Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 5(5)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087518

RESUMEN

Most secondary nonphotosynthetic eukaryotes have retained residual plastids whose physiological role is often still unknown. One such example is Euglena longa, a close nonphotosynthetic relative of Euglena gracilis harboring a plastid organelle of enigmatic function. By mining transcriptome data from E. longa, we finally provide an overview of metabolic processes localized to its elusive plastid. The organelle plays no role in the biosynthesis of isoprenoid precursors and fatty acids and has a very limited repertoire of pathways concerning nitrogen-containing metabolites. In contrast, the synthesis of phospholipids and glycolipids has been preserved, curiously with the last step of sulfoquinovosyldiacylglycerol synthesis being catalyzed by the SqdX form of an enzyme so far known only from bacteria. Notably, we show that the E. longa plastid synthesizes tocopherols and a phylloquinone derivative, the first such report for nonphotosynthetic plastids studied so far. The most striking attribute of the organelle could be the presence of a linearized Calvin-Benson (CB) pathway, including RuBisCO yet lacking the gluconeogenetic part of the standard cycle, together with ferredoxin-NADP+ reductase (FNR) and the ferredoxin/thioredoxin system. We hypothesize that the ferredoxin/thioredoxin system activates the linear CB pathway in response to the redox status of the E. longa cell and speculate on the role of the pathway in keeping the redox balance of the cell. Altogether, the E. longa plastid defines a new class of relic plastids that is drastically different from the best-studied organelle of this category, the apicoplast.IMPORTANCE Colorless plastids incapable of photosynthesis evolved in many plant and algal groups, but what functions they perform is still unknown in many cases. Here, we study the elusive plastid of Euglena longa, a nonphotosynthetic cousin of the familiar green flagellate Euglena gracilis We document an unprecedented combination of metabolic functions that the E. longa plastid exhibits in comparison with previously characterized nonphotosynthetic plastids. For example, and truly surprisingly, it has retained the synthesis of tocopherols (vitamin E) and a phylloquinone (vitamin K) derivative. In addition, we offer a possible solution of the long-standing conundrum of the presence of the CO2-fixing enzyme RuBisCO in E. longa Our work provides a detailed account on a unique variant of relic plastids, the first among nonphotosynthetic plastids that evolved by secondary endosymbiosis from a green algal ancestor, and suggests that it has persisted for reasons not previously considered in relation to nonphotosynthetic plastids.


Asunto(s)
Euglena longa/citología , Euglena longa/genética , Plastidios/clasificación , Euglena longa/fisiología , Evolución Molecular , Fotosíntesis , Filogenia , Plastidios/genética , Transcriptoma
2.
Mol Biochem Parasitol ; 238: 111282, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32437726

RESUMEN

Trypanosoma brucei is an important human pathogen. In this study, we have focused on the characterization of FtsH protease, ATP-dependent membrane-bound mitochondrial enzyme important for regulation of protein abundance. We have determined localization and orientation of all six putative T.brucei FtsH homologs in the inner mitochondrial membrane by in silico analyses, by immunofluorescence, and with protease assay. The evolutionary origin of these homologs has been tested by comparative phylogenetic analysis. Surprisingly, some kinetoplastid FtsH proteins display inverted orientation in the mitochondrial membrane compared to related proteins of other examined eukaryotes. Moreover, our data strongly suggest that during evolution the orientation of FtsH protease in T. brucei varied due to both loss and acquisition of the transmembrane domain.


Asunto(s)
Evolución Molecular , Proteínas Mitocondriales/química , Péptido Hidrolasas/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/enzimología , Animales , Arabidopsis/clasificación , Arabidopsis/enzimología , Arabidopsis/genética , Secuencia Conservada , Euglena gracilis/clasificación , Euglena gracilis/enzimología , Euglena gracilis/genética , Euglena longa/clasificación , Euglena longa/enzimología , Euglena longa/genética , Expresión Génica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Leishmania major/clasificación , Leishmania major/enzimología , Leishmania major/genética , Ratones , Mitocondrias/enzimología , Mitocondrias/genética , Membranas Mitocondriales/química , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Filogenia , Dominios Proteicos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Trypanosoma brucei brucei/clasificación , Trypanosoma brucei brucei/genética
3.
Sci Rep ; 8(1): 17012, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451959

RESUMEN

Euglenophytes are a familiar algal group with green alga-derived secondary plastids, but the knowledge of euglenophyte plastid function and evolution is still highly incomplete. With this in mind we sequenced and analysed the transcriptome of the non-photosynthetic species Euglena longa. The transcriptomic data confirmed the absence of genes for the photosynthetic machinery, but provided candidate plastid-localised proteins bearing N-terminal bipartite topogenic signals (BTSs) of the characteristic euglenophyte type. Further comparative analyses including transcriptome assemblies available for photosynthetic euglenophytes enabled us to unveil salient aspects of the basic euglenophyte plastid infrastructure, such as plastidial targeting of several proteins as C-terminal translational fusions with other BTS-bearing proteins or replacement of the conventional eubacteria-derived plastidial ribosomal protein L24 by homologs of archaeo-eukaryotic origin. Strikingly, no homologs of any key component of the TOC/TIC system and the plastid division apparatus are discernible in euglenophytes, and the machinery for intraplastidial protein targeting has been simplified by the loss of the cpSRP/cpFtsY system and the SEC2 translocon. Lastly, euglenophytes proved to encode a plastid-targeted homolog of the termination factor Rho horizontally acquired from a Lambdaproteobacteria-related donor. Our study thus further documents a substantial remodelling of the euglenophyte plastid compared to its green algal progenitor.


Asunto(s)
Proteínas de Cloroplastos/genética , Euglena longa/clasificación , Euglena longa/genética , Evolución Molecular , Fotosíntesis , Secuencia de Bases , Euglena longa/citología , Perfilación de la Expresión Génica , Filogenia , Plastidios/genética , Homología de Secuencia
4.
Curr Genet ; 63(2): 331-341, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27553633

RESUMEN

Euglena gracilis growth with antibacterial agents leads to bleaching, permanent plastid gene loss. Colorless Euglena (Astasia) longa resembles a bleached E. gracilis. To evaluate the role of bleaching in E. longa evolution, the effect of streptomycin, a plastid protein synthesis inhibitor, and ofloxacin, a plastid DNA gyrase inhibitor, on E. gracilis and E. longa growth and plastid DNA content were compared. E. gracilis growth was unaffected by streptomycin and ofloxacin. Quantitative PCR analyses revealed a time dependent loss of plastid genes in E. gracilis demonstrating that bleaching agents produce plastid gene deletions without affecting cell growth. Streptomycin and ofloxacin inhibited E. longa growth indicating that it requires plastid genes to survive. This suggests that evolutionary divergence of E. longa from E. gracilis was triggered by the loss of a cytoplasmic metabolic activity also occurring in the plastid. Plastid metabolism has become obligatory for E. longa cell growth. A process termed "intermittent bleaching", short term exposure to subsaturating concentrations of reversible bleaching agents followed by growth in the absence of a bleaching agent, is proposed as the molecular mechanism for E. longa plastid genome reduction. Various non-photosynthetic lineages could have independently arisen from their photosynthetic ancestors via a similar process.


Asunto(s)
Euglena gracilis/genética , Euglena longa/genética , Genoma de Plastidios/genética , Plastidios/genética , Secuencia de Aminoácidos , Antibacterianos/farmacología , Proteínas de Cloroplastos/genética , ADN de Cloroplastos/genética , Euglena gracilis/crecimiento & desarrollo , Euglena longa/crecimiento & desarrollo , Eliminación de Gen , Dosificación de Gen , Genes del Cloroplasto/genética , Mutagénesis/efectos de los fármacos , Ofloxacino/farmacología , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Estreptomicina/farmacología , Factores de Tiempo
5.
PLoS One ; 11(7): e0158790, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27391690

RESUMEN

Euglena longa, a close relative of the photosynthetic model alga Euglena gracilis, possesses an enigmatic non-photosynthetic plastid. Its genome has retained a gene for the large subunit of the enzyme RuBisCO (rbcL). Here we provide new data illuminating the putative role of RuBisCO in E. longa. We demonstrated that the E. longa RBCL protein sequence is extremely divergent compared to its homologs from the photosynthetic relatives, suggesting a possible functional shift upon the loss of photosynthesis. Similarly to E. gracilis, E. longa harbors a nuclear gene encoding the small subunit of RuBisCO (RBCS) as a precursor polyprotein comprising multiple RBCS repeats, but one of them is highly divergent. Both RBCL and the RBCS proteins are synthesized in E. longa, but their abundance is very low compared to E. gracilis. No RBCS monomers could be detected in E. longa, suggesting that processing of the precursor polyprotein is inefficient in this species. The abundance of RBCS is regulated post-transcriptionally. Indeed, blocking the cytoplasmic translation by cycloheximide has no immediate effect on the RBCS stability in photosynthetically grown E. gracilis, but in E. longa, the protein is rapidly degraded. Altogether, our results revealed signatures of evolutionary degradation (becoming defunct) of RuBisCO in E. longa and suggest that its biological role in this species may be rather unorthodox, if any.


Asunto(s)
Euglena longa , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas Protozoarias , Ribulosa-Bifosfato Carboxilasa , Transcriptoma/fisiología , Euglena longa/enzimología , Euglena longa/genética , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/genética , Ribulosa-Bifosfato Carboxilasa/biosíntesis , Ribulosa-Bifosfato Carboxilasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...