Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 36(3): 109351, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289360

RESUMEN

Recurrence of uropathogenic Escherichia coli (UPEC) infections has been attributed to reactivation of quiescent intracellular reservoirs (QIRs) in deep layers of the bladder wall. QIRs are thought to arise late during infection following dispersal of bacteria from intracellular bacterial communities (IBCs) in superficial umbrella cells. Here, we track the formation of QIR-like bacteria in a bladder organoid model that recapitulates the stratified uroepithelium within a volume suitable for high-resolution live-cell imaging. Bacteria injected into the organoid lumen enter umbrella-like cells and proliferate to form IBC-like bodies. In parallel, single bacteria penetrate deeper layers of the organoid wall, where they localize within or between uroepithelial cells. These "solitary" bacteria evade killing by antibiotics and neutrophils and are morphologically distinct from bacteria in IBCs. We conclude that bacteria with QIR-like properties may arise at early stages of infection, independent of IBC formation and rupture.


Asunto(s)
Antibacterianos/farmacología , Modelos Biológicos , Neutrófilos/patología , Organoides/microbiología , Vejiga Urinaria/microbiología , Escherichia coli Uropatógena/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Femenino , Humanos , Imagenología Tridimensional , Ratones Endogámicos C57BL , Viabilidad Microbiana/efectos de los fármacos , Movimiento , Neutrófilos/efectos de los fármacos , Organoides/efectos de los fármacos , Organoides/ultraestructura , Vejiga Urinaria/patología , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/ultraestructura
2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34011607

RESUMEN

Escherichia coli express adhesion pili that mediate attachment to host cell surfaces and are exposed to body fluids in the urinary and gastrointestinal tracts. Pilin subunits are organized into helical polymers, with a tip adhesin for specific host binding. Pili can elastically unwind when exposed to fluid flow forces, reducing the adhesin load, thereby facilitating sustained attachment. Here we investigate biophysical and structural differences of pili commonly expressed on bacteria that inhabit the urinary and intestinal tracts. Optical tweezers measurements reveal that class 1a pili of uropathogenic E. coli (UPEC), as well as class 1b of enterotoxigenic E. coli (ETEC), undergo an additional conformational change beyond pilus unwinding, providing significantly more elasticity to their structure than ETEC class 5 pili. Examining structural and steered molecular dynamics simulation data, we find that this difference in class 1 pili subunit behavior originates from an α-helical motif that can unfold when exposed to force. A disulfide bond cross-linking ß-strands in class 1 pili stabilizes subunits, allowing them to tolerate higher forces than class 5 pili that lack this covalent bond. We suggest that these extra contributions to pilus resiliency are relevant for the UPEC niche, since resident bacteria are exposed to stronger, more transient drag forces compared to those experienced by ETEC bacteria in the mucosa of the intestinal tract. Interestingly, class 1b ETEC pili include the same structural features seen in UPEC pili, while requiring lower unwinding forces that are more similar to those of class 5 ETEC pili.


Asunto(s)
Adhesinas de Escherichia coli/química , Escherichia coli Enterotoxigénica/ultraestructura , Proteínas Fimbrias/química , Fimbrias Bacterianas/ultraestructura , Escherichia coli Uropatógena/ultraestructura , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Adhesión Bacteriana , Sitios de Unión , Fenómenos Biomecánicos , Cisteína/química , Cisteína/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Expresión Génica , Cinética , Simulación de Dinámica Molecular , Pinzas Ópticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Termodinámica , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/metabolismo
3.
Infect Immun ; 88(9)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32540870

