Carga Viral
5.
Viruses ; 13(6)2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199957

RESUMEN

Viruses, and in particular the deformed wing virus (DWV), are considered as one of the main antagonists of honey bee health. The 'suppressed in ovo virus infection' trait (SOV) described for the first time that control of a virus infection can be achieved from genetically inherited traits and that the virus state of the eggs is indicative for this. This research aims to explore the effect of the SOV trait on DWV infections in queens descending from both SOV-positive (QDS+) and SOV-negative (QDS-) queens. Twenty QDS+ and QDS- were reared from each time four queens in the same starter-finisher colony. From each queen the head, thorax, ovaries, spermatheca, guts and eviscerated abdomen were dissected and screened for the presence of the DWV-A and DWV-B genotype using qRT-PCR. Queens descending from SOV-positive queens showed significant lower infection loads for DWV-A and DWV-B as well as a lower number of infected tissues for DWV-A. Surprisingly, differences were less expressed in the reproductive tissues, the ovaries and spermatheca. These results confirm that selection on the SOV trait is associated with increased virus resistance across viral genotypes and that this selection drives DWV towards an increased tissue specificity for the reproductive tissues. Further research is needed to explore the mechanisms underlying the interaction between the antiviral response and DWV.


Asunto(s)
Enfermedades de los Animales/virología , Abejas/virología , Cruzamiento , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Infecciones por Virus ARN/veterinaria , Virus ARN/fisiología , Enfermedades de los Animales/genética , Animales , Carga Viral
6.
Sci Rep ; 11(1): 15028, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294840

RESUMEN

Deformed wing virus (DWV) prevalence is high in honey bee (Apis mellifera) populations. The virus infects honey bees through vertical and horizontal transmission, leading to behavioural changes, wing deformity, and early mortality. To better understand the impacts of viral infection in the larval stage of honey bees, artificially reared honey bee larvae were infected with DWV (1.55 × 1010 copies/per larva). No significant mortality occurred in infected honey bee larvae, while the survival rates decreased significantly at the pupal stage. Examination of DWV replication revealed that viral replication began at 2 days post inoculation (d.p.i.), increased dramatically to 4 d.p.i., and then continuously increased in the pupal stage. To better understand the impact of DWV on the larval stage, DWV-infected and control groups were subjected to transcriptomic analysis at 4 d.p.i. Two hundred fifty-five differentially expressed genes (DEGs) (fold change ≥ 2 or ≤ -2) were identified. Of these DEGs, 168 genes were downregulated, and 87 genes were upregulated. Gene Ontology (GO) analysis showed that 141 DEGs (55.3%) were categorized into molecular functions, cellular components and biological processes. One hundred eleven genes (38 upregulated and 73 downregulated) were annotated by KO (KEGG Orthology) pathway mapping and involved metabolic pathways, biosynthesis of secondary metabolites and glycine, serine and threonine metabolism pathways. Validation of DEGs was performed, and the related gene expression levels showed a similar tendency to the DEG predictions at 4 d.p.i.; cell wall integrity and stress response component 1 (wsc1), cuticular protein and myo-inositol 2-dehydrogenase (iolG) were significantly upregulated, and small conductance calcium-activated potassium channel protein (SK) was significantly downregulated at 4 d.p.i. Related gene expression levels at different d.p.i. revealed that these DEGs were significantly regulated from the larval stage to the pupal stage, indicating the potential impacts of gene expression levels from the larval to the pupal stages. Taken together, DWV infection in the honey bee larval stage potentially influences the gene expression levels from larvae to pupae and reduces the survival rate of the pupal stage. This information emphasizes the consequences of DWV prevalence in honey bee larvae for apiculture.


Asunto(s)
Abejas/genética , Abejas/virología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Virus ARN , Transcriptoma , Enfermedades de los Animales/genética , Enfermedades de los Animales/mortalidad , Enfermedades de los Animales/virología , Animales , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Larva , Tasa de Supervivencia
7.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802936

RESUMEN

MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression post-transcriptionally by targeting either the 3' untranslated or coding regions of genes. They have been reported to play key roles in a wide range of biological processes. The recent remarkable developments of transcriptomics technologies, especially next-generation sequencing technologies and advanced bioinformatics tools, allow more in-depth exploration of messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs), including miRNAs. These technologies have offered great opportunities for a deeper exploration of miRNA involvement in farm animal diseases, as well as livestock productivity and welfare. In this review, we provide an overview of the current knowledge of miRNA roles in major farm animal diseases with a particular focus on diseases of economic importance. In addition, we discuss the steps and future perspectives of using miRNAs as biomarkers and molecular therapy for livestock disease management as well as the challenges and opportunities for understanding the regulatory mechanisms of miRNAs related to disease pathogenesis.


Asunto(s)
Enfermedades de los Animales/genética , Enfermedades de los Animales/terapia , Animales Domésticos/genética , Biomarcadores/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Animales , Humanos , Ganado/genética , MicroARNs/metabolismo
8.
PLoS One ; 16(4): e0249176, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33831031

RESUMEN

Populations are exposed to different types and strains of pathogens across heterogeneous landscapes, where local interactions between host and pathogen may present reciprocal selective forces leading to correlated patterns of spatial genetic structure. Understanding these coevolutionary patterns provides insight into mechanisms of disease spread and maintenance. Arctic rabies (AR) is a lethal disease with viral variants that occupy distinct geographic distributions across North America and Europe. Red fox (Vulpes vulpes) are a highly susceptible AR host, whose range overlaps both geographically distinct AR strains and regions where AR is absent. It is unclear if genetic structure exists among red fox populations relative to the presence/absence of AR or the spatial distribution of AR variants. Acquiring these data may enhance our understanding of the role of red fox in AR maintenance/spread and inform disease control strategies. Using a genotyping-by-sequencing assay targeting 116 genomic regions of immunogenetic relevance, we screened for sequence variation among red fox populations from Alaska and an outgroup from Ontario, including areas with different AR variants, and regions where the disease was absent. Presumed neutral SNP data from the assay found negligible levels of neutral genetic structure among Alaskan populations. The immunogenetically-associated data identified 30 outlier SNPs supporting weak to moderate genetic structure between regions with and without AR in Alaska. The outliers included SNPs with the potential to cause missense mutations within several toll-like receptor genes that have been associated with AR outcome. In contrast, there was a lack of genetic structure between regions with different AR variants. Combined, we interpret these data to suggest red fox populations respond differently to the presence of AR, but not AR variants. This research increases our understanding of AR dynamics in the Arctic, where host/disease patterns are undergoing flux in a rapidly changing Arctic landscape, including the continued northward expansion of red fox into regions previously predominated by the arctic fox (Vulpes lagopus).


Asunto(s)
Zorros/genética , Polimorfismo de Nucleótido Simple , Rabia/genética , Alaska , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/genética , Enfermedades de los Animales/virología , Distribución Animal , Animales , Zorros/virología , Haplotipos , Mutación Missense , Ontario , Rabia/epidemiología , Rabia/virología , Virus de la Rabia/aislamiento & purificación , Virus de la Rabia/patogenicidad , Receptores Toll-Like/genética
9.
Front Immunol ; 12: 613729, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708207

RESUMEN

Viral infection triggers insect immune response, including RNA interference, apoptosis and autophagy, and profoundly changes the gene expression profiles in infected cells. Although intracellular degradation is crucial for restricting viral infection, intercellular communication is required to mount a robust systemic immune response. This review focuses on recent advances in understanding the intercellular communications in insect antiviral immunity, including protein-based and virus-derived RNA based cell-cell communications, with emphasis on the signaling pathway that induces the production of the potential cytokines. The prospects and challenges of future work are also discussed.


Asunto(s)
Comunicación Celular , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Insectos/inmunología , Insectos/virología , Enfermedades de los Animales/genética , Enfermedades de los Animales/inmunología , Enfermedades de los Animales/metabolismo , Enfermedades de los Animales/virología , Animales , Biomarcadores , Citocinas/metabolismo , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Inmunidad Innata , Insectos/metabolismo
10.
Sci Rep ; 11(1): 1735, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462399

RESUMEN

Investigation of the prevalence and diversity of Bartonella infections in small mammals in the Qaidam Basin, western China, could provide a scientific basis for the control and prevention of Bartonella infections in humans. Accordingly, in this study, small mammals were captured using snap traps in Wulan County and Ge'ermu City, Qaidam Basin, China. Spleen and brain tissues were collected and cultured to isolate Bartonella strains. The suspected positive colonies were detected with polymerase chain reaction amplification and sequencing of gltA, ftsZ, RNA polymerase beta subunit (rpoB) and ribC genes. Among 101 small mammals, 39 were positive for Bartonella, with the infection rate of 38.61%. The infection rate in different tissues (spleens and brains) (χ2 = 0.112, P = 0.738) and gender (χ2 = 1.927, P = 0.165) of small mammals did not have statistical difference, but that in different habitats had statistical difference (χ2 = 10.361, P = 0.016). Through genetic evolution analysis, 40 Bartonella strains were identified (two different Bartonella species were detected in one small mammal), including B. grahamii (30), B. jaculi (3), B. krasnovii (3) and Candidatus B. gerbillinarum (4), which showed rodent-specific characteristics. B. grahamii was the dominant epidemic strain (accounted for 75.0%). Furthermore, phylogenetic analysis showed that B. grahamii in the Qaidam Basin, might be close to the strains isolated from Japan and China. Overall, we observed a high prevalence of Bartonella infection in small mammals in the Qaidam Basin. B. grahamii may cause human disease, and the pathogenicity of the others Bartonella species needs further study, the corresponding prevention and control measures should be taken into consideration.


Asunto(s)
Enfermedades de los Animales/epidemiología , Infecciones por Bartonella/veterinaria , Bartonella/genética , Mamíferos/microbiología , Roedores/microbiología , Enfermedades de los Animales/genética , Enfermedades de los Animales/microbiología , Animales , Bartonella/aislamiento & purificación , Infecciones por Bartonella/epidemiología , Infecciones por Bartonella/genética , Infecciones por Bartonella/microbiología , China/epidemiología , Reservorios de Enfermedades , Variación Genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA