Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 13(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430116

RESUMEN

Virus research has advanced significantly since the discovery of the tobacco mosaic virus (TMV), the characterization of its infection mechanisms and the factors that determine their pathogenicity. However, most viral research has focused on pathogenic viruses to humans, animals and plants, which represent only a small fraction in the virosphere. As a result, the role of most viral genes, and the mechanisms of coevolution between mutualistic viruses, their host and their environment, beyond pathogenicity, remain poorly understood. This review focuses on general aspects of viruses that interact with extremophile organisms, characteristics and examples of mechanisms of adaptation. Finally, this review provides an overview on how knowledge of extremophile viruses sheds light on the application of new tools of relevant use in modern molecular biology, discussing their value in a biotechnological context.


Asunto(s)
Biotecnología , Microbiología Ambiental , Extremófilos/virología , Animales , Virus de Archaea/fisiología , Bacterias/virología , Humanos , Nanomedicina
2.
Mar Genomics ; 46: 16-28, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30857856

RESUMEN

Ten publicly available metagenomic data sets from hydrothermal vents were analyzed to determine the taxonomic structure of the viral communities present, as well as their potential metabolic functions. The type of natural selection on two auxiliary metabolic genes was also analyzed. The structure of the virome in the hydrothermal vents was quite different in comparison with the viruses present in sediments, with specific populations being present in greater abundance in the plume samples when compared with the sediment samples. ssDNA genomes such as Circoviridae and Microviridae were predominantly present in the sediment samples, with Caudovirales which are dsDNA being present in the vent samples. Genes potentially encoding enzymes that participate in carbon, nitrogen and sulfur metabolic pathways were found in greater abundance, than those involved in the oxygen cycle, in the hydrothermal vents. Functional profiling of the viromes, resulted in the discovery of genes encoding proteins involved in bacteriophage capsids, DNA synthesis, nucleotide synthesis, DNA repair, as well as viral auxiliary metabolic genes such as cytitidyltransferase and ribonucleotide reductase. These auxiliary metabolic genes participate in the synthesis of phospholipids and nucleotides respectively and are likely to contribute to enhancing the fitness of their bacterial hosts within the hydrothermal vent communities. Finally, evolutionary analysis suggested that these auxiliary metabolic genes are highly conserved and evolve under purifying selection, and are thus maintained in their genome.


Asunto(s)
Extremófilos/virología , Genes Virales/genética , Respiraderos Hidrotermales/virología , Virus/clasificación , Virus/genética , Variación Genética , Metagenoma/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA