Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.652
Filtrar
1.
East Asian Arch Psychiatry ; 34(2): 29-36, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38955788

RESUMEN

We conducted a systematic review evaluating the efficacy of rivastigmine augmentation for treatment-refractory posttraumatic stress disorder (PTSD). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. The databases Ovid MEDLINE, PubMed, CINAHL, and EMBASE were searched using key words: 'rivastigmine' OR 'Exelon' OR 'rivastigmine augmentation' OR 'Exelon augmentation' AND 'posttraumatic stress disorder*' OR 'post-traumatic stress disorder*' OR 'PTSD' OR 'combat disorder*' OR 'post-traumatic symptoms'. The asterisk specified plural forms of the relevant word. Four papers were identified, comprising one double-blind randomised controlled trial, one non-controlled open trial, one case series (presenting three case studies), and one paper with two case studies. The randomised controlled trial found no statistically significant difference in efficacy, using the PTSD CheckList-Military Version as the relevant outcomes measure, between the active add-on rivastigmine interventions and placebo or treatment as usual. The open trial, although reporting relatively positive outcomes, had a weak study design and lacked reporting of key information, including participant sex and age and pre-rivastigmine PTSD measures. The assessment of efficacy was based on participants' reporting of subjective benefits, and clinician-rating using a Clinical Global Impression, rather than established PTSD assessments scales. Although the five case studies reported improvement in PTSD symptoms, there were confounding factors and limitations in clinical and demographic data, warranting caution regarding attributed benefits. There is a lack of methodologically robust evidence supporting the efficacy of add-on rivastigmine for the treatment of refractory PTSD. Additional research may help in further evaluating its possible clinical efficacy.


Asunto(s)
Rivastigmina , Trastornos por Estrés Postraumático , Rivastigmina/uso terapéutico , Humanos , Trastornos por Estrés Postraumático/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Inhibidores de la Colinesterasa/uso terapéutico
2.
Yale J Biol Med ; 97(2): 205-224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38947104

RESUMEN

Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aß formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.


Asunto(s)
Enfermedad de Alzheimer , Microalgas , Algas Marinas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Microalgas/química , Microalgas/metabolismo , Algas Marinas/química , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/aislamiento & purificación , Antioxidantes/farmacología
3.
Neurosurg Rev ; 47(1): 305, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967704

RESUMEN

The clinical management of aneurysmal subarachnoid hemorrhage (SAH)-associated vasospasm remains a challenge in neurosurgical practice, with its prevention and treatment having a major impact on neurological outcome. While considered a mainstay, nimodipine is burdened by some non-negligible limitations that make it still a suboptimal candidate of pharmacotherapy for SAH. This narrative review aims to provide an update on the pharmacodynamics, pharmacokinetics, overall evidence, and strength of recommendation of nimodipine alternative drugs for aneurysmal SAH-associated vasospasm and delayed cerebral ischemia. A PRISMA literature search was performed in the PubMed/Medline, Web of Science, ClinicalTrials.gov, and PubChem databases using a combination of the MeSH terms "medical therapy," "management," "cerebral vasospasm," "subarachnoid hemorrhage," and "delayed cerebral ischemia." Collected articles were reviewed for typology and relevance prior to final inclusion. A total of 346 articles were initially collected. The identification, screening, eligibility, and inclusion process resulted in the selection of 59 studies. Nicardipine and cilostazol, which have longer half-lives than nimodipine, had robust evidence of efficacy and safety. Eicosapentaenoic acid, dapsone and clazosentan showed a good balance between effectiveness and favorable pharmacokinetics. Combinations between different drug classes have been studied to a very limited extent. Nicardipine, cilostazol, Rho-kinase inhibitors, and clazosentan proved their better pharmacokinetic profiles compared with nimodipine without prejudice with effective and safe neuroprotective role. However, the number of trials conducted is significantly lower than for nimodipine. Aneurysmal SAH-associated vasospasm remains an area of ongoing preclinical and clinical research where the search for new drugs or associations is critical.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Nimodipina , Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Vasoespasmo Intracraneal/tratamiento farmacológico , Vasoespasmo Intracraneal/etiología , Nimodipina/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Neuroprotección/efectos de los fármacos , Cilostazol/uso terapéutico , Nicardipino/uso terapéutico , Dioxanos/uso terapéutico , Vasodilatadores/uso terapéutico , Pirimidinas/uso terapéutico , Piridinas , Sulfonamidas , Tetrazoles
4.
Cells ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38994978

RESUMEN

We report a three-pronged phenotypic evaluation of the bioprecursor prodrug 10ß,17ß-dihydroxyestra-1,4-dien-3-one (DHED) that selectively produces 17ß-estradiol (E2) in the retina after topical administration and halts glaucomatous neurodegeneration in a male rat model of the disease. Ocular hypertension (OHT) was induced by hyperosmotic saline injection into an episcleral vein of the eye. Animals received daily DHED eye drops for 12 weeks. Deterioration of visual acuity and contrast sensitivity by OHT in these animals were markedly prevented by the DHED-derived E2 with concomitant preservation of retinal ganglion cells and their axons. In addition, we utilized targeted retina proteomics and a previously established panel of proteins as preclinical biomarkers in the context of OHT-induced neurodegeneration as a characteristic process of the disease. The prodrug treatment provided retina-targeted remediation against the glaucomatous dysregulations of these surrogate endpoints without increasing circulating E2 levels. Collectively, the demonstrated significant neuroprotective effect by the DHED-derived E2 in the selected animal model of glaucoma supports the translational potential of our presented ocular neuroprotective approach owing to its inherent therapeutic safety and efficacy.


Asunto(s)
Modelos Animales de Enfermedad , Estradiol , Glaucoma , Profármacos , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Glaucoma/tratamiento farmacológico , Glaucoma/patología , Glaucoma/metabolismo , Profármacos/farmacología , Estradiol/farmacología , Masculino , Ratas , Retina/efectos de los fármacos , Retina/patología , Retina/metabolismo , Visión Ocular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
5.
Bull Exp Biol Med ; 177(1): 51-56, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38954302

RESUMEN

The effectiveness of ethylmethylhydroxypyridine succinate (EMHPS) in acute alcohol intoxication was tested in a study on SPF male outbred ICR mice. Ethanol (concentration 40%) was administered to animals once intraperitoneally at a dose of 4 g/kg. Control animals were injected with saline in an equivalent volume. In 15 min after the administration of alcohol, the animals were injected intravenously or intramuscularly with EMHPS at a dose of 50 or 100 mg/kg or with saline via the same route in an equivalent volume. Animal behavior was tested 3 and 24 h later after administration of the substances. After 3 and 24 h, mice in the pathological control groups developed semiptosis, the gait and the turning over reflex were impaired, the strength of the hind limbs decreased and the distance between the hind limbs increased when landing; in the open-field test, the latency of the first movement increased, and the number of rearing postures decreased. Intravenous and intramuscular administration of EMHPS in doses of 50 and 100 mg/kg had a pronounced antitoxic and neuroprotective effect in acute alcohol intoxication: all studied parameters did not differ significantly from the control.


Asunto(s)
Intoxicación Alcohólica , Etanol , Ratones Endogámicos ICR , Piridinas , Animales , Masculino , Intoxicación Alcohólica/tratamiento farmacológico , Ratones , Piridinas/farmacología , Piridinas/uso terapéutico , Inyecciones Intramusculares , Conducta Animal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
6.
Neuromolecular Med ; 26(1): 29, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014255

RESUMEN

Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.


Asunto(s)
Apoptosis , Demencia Vascular , Hipocampo , Trastornos de la Memoria , Neuronas , Fármacos Neuroprotectores , Estrés Oxidativo , Ratas Sprague-Dawley , Xantófilas , Animales , Xantófilas/uso terapéutico , Xantófilas/farmacología , Hipocampo/efectos de los fármacos , Demencia Vascular/tratamiento farmacológico , Ratas , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Estrés Oxidativo/efectos de los fármacos , Neuronas/efectos de los fármacos , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Muerte Celular/efectos de los fármacos , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Prueba del Laberinto Acuático de Morris/efectos de los fármacos
7.
CNS Neurosci Ther ; 30(7): e14865, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39042604

RESUMEN

Ferroptosis is a newly discovered form of programmed cell death that is non-caspase-dependent and is characterized by the production of lethal levels of iron-dependent lipid reactive oxygen species (ROS). In recent years, ferroptosis has attracted great interest in the field of cerebral infarction because it differs morphologically, physiologically, and genetically from other forms of cell death such as necrosis, apoptosis, autophagy, and pyroptosis. In addition, ROS is considered to be an important prognostic factor for ischemic stroke, making it a promising target for stroke treatment. This paper summarizes the induction and defense mechanisms associated with ferroptosis, and explores potential treatment strategies for ischemic stroke in order to lay the groundwork for the development of new neuroprotective drugs.


Asunto(s)
Ferroptosis , Accidente Cerebrovascular Isquémico , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Animales , Especies Reactivas de Oxígeno/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología
8.
PLoS One ; 19(7): e0307012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39042624

RESUMEN

The pursuit of drugs and methods to safeguard dopaminergic neurons holds paramount importance in Parkinson's disease (PD) research. Benfotiamine (BFT) has demonstrated neuroprotective properties, yet its precise mechanisms in PD remain elusive. This study investigated BFT's potential protective effects against dopamine neuron damage in a PD animal model and the underlying mechanisms. The PD mouse model was induced by 5 consecutive MPTP injections, followed by BFT intervention for 28 days. Motor deficits were assessed via pole test, hang test, gait analysis, and open field test, while dopaminergic neuron damage was evaluated through Immunofluorescence, Nissl staining, and Western blot analysis of Tyrosine Hydroxylase (TH) in the substantia nigra and striatum. High Performance Liquid Chromatography quantified dopamine (DA) levels and its metabolites. Genetic pathways were explored using RNA-seq and bioinformatics analysis on substantia nigra tissues, confirmed by qPCR. Activation of the Nrf2 pathway was examined through nuclear translocation and expression of downstream antioxidant enzymes HO-1, GCLM, and NQO1 at mRNA and protein levels. Additionally, measurements of MDA content, GSH activity, and SOD activity were taken in the substantia nigra and striatum. BFT administration improved motor function and protected against dopaminergic neuron degeneration in MPTP mice, with partial recovery in TH expression and DA levels. RNA-seq analysis revealed distinct effects of BFT and the NLRP3 inhibitor MCC950 on Parkinson-related pathways and genes. Control of Nrf2 proved crucial for BFT, as it facilitated Nrf2 movement to the nucleus, upregulating antioxidant genes and enzymes while mitigating oxidative damage. This study elucidates BFT's neuroprotective effects in a PD mouse model via Nrf2-mediated antioxidant mechanisms and gene expression modulation, underscoring its potential as a therapeutic agent for PD.


Asunto(s)
Modelos Animales de Enfermedad , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones Endogámicos C57BL , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Dopamina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Estrés Oxidativo/efectos de los fármacos , Tiamina/análogos & derivados
9.
Sci Rep ; 14(1): 15952, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987284

RESUMEN

Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has therapeutic effects in different paradigms of brain injury, acting as a neuroprotectant. As oxidative stress is a primary risk factor for brain damage after neonatal hypoxia, we tested the effect of CBD on oxidative status and non-protein-bound iron accumulation in the immature brain after hypoxia. Moreover, we tested whether cannabidiol affects the accumulation of hypoxia-inducible factor-1 alpha (HIF-1α) which plays a key role in the regulation of cellular adaptation to hypoxia and oxidative stress. We used 7-day-old mice randomly assigned to hypoxic or control groups. Immediately after hypoxia or control exposure, pups were randomly assigned to a vehicle or CBD treatment. 24 h later, they were decapitated and the brains were immediately removed and stored for further biochemical analyses. We found that CBD reduced lipid peroxidation and prevented antioxidant depletion. For the first time, we also demonstrated that CBD upregulated HIF-1α protein level. This study indicates that CBD may effective agent in attenuating the detrimental consequences of perinatal asphyxia.


Asunto(s)
Cannabidiol , Modelos Animales de Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia , Estrés Oxidativo , Animales , Cannabidiol/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratones , Hipoxia/metabolismo , Hipoxia/tratamiento farmacológico , Peroxidación de Lípido/efectos de los fármacos , Antioxidantes/farmacología , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
10.
BMJ Open ; 14(7): e082404, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002963

RESUMEN

INTRODUCTION: The efficacy of multitarget neuroprotective drug DL-3-n-butylphthalide (NBP) in improving cognitive function has been confirmed in patients with vascular cognitive impairment without dementia. However, its efficacy in patients with symptomatic predementia phase of Alzheimer's disease remains uncertain. This study aims to evaluate the efficacy and safety of NBP in improving cognitive function in patients with mild cognitive impairment (MCI) through a clinical randomised controlled trail. METHODS AND ANALYSIS: This study is a 12-month, randomised, double-blind, placebo-controlled, multicentric trial, involving 270 patients with MCI. Subjects are randomly assigned to receive either NBP soft capsule (200 mg, three times per day) or placebo with an allocation ratio of 1:1. The efficacy and safety of NBP are assessed by comparing the results of neuropsychological, neuroimaging and laboratory tests between the two groups. The primary endpoint is the change in Alzheimer's Disease Assessment Scale-Cognitive Subscale after 12 months. All patients will be monitored for adverse events. ETHICS AND DISSEMINATION: This study involving human participants has been reviewed and approved by Ethics Committee of Xuan Wu Hospital (No.2017058). The participants provide their written informed consent to participate in this study. Results will be published in peer-reviewed medical journals and disseminated to healthcare professionals at local and international conferences. PROTOCOL VERSION: V 3.0, 3 September 2022. TRIAL REGISTRATION NUMBER: ChiCTR1800018362.


Asunto(s)
Benzofuranos , Disfunción Cognitiva , Fármacos Neuroprotectores , Humanos , Benzofuranos/uso terapéutico , Benzofuranos/efectos adversos , Disfunción Cognitiva/tratamiento farmacológico , Método Doble Ciego , Masculino , Anciano , Femenino , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/efectos adversos , Persona de Mediana Edad , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto , Pruebas Neuropsicológicas , Cognición/efectos de los fármacos , Estudios Multicéntricos como Asunto
11.
J Mol Neurosci ; 74(3): 61, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954245

RESUMEN

Lifestyle influences physical and cognitive development during the period of adolescence greatly. The most important of these lifestyle factors are diet and stress. Therefore, the aim of this study was to investigate the impact of high fat diet (HFD) and chronic mild stress on cognitive function and anxiety-like behaviors in young rats and to study the role of caffeic acid as a potential treatment for anxiety and cognitive dysfunction. Forty rats were assigned into 4 groups: control, HFD, HFD + stress, and caffeic acid-treated group. Rats were sacrificed after neurobehavioral testing. We detected memory impairment and anxiety-like behavior in rats which were more exaggerated in stressed rats. Alongside the behavioral changes, there were biochemical and histological changes. HFD and/or stress decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and induced oxidative and inflammatory changes in the hippocampus. In addition, they suppressed Wnt/ß-catenin pathway which was associated with activation of glycogen synthase kinase 3ß (GSK3ß). HFD and stress increased arginase 1 and inducible nitric oxide synthase (iNOS) levels as well. These disturbances were found to be aggravated in stressed rats than HFD group. However, caffeic acid was able to reverse these deteriorations leading to memory improvement and ameliorating anxiety-like behavior. So, the current study highlights an important neuroprotective role for caffeic acid that may guard against induction of cognitive dysfunction and anxiety disorders in adolescents who are exposed to HFD and/or stress.


Asunto(s)
Ansiedad , Factor Neurotrófico Derivado del Encéfalo , Ácidos Cafeicos , Dieta Alta en Grasa , Glucógeno Sintasa Quinasa 3 beta , Hipocampo , Fármacos Neuroprotectores , Estrés Psicológico , Animales , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Ratas , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Masculino , Dieta Alta en Grasa/efectos adversos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas Wistar , beta Catenina/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Cognición/efectos de los fármacos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo II/metabolismo
12.
Ageing Res Rev ; 99: 102398, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955265

RESUMEN

BACKGROUND: Magnolia officinalis, a traditional herbal medicine widely used in clinical practice, exerts antibacterial, anti-tumor, anti-inflammatory, antioxidant, and anti-aging activities. Neolignans are the main active ingredients of M. officinalis and exert a wide range of pharmacological effects, including anti-Alzheimer's disease (AD) activity. OBJECTIVE: To summarize the published data on the therapeutic effect and mechanism of neolignans on AD in vivo and in vitro. METHODS: PubMed, Web of Science, Google Scholar, and Scopus were systematically reviewed (up to March 1, 2024) for pre-clinical studies. RESULTS: M. officinalis-derived neolignans (honokiol, magnolol, 4-O-methylhonokiol, and obovatol) alleviated behavioral abnormalities, including learning and cognitive impairments, in AD animal models. Mechanistically, neolignans inhibited Aß generation or aggregation, neuroinflammation, and acetylcholinesterase activity; promoted microglial phagocytosis and anti-oxidative stress; alleviated mitochondrial dysfunction and energy metabolism, as well as anti-cholinergic deficiency; and regulated intestinal flora. Furthermore, neolignans may achieve neuroprotection by regulating different molecular pathways, including the NF-κB, ERK, AMPK/mTOR/ULK1, and cAMP/PKA/CREB pathways. CONCLUSIONS: Neolignans exert anti-AD effects through multiple mechanisms and pathways. However, the exact targets, pharmacokinetics, safety, and clinical efficacy in patients with AD need further investigation in multi-center clinical case-control studies.


Asunto(s)
Enfermedad de Alzheimer , Lignanos , Magnolia , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Lignanos/farmacología , Lignanos/uso terapéutico , Magnolia/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
13.
Cent Nerv Syst Agents Med Chem ; 24(2): 105-116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034830

RESUMEN

BACKGROUND: Plants of the genus Ferula have long been used to treat neurological diseases such as Alzheimer's disease (AD), pain, depression, and seizures. The main compounds include coumarins, monoterpenes, sulfide compounds, and polyphenol compounds, which can improve the functioning of the nervous system. OBJECTIVE: This article has been compiled with the aim of collecting evidence and articles related to the Ferula effects on central nervous system disease. METHODS: This review article was prepared by searching the terms Ferula and analgesic, anticonvulsant, antidepressant, anti-multiple sclerosis, anti-dementia, and neuroprotective effects.The relevant information was collected through searching electronic databases such as ISI Web of Knowledge, PubMed, and Google Scholar. RESULTS: Genus Ferula has a protective effect on nerve cells by reducing cytokines such as IL-6, IL- 1b, and TNF-α. Therefore, the effects of Ferula plants and their effective ingredients can be used to prevent or improve diseases that destroy the nervous system. The members of this genus play a role in strengthening and improving the antioxidant system, reducing the level of oxidative stress, and inhibiting or reducing inflammatory factors in the nervous system. CONCLUSION: Although the effects of several species of Ferula on the nervous system have been investigated, most studies have not clearly identified the molecular mechanisms as well as the specific functional regions of the brain. The present study was compiled in order to investigate different aspects of the effects of Ferula plants on the central nervous system.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Ferula , Ferula/química , Humanos , Animales , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
14.
Vitam Horm ; 126: 125-168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39029971

RESUMEN

Beta-caryophyllene is an abundant terpene in cannabis, cinnamon, black pepper, cloves, and citrus fruit, delivering a striking, woody-spicy, like cloves and a sweet fruity aroma. Beta-caryophyllene is a Food and Drug Administration-approved food additive with Generally Recognized as Safe status. Interestingly, several biologic activities have been described for beta-caryophyllene, including anti-inflammatory and analgesic effects, neuroprotection against cerebral ischemia and neuronal injury, protection of neurovascular unit against oxidative damage, glial activation and neuroinflammation and anticonvulsant effects. In this chapter, we intend to review the beneficial effects of beta-caryophyllene in the context of psychiatric and neurological diseases. Also, we will analyze the possibility that the blood-brain-barrier may be a central target underlying the beneficial actions of beta-caryophyllene.


Asunto(s)
Barrera Hematoencefálica , Trastornos Mentales , Enfermedades del Sistema Nervioso , Sesquiterpenos Policíclicos , Sesquiterpenos Policíclicos/farmacología , Humanos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Animales , Trastornos Mentales/tratamiento farmacológico , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
15.
Int Rev Neurobiol ; 177: 65-93, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39029991

RESUMEN

Parkinson's disease is a chronic neurodegenerative disorder with no known cure characterized by motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and postural instability. Non-motor symptoms like cognitive impairment, mood disturbances, and sleep disorders often accompany the disease. Pharmacological treatments for these symptoms are limited and frequently induce significant adverse reactions, underscoring the necessity for appropriate treatment options. Cannabidiol is a phytocannabinoid devoid of the euphoric and cognitive effects of tetrahydrocannabinol. The study of cannabidiol's pharmacological effects has increased exponentially in recent years. Preclinical and preliminary clinical studies suggest that cannabidiol holds therapeutic potential for alleviating symptoms of Parkinson's disease, offering neuroprotective, anti-inflammatory, and antioxidant properties. However, knowledge of cannabidiol neuromolecular mechanisms is limited, and its pharmacology, which appears complex, has not yet been fully elucidated. By examining the evidence, this review aims to provide and synthesize scientifically proven evidence for the potential use of cannabidiol as a novel treatment option for Parkinson's disease. We focus on studies that administrated cannabidiol alone. The results of preclinical trials using cannabidiol in models of Parkinson's disease are encouraging. Nevertheless, drawing firm conclusions on the therapeutic efficacy of cannabidiol for patients is challenging. Cannabidiol doses, formulations, outcome measures, and methodologies vary considerably across studies. Though, cannabidiol holds promise as a novel therapeutic option for managing both motor and non-motor symptoms of Parkinson's disease, offering hope for improved quality of life for affected individuals.


Asunto(s)
Cannabidiol , Enfermedad de Parkinson , Humanos , Cannabidiol/uso terapéutico , Cannabidiol/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología
16.
Int Rev Neurobiol ; 177: 95-120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39029992

RESUMEN

The absence of blood flow in cerebral ischemic conditions triggers a multitude of intricate pathophysiological mechanisms, including excitotoxicity, oxidative stress, neuroinflammation, disruption of the blood-brain barrier and white matter disarrangement. Despite numerous experimental studies conducted in preclinical settings, existing treatments for cerebral ischemia (CI), such as mechanical and pharmacological therapies, remain constrained and often entail significant side effects. Therefore, there is an imperative to explore innovative strategies for addressing CI outcomes. Cannabidiol (CBD), the most abundant non-psychotomimetic compound derived from Cannabis sativa, is a pleiotropic substance that interacts with diverse molecular targets and has the potential to influence various pathophysiological processes, thereby contributing to enhanced outcomes in CI. This chapter provides a comprehensive overview of the primary effects of CBD in in vitro and diverse animal models of CI and delves into some of its plausible mechanisms of neuroprotection.


Asunto(s)
Isquemia Encefálica , Cannabidiol , Fármacos Neuroprotectores , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Animales , Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Humanos , Modelos Animales de Enfermedad
17.
Magnes Res ; 36(4): 69-81, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38953416

RESUMEN

Pathogenic mechanisms implicated in the development of Parkinson disease (PD) are multifaceted and include alpha synuclein aggregation, oxidative stress due to generation of reactive oxygen species (ROS), mitochondrial dysfunction, apoptosis, imbalance of trace elements as well as endoplasmic reticulum stress, and inflammation. Alteration in the homeostasis of bivalent cations, such as iron, magnesium and calcium, has been implicated in the pathogenesis of PD. Low levels of magnesium have been associated with accelerated dopaminergic cell loss in animal PD models, and magnesium has been shown to have a neuroprotective effect in PD models. Evidence of a low magnesium level in the brain of PD individuals, with a low magnesium level in the diet, increasing the risk of PD, further strengthens the role of magnesium deficiency in the pathogenesis of PD. The presence of low-level magnesium in brain tissue and high level in CSF and serum support the possibility of dysfunctional magnesium transporters in PD. Indeed, variants in magnesium transport channels, such as TRPM7 and SLC41A1, have been recently detected in PD individuals. Magnesium, being an NMDA antagonist, could also have a therapeutic role in levodopa-induced dyskinesia. There are no clinical studies indicating a neuroprotective role of magnesium in PD, however, the Mediterranean diet and variants of the diet have been associated with a lower risk of PD, which may be due to the magnesium-rich constituents of the diet. Further clinical trials encompassing therapeutic models to optimize channel function, coupled with a high magnesium diet, may pave the way for promising neuroprotective intervention for PD.


Asunto(s)
Magnesio , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Magnesio/metabolismo , Magnesio/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Animales
18.
PLoS One ; 19(7): e0291285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38990927

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig´s disease, is a rare neurological condition and is the most common motor neurone disease. It is a fatal disease with specific loss of motor neurons in the spinal cord, brain stem, and motor cortex leading to progressive paralysis and usually death within five years of diagnosis. There remains no cure for ALS, and management is focused on a combination of neuroprotective medication, respiratory support, and management by multidisciplinary clinics. PATIENTS AND METHODS: This prospective, single-arm, open-label phase II clinical trial of sustained weekly administration of 2 mg/kg ILB® (a low-molecular weight dextran sulphate) was conducted in a single UK hospital. Eligible patients were at least 18 years and had a definite diagnosis of ALS according to El Escorial Criteria. The co-primary outcomes were safety, tolerability, and quantity of ILB® administered. EudraCT number. 2018-000668-28. FINDINGS: Between 18-Apr-2019 and 27-Mar-2020, 11 patients were recruited and treated for up to 38 weeks. There were no treatment terminations or withdrawals. One serious adverse event was reported, which was not related to ILB® and resolved without sequalae. 270 mild/moderate adverse events were reported with no intolerable events occurring during the trial. The total number of ILB® treatments administered per patient ranged from 4 to 38, with a cumulative dose ranging from 745 to 6668 mg. As a result of the COVID-19 pandemic and the high-risk status of study participants, recruitment and treatment was suspended early in Mar-2020. At the long-term follow-up, three patients had died after the trial was halted, between 53 and 62 weeks after their final ILB® injection. INTERPRETATION: Long-term weekly ILB® injections of 2 mg/kg was well tolerated and had an acceptable safety profile in patients with ALS. TRIAL REGISTRATION: EudraCT: 2018-000668-28. clinicaltrials.gov: NCT03705390. This trial adheres to the principles of GCP in the design, conduct, recording and reporting of clinical trials as listed in part 2, "Conditions and Principles which apply to all Clinical Trials" under the header "Principles based on Articles 2 to 5 of the EU GCP Directive" in the Medicines for Human Use Clinical Trials Regulations (as amended in SI 2006/1928). For clarity, the study did not conform to all aspects of the International Conference on Harmonisation (ICH) E6 R2 Guidelines for GCP (also known as 'ICH GCP'). Of note, we did not use an external database, perform 100% source data verification, and only primary outcome data were analysed in parallel by a second, independent statistician.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Resultado del Tratamiento , Adulto , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/efectos adversos
19.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892094

RESUMEN

Alzheimer's Disease (AD), a prevalent neurodegenerative disorder, is the primary cause of dementia. Despite significant advancements in neuroscience, a definitive cure or treatment for this debilitating disease remains elusive. A notable characteristic of AD is oxidative stress, which has been identified as a potential therapeutic target. Polyphenols, secondary metabolites of plant origin, have attracted attention due to their potent antioxidant properties. Epidemiological studies suggest a correlation between the consumption of polyphenol-rich foods and the prevention of chronic diseases, including neurodegenerative disorders, which underscores the potential of polyphenols as a therapeutic strategy in AD management. Hence, this comprehensive review focuses on the diverse roles of polyphenols in AD, with a particular emphasis on neuroprotective potential. Scopus, ScienceDirect, and Google Scholar were used as leading databases for study selection, from 2018 to late March 2024. Analytical chemistry serves as a crucial tool for characterizing polyphenols, with a nuanced exploration of their extraction methods from various sources, often employing chemometric techniques for a holistic interpretation of the advances in this field. Moreover, this review examines current in vitro and in vivo research, aiming to enhance the understanding of polyphenols' role in AD, and providing valuable insights for forthcoming approaches in this context.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Polifenoles , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Polifenoles/uso terapéutico , Polifenoles/química , Polifenoles/farmacología , Humanos , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Animales , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/uso terapéutico , Antioxidantes/farmacología , Neuroprotección/efectos de los fármacos
20.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892154

RESUMEN

A plethora of pathophysiological events have been shown to play a synergistic role in neurodegeneration, revealing multiple potential targets for the pharmacological modulation of Alzheimer's disease (AD). In continuation to our previous work on new indole- and/or donepezil-based hybrids as neuroprotective agents, the present study reports on the beneficial effects of lead compounds of the series on key pathognomonic features of AD in both cellular and in vivo models. An enzyme-linked immunosorbent assay (ELISA) was used to evaluate the anti-fibrillogenic properties of 15 selected derivatives and identify quantitative changes in the formation of neurotoxic ß-amyloid (Aß42) species in human neuronal cells in response to treatment. Among the most promising compounds were 3a and 3c, which have recently shown excellent antioxidant and anticholinesterase activities, and, therefore, have been subjected to further in vivo investigation in mice. An acute toxicity study was performed after intraperitoneal (i.p.) administration of both compounds, and 1/10 of the LD50 (35 mg/kg) was selected for subacute treatment (14 days) with scopolamine in mice. Donepezil (DNPZ) and/or galantamine (GAL) were used as reference drugs, aiming to establish any pharmacological superiority of the multifaceted approach in battling hallmark features of neurodegeneration. Our promising results give first insights into emerging disease-modifying strategies to combine multiple synergistic activities in a single molecule.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Donepezilo , Melatonina , Fármacos Neuroprotectores , Donepezilo/farmacología , Donepezilo/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Humanos , Ratones , Melatonina/farmacología , Péptidos beta-Amiloides/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Masculino , Antioxidantes/farmacología , Inhibidores de la Colinesterasa/farmacología , Indanos/farmacología , Indanos/uso terapéutico , Modelos Animales de Enfermedad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Piperidinas/farmacología , Piperidinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...