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections. These bacteria undertake a multistage infection cycle involving invasion of and proliferation within urinary tract epithelial cells, leading to the rupture of the host cell and dispersal of the bacteria, some of which have a highly filamentous morphology. Here, we established a microfluidics-based model of UPEC infection of immortalized human bladder epithelial cells that recapitulates the main stages of bacterial morphological changes during the acute infection cycle in vivo and allows the development and fate of individual cells to be monitored in real time by fluorescence microscopy. The UPEC-infected bladder cells remained alive and mobile in nonconfluent monolayers during the development of intracellular bacterial communities (IBCs). Switching from a flow of growth medium to human urine resulted in immobilization of both uninfected and infected bladder cells. Some IBCs continued to develop and then released many highly filamentous bacteria via an extrusion-like process, whereas other IBCs showed strong UPEC proliferation, and yet no filamentation was detected. The filamentation response was dependent on the weak acidity of human urine and required component(s) in a low molecular-mass (<3,000 Da) fraction from a mildly dehydrated donor. The developmental fate for bacteria therefore appears to be controlled by multiple factors that act at the level of the whole IBC, suggesting that variable local environments or stochastic differentiation pathways influence IBC developmental fates during infection.


Asunto(s)
Células Epiteliales/microbiología , Técnicas Analíticas Microfluídicas , Escherichia coli Uropatógena/patogenicidad , Escherichia coli Uropatógena/ultraestructura , Línea Celular Transformada , Movimiento Celular , Proliferación Celular , Células Epiteliales/patología , Células Epiteliales/ultraestructura , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Microscopía Fluorescente , Modelos Biológicos , Reología , Vejiga Urinaria/microbiología , Vejiga Urinaria/patología , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología , Escherichia coli Uropatógena/fisiología , Urotelio/microbiología , Urotelio/patología
4.
Eur J Clin Microbiol Infect Dis ; 39(9): 1753-1760, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32399681

RESUMEN

Emergence of multidrug resistance (MDR) in uropathogenic E. coli (UPEC) demands alternative therapeutic interventions. Bactericidal antibiotics at their sub-inhibitory concentration stimulate production of reactive oxygen species (ROS) that results in oxidative stress, generates mutations, and alters transcription of different genes. Sub-inhibitory concentration of antibiotics facilitates selection of highly resistant population. Universal stress protein A (uspA) overexpression in MDR-UPEC at sub-inhibitory bactericidal antibiotics concentration was investigated to explore alternative survival strategy against them. Fifty clinical UPEC isolates were screened. Minimum inhibitory concentration (MIC) against three different bactericidal antibiotics (ciprofloxacin, CIP; ceftazidime, CAZ; gentamycin, GEN) was determined by broth dilution method; ROS production by DCFDA and overexpression of uspA by real-time PCR were determined at the sub-inhibitory concentration of antibiotics. DNA ladder formation and SEM studies were performed with drug untreated and treated samples. Statistical analysis was done by Student's t test and Pearson's correlation analysis; 25 out of 50 UPEC exhibited high MIC against CIP (> 200 µg/ml), CAZ (> 500 µg/ml), GEN (> 500 µg/ml), with varied ROS production (p ≤ 0.001) in treated than untreated controls. DNA ladder formation confirmed ROS production in drug-treated samples. SEM analysis revealed unaltered cell morphology in both untreated and drug-treated bacteria. uspA was universally overexpressed in all 25 UPEC. A significant correlation (p ≤ 0.001) between ROS production and uspA overexpression was observed in 19 out of 25 MDR isolates at sub-inhibitory doses of the bactericidal antibiotics. Therefore, this study highlights an alternative strategy that the MDR isolates may acquire when exposed to sub-inhibitory drug concentration for their survival.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Proteína Estafilocócica A/metabolismo , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/ultraestructura
5.
Microb Pathog ; 141: 103973, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31927002

RESUMEN

Uropathogenic Escherichia coli (UPEC) is one of the keystone pathogen that cause 80-90% of community acquired urinary tract infections (UTIs) and Catheter associated urinary tract infections (CAUTIs). Pathogenicity and ability of UPEC to colonize the bladder majorly relies on the expression of phenotypic virulence factors like flagella, pili, curli, and non pilus adhesion. Pathogens that colonize on the indwelling medical devices are able to communicate using quorum sensing (QS) signals. QS Plays a vital role in coordinating biofilm formation which results in the bacterial cells encased inside an extracellular polymeric substance (EPS). Chitosan is a marine polysaccharide which is known for its antibacterial activity. In the present study we investigated the ability of chitosan extracted from marine biowaste to mitigate the QS mediated biofilm formation in UPEC. Extracted chitosan (EC) and Commercial chitosan (CC) showed percentage inhibition of 80-85% and 60-75% respectively on young biofilm inhibition and preformed biofilm disruption. EC and CC were assessed for its ability to suppress QS mediated virulence in UPEC. Hemolysis assay showed a percentage inhibition of 79% against EC. Both chitosan showed profound activity to suppress the phenotypic virulence factors like swarming motility which is mediated by type I pili and colony morphology assay showed repression in cellulose production in UPEC. Furthermore, Real-Time PCR confirmed the ability of EC to down regulate the virulent genes which are responsible for invasion in UPEC. Accordingly, the current study foresees the quorum sensing inhibiting (QSI) potential of chitosan extracted from marine biowaste which offers an antibiotic free approach to combat UTI caused by UPEC.


Asunto(s)
Antibacterianos/farmacología , Organismos Acuáticos/química , Polisacáridos/farmacología , Escherichia coli Uropatógena/efectos de los fármacos , Virulencia/efectos de los fármacos , Antibacterianos/química , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Escherichia coli Uropatógena/patogenicidad , Escherichia coli Uropatógena/ultraestructura , Factores de Virulencia/genética
6.
Proc Natl Acad Sci U S A ; 115(40): 10106-10111, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30232265

RESUMEN

Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infections, employing numerous molecular strategies to contribute to adhesion, colonization, and persistence in the bladder niche. Identifying strategies to prevent adhesion and colonization is a promising approach to inhibit bacterial pathogenesis and to help preserve the efficacy of available antibiotics. This approach requires an improved understanding of the molecular determinants of adhesion to the bladder urothelium. We designed experiments using a custom-built live cell monolayer rheometer (LCMR) to quantitatively measure individual and combined contributions of bacterial cell surface structures [type 1 pili, curli, and phosphoethanolamine (pEtN) cellulose] to bladder cell adhesion. Using the UPEC strain UTI89, isogenic mutants, and controlled conditions for the differential production of cell surface structures, we discovered that curli can promote stronger adhesive interactions with bladder cells than type 1 pili. Moreover, the coproduction of curli and pEtN cellulose enhanced adhesion. The LCMR enables the evaluation of adhesion under high-shear conditions to reveal this role for pEtN cellulose which escaped detection using conventional tissue culture adhesion assays. Together with complementary biochemical experiments, the results support a model wherein cellulose serves a mortar-like function to promote curli association with and around the bacterial cell surface, resulting in increased bacterial adhesion strength at the bladder cell surface.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Celulosa/efectos adversos , Células Epiteliales/metabolismo , Etanolaminas/efectos adversos , Vejiga Urinaria/metabolismo , Escherichia coli Uropatógena/metabolismo , Urotelio/metabolismo , Proteínas Bacterianas/genética , Línea Celular , Celulosa/farmacología , Células Epiteliales/microbiología , Células Epiteliales/ultraestructura , Etanolaminas/farmacología , Humanos , Vejiga Urinaria/microbiología , Vejiga Urinaria/ultraestructura , Escherichia coli Uropatógena/patogenicidad , Escherichia coli Uropatógena/ultraestructura , Urotelio/microbiología , Urotelio/ultraestructura
7.
Nat Commun ; 9(1): 2758, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-30013059

RESUMEN

Uropathogenic Escherichia coli attach to tissues using pili type 1. Each pilus is composed by thousands of coiled FimA domains followed by the domains of the tip fibrillum, FimF-FimG-FimH. The domains are linked by non-covalent ß-strands that must resist mechanical forces during attachment. Here, we use single-molecule force spectroscopy to measure the mechanical contribution of each domain to the stability of the pilus and monitor the oxidative folding mechanism of a single Fim domain assisted by periplasmic FimC and the oxidoreductase DsbA. We demonstrate that pilus domains bear high mechanical stability following a hierarchy by which domains close to the tip are weaker than those close to or at the pilus rod. During folding, this remarkable stability is achieved by the intervention of DsbA that not only forms strategic disulfide bonds but also serves as a chaperone assisting the folding of the domains.


Asunto(s)
Adhesinas de Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas Fimbrias/química , Fimbrias Bacterianas/genética , Proteína Disulfuro Isomerasas/química , Escherichia coli Uropatógena/genética , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Sitios de Unión , Clonación Molecular , Disulfuros/química , Disulfuros/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Microscopía de Fuerza Atómica , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/ultraestructura
8.
Elife ; 72018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29345620

RESUMEN

Uropathogenic E. coli (UPEC), which cause urinary tract infections (UTI), utilize type 1 pili, a chaperone usher pathway (CUP) pilus, to cause UTI and colonize the gut. The pilus rod, comprised of repeating FimA subunits, provides a structural scaffold for displaying the tip adhesin, FimH. We solved the 4.2 Å resolution structure of the type 1 pilus rod using cryo-electron microscopy. Residues forming the interactive surfaces that determine the mechanical properties of the rod were maintained by selection based on a global alignment of fimA sequences. We identified mutations that did not alter pilus production in vitro but reduced the force required to unwind the rod. UPEC expressing these mutant pili were significantly attenuated in bladder infection and intestinal colonization in mice. This study elucidates an unappreciated functional role for the molecular spring-like property of type 1 pilus rods in host-pathogen interactions and carries important implications for other pilus-mediated diseases.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/ultraestructura , Adhesión Bacteriana , Infecciones por Escherichia coli/microbiología , Fimbrias Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Escherichia coli Uropatógena/ultraestructura , Animales , Microscopía por Crioelectrón , Modelos Animales de Enfermedad , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/ultraestructura , Ratones , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/fisiología
9.
J Microbiol Methods ; 139: 37-44, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28477900

RESUMEN

To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple bacterial isolates. This will be a powerful experimental tool facilitating the study of bacterial invasion, drug resistance, and the development of new therapeutics.


Asunto(s)
Citoplasma/microbiología , Ensayos Analíticos de Alto Rendimiento/métodos , Microscopía/instrumentación , Microscopía/métodos , Escherichia coli Uropatógena/crecimiento & desarrollo , Animales , Automatización , Recuento de Colonia Microbiana/métodos , Citoplasma/ultraestructura , Células Epiteliales/microbiología , Células Epiteliales/ultraestructura , Gentamicinas/farmacología , Proteínas Fluorescentes Verdes/genética , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Riñón/citología , Riñón/microbiología , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/ultraestructura
10.
Anal Bioanal Chem ; 408(27): 7709-7717, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27580606

RESUMEN

Microbial biofilms are communities of cells characterized by a hallmark extracellular matrix (ECM) that confers functional attributes to the community, including enhanced cohesion, adherence to surfaces, and resistance to external stresses. Understanding the composition and properties of the biofilm ECM is crucial to understanding how it functions and protects cells. New methods to isolate and characterize ECM are emerging for different biofilm systems. Solid-state nuclear magnetic resonance was used to quantitatively track the isolation of the insoluble ECM from the uropathogenic Escherichia coli strain UTI89 and understand the role of Congo red in purification protocols. UTI89 assembles amyloid-integrated biofilms when grown on YESCA nutrient agar. The ECM contains curli amyloid fibers and a modified form of cellulose. Biofilms formed by UTI89 and other E. coli and Salmonella strains are often grown in the presence of Congo red to visually emphasize wrinkled agar morphologies and to score the production of ECM. Congo red is a hallmark amyloid-binding dye and binds to curli, yet also binds to cellulose. We found that growth in Congo red enabled more facile extraction of the ECM from UTI89 biofilms and facilitates isolation of cellulose from the curli mutant, UTI89ΔcsgA. Yet, Congo red has no influence on the isolation of curli from curli-producing cells that do not produce cellulose. Sodium dodecyl sulfate can remove Congo red from curli, but not from cellulose. Thus, Congo red binds strongly to cellulose and possibly weakens cellulose interactions with the cell surface, enabling more complete removal of the ECM. The use of Congo red as an extracellular matrix purification aid may be applied broadly to other organisms that assemble extracellular amyloid or cellulosic materials. Graphical abstract Solid-state NMR was used to quantitatively track the isolation of the insoluble amyloid-associated ECM from uropathogenic E. coli and understand the role of Congo red in purification protocols.


Asunto(s)
Amiloide/química , Biopelículas/efectos de los fármacos , Rojo Congo/química , Matriz Extracelular/química , Escherichia coli Uropatógena/efectos de los fármacos , Amiloide/biosíntesis , Amiloide/ultraestructura , Biopelículas/crecimiento & desarrollo , Celulosa/química , Rojo Congo/farmacología , Medios de Cultivo/química , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Espectroscopía de Resonancia Magnética/métodos , Microscopía Electrónica de Transmisión , Unión Proteica , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/ultraestructura
11.
Angew Chem Int Ed Engl ; 54(40): 11691-5, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26267365

RESUMEN

Type 1 pili are filamentous protein assemblies on the surface of Gram-negative bacteria that mediate adhesion to host cells during the infection process. The molecular structure of type 1 pili remains elusive on the atomic scale owing to their insolubility and noncrystallinity. Herein we describe an approach for hybrid-structure determination that is based on data from solution-state NMR spectroscopy on the soluble subunit and solid-state NMR spectroscopy and STEM data on the assembled pilus. Our approach is based on iterative modeling driven by structural information extracted from different sources and provides a general tool to access pseudo atomic structures of protein assemblies with complex subunit folds. By using this methodology, we determined the local conformation of the FimA pilus subunit in the context of the assembled type 1 pilus, determined the exact helical pilus architecture, and elucidated the intermolecular interfaces contributing to pilus assembly and stability with atomic detail.


Asunto(s)
Fimbrias Bacterianas/química , Escherichia coli Uropatógena/química , Fimbrias Bacterianas/ultraestructura , Microscopía Electrónica de Transmisión , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Subunidades de Proteína/química , Escherichia coli Uropatógena/ultraestructura
12.
Infect Immun ; 83(3): 1056-67, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25561706

RESUMEN

Uropathogenic strains of Escherichia coli (UPEC) are the major cause of bacteremic urinary tract infections. Survival in the bloodstream is associated with different mechanisms that help to resist serum complement-mediated killing. While the phenotypic heterogeneity of bacteria has been shown to influence antibiotic tolerance, the possibility that it makes cells refractory to killing by the immune system has not been experimentally tested. In the present study we sought to determine whether the heterogeneity of bacterial cultures is relevant to bacterial targeting by the serum complement system. We monitored cell divisions in the UPEC strain CFT073 with fluorescent reporter protein. Stationary-phase cells were incubated in active or heat-inactivated human serum in the presence or absence of different antibiotics (ampicillin, norfloxacin, and amikacin), and cell division and complement protein C3 binding were measured by flow cytometry and immunofluorescence microscopy. Heterogeneity in the doubling times of CFT073 cells in serum enabled three phenotypically different subpopulations to be distinguished, all of them being recognized by the C3 component of the complement system. The population of rapidly growing cells resists serum complement-mediated lysis. The dominant subpopulation of cells with intermediate growth rate is susceptible to serum. The third population, which does not resume growth upon dilution from stationary phase, is simultaneously protected from serum complement and antibiotics.


Asunto(s)
Antibacterianos/farmacología , Complemento C3/farmacología , Heterogeneidad Genética , Escherichia coli Uropatógena/efectos de los fármacos , Amicacina/farmacología , Ampicilina/farmacología , Farmacorresistencia Bacteriana , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Norfloxacino/farmacología , Fenotipo , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/ultraestructura
13.
mBio ; 4(5): e00645-13, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-24023384

RESUMEN

UNLABELLED: Bacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenic Escherichia coli (UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community. IMPORTANCE: Bacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed by Escherichia coli.


Asunto(s)
Biopelículas , Matriz Extracelular/ultraestructura , Escherichia coli Uropatógena/fisiología , Celulosa/metabolismo , Infecciones por Escherichia coli/microbiología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Flagelos/genética , Flagelos/metabolismo , Flagelos/ultraestructura , Humanos , Microscopía Electrónica de Rastreo , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/ultraestructura
14.
PLoS One ; 8(6): e65563, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23799025

RESUMEN

Type I pili are proteinaceous tethers that mediate bacterial adhesion of uropathogenic Escherichia coli to surfaces and are thought to help bacteria resist drag forces imparted by fluid flow via uncoiling of their quaternary structure. Uncoiling and recoiling have been observed in force spectroscopy experiments, but it is not clear if and how this process occurs under fluid flow. Here we developed an assay to study the mechanical properties of pili in a parallel plate flow chamber. We show that pili extend when attached E. coli bacteria are exposed to increasing shear stresses, that pili can help bacteria move against moderate fluid flows, and characterize two dynamic regimes of this displacement. The first regime is consistent with entropic contraction as modeled by a freely jointed chain, and the second with coiling of the quaternary structure of pili. These results confirm that coiling and uncoiling happen under flow but the observed dynamics are different from those reported previously. Using these results and those from previous studies, we review the mechanical properties of pili in the context of other elastic proteins such as the byssal threads of mussels. It has been proposed that the high extensibility of pili may help recruit more pili into tension and lower the force acting on each one by damping changes in force due to fluid flow. Our analysis of the mechanical properties suggests additional functions of pili; in particular, their extensibility may reduce tension by aligning pili with the direction of flow, and the uncoiled state of pili may complement uncoiling in regulating the force of the terminal adhesin.


Asunto(s)
Adhesión Bacteriana , Fimbrias Bacterianas/fisiología , Escherichia coli Uropatógena/fisiología , Fenómenos Biomecánicos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiología , Proteínas Fimbrias/química , Proteínas Fimbrias/fisiología , Fimbrias Bacterianas/ultraestructura , Modelos Biológicos , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estrés Fisiológico , Termodinámica , Escherichia coli Uropatógena/ultraestructura
15.
Biophys J ; 103(3): 464-471, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22947862

RESUMEN

Bacterial biofilms are complex multicellular assemblies, characterized by a heterogeneous extracellular polymeric matrix, that have emerged as hallmarks of persistent infectious diseases. New approaches and quantitative data are needed to elucidate the composition and architecture of biofilms, and such data need to be correlated with mechanical and physicochemical properties that relate to function. We performed a panel of interfacial rheological measurements during biofilm formation at the air-liquid interface by the Escherichia coli strain UTI89, which is noted for its importance in studies of urinary tract infection and for its assembly of functional amyloid fibers termed curli. Brewster-angle microscopy and measurements of the surface elasticity (G(s)') and stress-strain response provided sensitive and quantitative parameters that revealed distinct stages during bacterial colonization, aggregation, and eventual formation of a pellicle at the air-liquid interface. Pellicles that formed under conditions that upregulate curli production exhibited an increase in strength and viscoelastic properties as well as a greater ability to recover from stress-strain perturbation. The results suggest that curli, as hydrophobic extracellular amyloid fibers, enhance the strength, viscoelasticity, and resistance to strain of E. coli biofilms formed at the air-liquid interface.


Asunto(s)
Aire , Amiloide/metabolismo , Biopelículas , Escherichia coli Uropatógena/fisiología , Módulo de Elasticidad , Microscopía Electrónica , Reología , Estrés Mecánico , Propiedades de Superficie , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/ultraestructura
16.
Autophagy ; 8(11): 1693-4, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22874553

RESUMEN

Autophagy is generally considered to be antipathogenic. The autophagy gene ATG16L1 has a commonly occurring mutation associated with Crohn disease (CD) and intestinal cell abnormalities. Mice hypomorphic for ATG16L1 (ATG16L1(HM)) recreate specific features of CD. Our recent study shows that the same ATG16L1(HM) mice that are susceptible to intestinal inflammatory disease are protected from urinary tract infections (UTI), a common and important human disease primarily caused by uropathogenic E. coli (UPEC). UPEC colonize the bladder and exhibit both luminal and intra-epithelial stages. The host responds by recruiting innate immune cells and shedding infected epithelial cells to clear infection. Despite these countermeasures, UPEC can persist within the bladder epithelium as membrane-enclosed quiescent intracellular reservoirs (QIRs) that can seed recurrent UTI. The mechanisms of persistence remain unknown. In this study, we show that ATG16L1 deficiency protects the host against acute UTI and UPEC latency. ATG16L1(HM) mice clear urinary bacterial loads more rapidly and thoroughly due to ATG16L1-deficient innate immune components. Furthermore, ATG16L1(HM) mice exhibit superficial urothelial cell-autonomous architectural aberrations that also result in significantly reduced QIR numbers. Our findings reveal a host-protective effect of ATG16L1 deficiency in vivo against a common pathogen.


Asunto(s)
Proteínas Portadoras/metabolismo , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología , Animales , Autofagia , Humanos , Inmunidad , Ratones , Fagosomas/metabolismo , Fagosomas/ultraestructura , Infecciones Urinarias/inmunología , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/ultraestructura
17.
Infect Immun ; 80(8): 2802-15, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22665376

RESUMEN

The pstSCAB-phoU operon encodes the phosphate-specific transport system (Pst). Loss of Pst constitutively activates the Pho regulon and decreases bacterial virulence. However, specific mechanisms underlying decreased bacterial virulence through inactivation of Pst are poorly understood. In uropathogenic Escherichia coli (UPEC) strain CFT073, inactivation of pst decreased urinary tract colonization in CBA/J mice. The pst mutant was deficient in production of type 1 fimbriae and showed decreased expression of the fimA structural gene which correlated with differential expression of the fimB, fimE, ipuA, and ipbA genes, encoding recombinases, mediating inversion of the fim promoter. The role of fim downregulation in attenuation of the pst mutant was confirmed using a fim phase-locked-on derivative, which demonstrated a significant gain in virulence. In addition, the pst mutant was less able to invade human bladder epithelial cells. Since type 1 fimbriae contribute to UPEC virulence by promoting colonization and invasion of bladder cells, the reduced bladder colonization by the pst mutant is predominantly attributed to downregulation of these fimbriae. Elucidation of mechanisms mediating the control of type 1 fimbriae through activation of the Pho regulon in UPEC may open new avenues for therapeutics or prophylactics against urinary tract infections.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/metabolismo , Animales , Adhesión Bacteriana , Línea Celular , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Humanos , Ratones , Ratones Endogámicos CBA , Mutación , Vejiga Urinaria/citología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/ultraestructura
18.
FEMS Microbiol Lett ; 334(2): 87-94, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22708802

RESUMEN

This report describes the inhibitory effect of pomegranate rind extract (PGRE) on the motility of uropathogenic Escherichia coli (UPEC), a common agent of uncomplicated urinary tract infections (UTIs). To this end, a fliC-lux reporter, as well as Western blot analysis and scanning electron microscopy, was used to demonstrate that when UPEC strain CFT073 is exposed to PGRE, expression of the flagellin gene, fliC, and flagellin production decrease. In agreement with these results, the swimming and swarming motilities of UPEC were observed to be hindered in the presence of PGRE. To evaluate the effect of other pomegranate materials (PMs), the hydrolysable tannins in pomegranate (PG; punicalagin) and pomegranate fruit powder (PGP) were also investigated. Of the materials tested, PGRE had the strongest inhibitory effect on fliC expression and motility. Moreover, a fractionation of PGRE showed fractions with a molecular weight between 1000 and 3000 kDa to be the strongest inhibitors of fliC expression. Because flagellum-mediated motility has been suggested to enable UPEC to disseminate to the upper urinary tract; we propose that PGRE might be therapeutically beneficial in the treatment and prevention of UTIs.


Asunto(s)
Antibacterianos/farmacología , Flagelina/antagonistas & inhibidores , Expresión Génica/efectos de los fármacos , Locomoción/efectos de los fármacos , Lythraceae/química , Extractos Vegetales/farmacología , Escherichia coli Uropatógena/efectos de los fármacos , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Western Blotting , Fraccionamiento Químico , Perfilación de la Expresión Génica , Genes Reporteros , Humanos , Luciferasas/análisis , Luciferasas/genética , Microscopía Electrónica de Rastreo , Peso Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/fisiología , Escherichia coli Uropatógena/ultraestructura
19.
J Endourol ; 25(9): 1547-52, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21819223

RESUMEN

BACKGROUND AND PURPOSE: Catheter-associated urinary tract infection (CAUTI) is the most common device-associated infection and can result in serious medical consequences. We studied the efficacy of a novel microscopic physical surface modification (Sharklet) for preventing bacterial colonization and migration of uropathogenic Escherichia coli on silicone elastomer. MATERIALS AND METHODS: In vitro growth assays evaluated E coli colonization using three variations of micropatterned silicone surfaces vs a smooth silicone control. Enumeration techniques included quantification of colonies on surfaces and analysis of bacterial area coverage and colony size. In vitro migration assays involved placement of micropatterned and smooth silicone rod segments between two agar islands to measure incidence of migration. RESULTS: All three variations of the Sharklet micropattern outperformed the control surfaces in inhibiting E coli colonization. On average, 47% reduction in colony-forming units (CFUs) and bacterial area coverage plus 77% reduction in colony size were achieved with the Sharklet surfaces in tryptic soy broth and artificial urine compared with the control nonpatterned surfaces. The incidence of E coli migration over the rod segments was reduced by more than 80% for the Sharklet transverse patterned rods compared with the unpatterned control rods. CONCLUSION: The Sharklet micropattern is effective at inhibiting colonization and migration of a common uropathogen. This performance is achieved through a physical surface modification without the use of any antimicrobial agents. Because deterrence of bacterial colonization and migration is a critical step to prevent CAUTI, the Sharklet micropattern offers a novel concept in addressing this important problem.


Asunto(s)
Infecciones Relacionadas con Prótesis/prevención & control , Cateterismo Urinario/efectos adversos , Infecciones Urinarias/prevención & control , Escherichia coli Uropatógena/citología , Escherichia coli Uropatógena/crecimiento & desarrollo , Agar , Recuento de Colonia Microbiana , Humanos , Movimiento , Infecciones Relacionadas con Prótesis/microbiología , Factores de Riesgo , Propiedades de Superficie , Escherichia coli Uropatógena/ultraestructura
20.
Eur J Obstet Gynecol Reprod Biol ; 155(2): 150-6, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21277072

RESUMEN

OBJECTIVE: To investigate the effect of sub-inhibitory concentrations of cefotaxime on adherence to siliconized latex urinary catheters of uropathogenic Escherichia coli strains from pregnant and non pregnant patients. STUDY DESIGN: Using random sampling, 30 E. coli strains were selected from hospitalized patients with catheter associated urinary tract infection, 12 from pregnant women and 18 from men and non-pregnant women. The strains were categorized on the basis of cefotaxime susceptibility, adhesion and biofilm production capacity, cell surface hydrophobicity and expression of adhesins and fimbriae in vitro. RESULTS: The overall results indicated that sub-inhibitory concentrations of cefotaxime could reduce the adhesiveness, the biofilm production and hence, potentially, the infection rate associated with indwelling urinary catheters. CONCLUSION: Based on our results, we propose that this reduction is due to decreasing exopolysaccharide production and increasing cell surface hydrophobicity of E.coli strains.


Asunto(s)
Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Infecciones Relacionadas con Catéteres/microbiología , Cefotaxima/farmacología , Infecciones por Escherichia coli/microbiología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/efectos de los fármacos , Biopelículas/efectos de los fármacos , Infecciones Relacionadas con Catéteres/prevención & control , Infecciones Relacionadas con Catéteres/orina , Membrana Celular/química , Membrana Celular/ultraestructura , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/orina , Femenino , Fimbrias Bacterianas/ultraestructura , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Látex/química , Masculino , Concentración Osmolar , Embarazo , Complicaciones Infecciosas del Embarazo/microbiología , Complicaciones Infecciosas del Embarazo/prevención & control , Elastómeros de Silicona/química , Propiedades de Superficie/efectos de los fármacos , Infecciones Urinarias/prevención & control , Infecciones Urinarias/orina , Escherichia coli Uropatógena/aislamiento & purificación , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA