Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83.324
Filtrar
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 286-293, 2024 Jun 17.
Artículo en Chino | MEDLINE | ID: mdl-38952315

RESUMEN

OBJECTIVE: To investigate the involvement of the high mobility group box protein B1 (HMGB1)-Toll-like receptor 2 (TLR2)/TLR4-nuclear factor κB (NF-κB) pathway in the intestinal mucosal injury induced by Cryptosporidium parvum infection, and to examine the effect of oxymatrine (OMT) on C. parvum infection in mice. METHODS: Forty SPF 4-week-old BALB/c mice were randomly divided into four groups, including the control group, infection group, glycyrrhizin (GA) group and OMT group. Each mouse was orally administered with 1 × 105 C. parvum oocysts one week in the infection, GA and OMT groups following dexamethasone-induced immunosuppression to model C. parvum intestinal infections in mice. Upon successful modeling, mice in the GA group were intraperitoneally injected with GA at a daily dose of 25.9 mL/kg for successive two weeks, and animals in the OMT group were orally administered OMT at a daily dose of 50 mg/kg for successive two weeks, while mice in the control group were given normal food and water. All mice were sacrificed two weeks post-treatment, and proximal jejunal tissues were sampled. The pathological changes of mouse intestinal mucosal specimens were observed using hematoxylin-eosin (HE) staining, and the mouse intestinal villous height, intestinal crypt depth and the ratio of intestinal villous height to intestinal crypt depth were measured. The occludin and zonula occludens protein 1 (ZO1) expression was determined in mouse intestinal epithelial cells using immunohistochemistry, and the relative expression of HMGB1, TLR2, TLR4, myeloid differentiation primary response gene 88 (MyD88) and NF-κB p65 mRNA was quantified in mouse jejunal tissues using quantitative real-time PCR (qPCR) assay. RESULTS: HE staining showed that the mouse intestinal villi were obviously atrophic, shortened, and detached, and the submucosal layer of the mouse intestine was edematous in the infection group as compared with the control group, while the mouse intestinal villi tended to be structurally intact and neatly arranged in the GA and OMT groups. There were significant differences among the four groups in terms of the mouse intestinal villous height (F = 6.207, P = 0.000 5), intestinal crypt depth (F = 6.903, P = 0.000 3) and the ratio of intestinal villous height to intestinal crypt depth (F = 37.190, P < 0.000 1). The mouse intestinal villous height was lower in the infection group than in the control group [(321.9 ± 41.1) µm vs. (399.5 ± 30.9) µm; t = 4.178, P < 0.01] and the GA group [(321.9 ± 41.1) µm vs. (383.7 ± 42.7) µm; t = 3.130, P < 0.01], and the mouse intestinal crypt depth was greater in the infection group [(185.0 ± 35.9) µm] than in the control group [(128.4 ± 23.6) µm] (t = 3.877, P < 0.01) and GA group [(143.3 ± 24.7) µm] (t = 2.710, P < 0.05). The mouse intestinal villous height was greater in the OMT group [(375.3 ± 22.9) µm] than in the infection group (t = 3.888, P < 0.01), and there was no significant difference in mouse intestinal villous height between the OMT group and the control group (t = 1.989, P > 0.05). The mouse intestinal crypt depth was significantly lower in the OMT group [(121.5 ± 27.3) µm] than in the infection group (t = 4.133, P < 0.01), and there was no significant difference in mouse intestinal crypt depth between the OMT group and the control group (t = 0.575, P > 0.05). The ratio of the mouse intestinal villous height to intestinal crypt depth was significantly lower in the infection group (1.8 ± 0.2) than in the control group (3.1 ± 0.3) (t = 10.540, P < 0.01) and the GA group (2.7 ± 0.3) (t = 7.370, P < 0.01), and the ratio of the mouse intestinal villous height to intestinal crypt depth was significantly higher in the OMT group (3.1 ± 0.2) than in the infection group (t = 15.020, P < 0.01); however, there was no significant difference in the ratio of the mouse intestinal villous height to intestinal crypt depth between the OMT group and the control group (t = 0.404, P > 0.05). Immunohistochemical staining showed significant differences among the four groups in terms of occludin (F = 28.031, P < 0.000 1) and ZO1 expression (F = 14.122, P < 0.000 1) in mouse intestinal epithelial cells. The proportion of positive occluding expression was significantly lower in mouse intestinal epithelial cells in the infection group than in the control group [(14.3 ± 4.5)% vs. (28.3 ± 0.5)%; t = 3.810, P < 0.01], and the proportions of positive occluding expression were significantly higher in mouse intestinal epithelial cells in the GA group [(30.3 ± 1.3)%] and OMT group [(25.8 ± 1.5)%] than in the infection group (t = 7.620 and 5.391, both P values < 0.01); however, there was no significant differences in the proportion of positive occluding expression in mouse intestinal epithelial cells between the GA or OMT groups and the control group (t = 1.791 and 2.033, both P values > 0.05). The proportion of positive ZO1 expression was significantly lower in mouse intestinal epithelial cells in the infection group than in the control group [(14.4 ± 1.8)% vs. (24.2 ± 2.8)%; t = 4.485, P < 0.01], and the proportions of positive ZO1 expression were significantly higher in mouse intestinal epithelial cells in the GA group [(24.1 ± 2.3)%] (t = 5.159, P < 0.01) and OMT group than in the infection group [(22.5 ± 1.9)%] (t = 4.441, P < 0.05); however, there were no significant differences in the proportion of positive ZO1 expression in mouse intestinal epithelial cells between the GA or OMT groups and the control group (t = 0.037 and 0.742, both P values > 0.05). qPCR assay showed significant differences among the four groups in terms of HMGB1 (F = 21.980, P < 0.000 1), TLR2 (F = 20.630, P < 0.000 1), TLR4 (F = 17.000, P = 0.000 6), MyD88 (F = 8.907, P = 0.000 5) and NF-κB p65 mRNA expression in mouse jejunal tissues (F = 8.889, P = 0.000 7). The relative expression of HMGB1 [(5.97 ± 1.07) vs. (1.05 ± 0.07); t = 6.482, P < 0.05] 、TLR2 [(5.92 ± 1.29) vs. (1.10 ± 0.14); t = 5.272, P < 0.05] 、TLR4 [(5.96 ± 1.50) vs. (1.02 ± 0.03); t = 4.644, P < 0.05] 、MyD88 [(3.00 ± 1.26) vs. (1.02 ± 0.05); t = 2.734, P < 0.05] and NF-κB p65 mRNA [(2.33 ± 0.72) vs. (1.04 ± 0.06); t = 2.665, P < 0.05] was all significantly higher in mouse jejunal tissues in the infection group than in the control group. A significant reduction was detected in the relative expression of HMGB1 (0.63 ± 0.01), TLR2 (0.42 ± 0.10), TLR4 (0.35 ± 0.07), MyD88 (0.70 ± 0.11) and NF-κB p65 mRNA (0.75 ± 0.01) in mouse jejunal tissues in the GA group relative to the control group (t = 8.629, 5.830, 11.500, 4.729 and 6.898, all P values < 0.05), and the relative expression of HMGB1, TLR2, TLR4, MyD88 and NF-κB p65 mRNA significantly reduced in mouse jejunal tissues in the GA group as compared to the infection group (t = 7.052, 6.035, 4.084, 3.165 and 3.274, all P values < 0.05). In addition, the relative expression of HMGB1 (1.14 ± 0.60), TLR2 (1.00 ± 0.24), TLR4 (1.14 ± 0.07), MyD88 (0.96 ± 0.25) and NF-κ B p65 mRNA (1.12 ± 0.17) was significantly lower in mouse jejunal tissues in the OMT group than in the infection group (t = 7.059, 5.320, 3.510, 3.466 and 3.273, all P values < 0.05); however, there were no significant differences between the OMT and control groups in terms of relative expression of HMGB1, TLR2, TLR4, MyD88 or NF-κB p65 mRNA in mouse jejunal tissues (t = 0.239, 0.518, 1.887, 0.427 and 0.641, all P values > 0.05). CONCLUSIONS: C. parvum infection causes intestinal inflammatory responses and destruction of intestinal mucosal barrier through up-regulating of the HMGB1-TLR2/TLR4-NF-κB pathway. OMT may suppress the intestinal inflammation and repair the intestinal mucosal barrier through inhibiting the activity of the HMGB1-TLR2/TLR4-NF-κB pathway.


Asunto(s)
Alcaloides , Criptosporidiosis , Cryptosporidium parvum , Proteína HMGB1 , Ratones Endogámicos BALB C , FN-kappa B , Quinolizinas , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Animales , Criptosporidiosis/tratamiento farmacológico , Criptosporidiosis/parasitología , Quinolizinas/farmacología , Cryptosporidium parvum/efectos de los fármacos , Cryptosporidium parvum/fisiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Ratones , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Alcaloides/farmacología , Alcaloides/administración & dosificación , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Transducción de Señal/efectos de los fármacos , Masculino , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/parasitología , Mucosa Intestinal/metabolismo , Matrinas
2.
FASEB J ; 38(13): e23791, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963340

RESUMEN

Inflammatory bowel disease (IBD) is a kind of recurrent inflammatory disorder of the intestinal tract. The purpose of this study was to investigate the effects of Weissella paramesenteroides NRIC1542 on colitis in mice. A colitis model was induced by adding 1.5% DSS to sterile distilled water for seven consecutive days. During this process, mice were administered different concentrations of W. paramesenteroides NRIC1542. Colitis was assessed by DAI, colon length and hematoxylin-eosin staining of colon sections. The expressions of NF-κB signaling proteins and the tight junction proteins ZO-1 and occludin were detected by western blotting, and the gut microbiota was analyzed by 16S rDNA. The results showed that W. paramesenteroides NRIC1542 significantly reduced the degree of pathological tissue damage and the levels of TNF-α and IL-1ß in colonic tissue, inhibiting the NF-κB signaling pathway and increasing the expression of SIRT1, ZO-1 and occludin. In addition, W. paramesenteroides NRIC1542 can modulate the structure of the gut microbiota, characterized by increased relative abundance of Muribaculaceae_unclassified, Paraprevotella, Prevotellaceae_UCG_001 and Roseburia, and decrease the relative abundance of Akkermansia and Alloprevotella induced by DSS. The above results suggested that W. paramesenteroides NRIC1542 can protect against DSS-induced colitis in mice through anti-inflammatory, intestinal barrier maintenance and flora modulation.


Asunto(s)
Colitis , Sulfato de Dextran , Microbioma Gastrointestinal , FN-kappa B , Transducción de Señal , Sirtuina 1 , Weissella , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Sirtuina 1/metabolismo , Ratones , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Sulfato de Dextran/toxicidad , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Weissella/metabolismo , Masculino , Probióticos/farmacología
3.
Sci Rep ; 14(1): 15093, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956179

RESUMEN

2K4L is a rationally designed analog of the short α-helical peptide temporin-1CEc, a natural peptide isolated and purified from the skin secretions of the Chinese brown frog Rana chensinensis by substituting amino acid residues. 2K4L displayed improved and broad-spectrum antibacterial activity than temporin-1CEc in vitro. Here, the antibacterial and anti-inflammatory activities of 2K4L in macrophages, C. elegans and mice were investigated. The results demonstrated that 2K4L could enter THP-1 cells to kill a multidrug-resistant Acinetobacter baumannii strain (MRAB 0227) and a sensitive A. baumannii strain (AB 22933), as well as reduce proinflammatory responses induced by MRAB 0227 by inhibiting NF-κB signaling pathway. Similarly, 2K4L exhibited strong bactericidal activity against A. baumannii uptake into C. elegans, extending the lifespan and healthspan of the nematodes. Meanwhile, 2K4L alleviated the oxidative stress response by inhibiting the expression of core genes in the p38 MAPK/PMK-1 signaling pathway and downregulating the phosphorylation level of p38, thereby protecting the nematodes from damage by A. baumannii. Finally, in an LPS-induced septic model, 2K4L enhanced the survival of septic mice and decreased the production of proinflammatory cytokines by inhibiting the signaling protein expression of the MAPK and NF-κB signaling pathways and protecting LPS-induced septic mice from a lethal inflammatory response. In conclusion, 2K4L ameliorated LPS-induced inflammation both in vitro and in vivo.


Asunto(s)
Acinetobacter baumannii , Caenorhabditis elegans , Lipopolisacáridos , Macrófagos , Choque Séptico , Animales , Caenorhabditis elegans/efectos de los fármacos , Ratones , Acinetobacter baumannii/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Choque Séptico/tratamiento farmacológico , Choque Séptico/inducido químicamente , Choque Séptico/metabolismo , FN-kappa B/metabolismo , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Humanos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antibacterianos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Caenorhabditis elegans
4.
Acta Cir Bras ; 39: e392724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38958304

RESUMEN

PURPOSE: Gene expressions of vascular Endothelial Growth Factor Alpha (VEGFa), Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B cells (NFkB) and cytokines could be useful for identifying potential therapeutic targets to alleviate ischemia-reperfusion injury after liver transplantation. Cytokine gene expressions, VEGFa and NFkB were investigated in a preclinical swine model of liver transplantation. METHODS: A total of 12 pigs were used as donors and recipients in liver transplantation without venovenous bypass or aortic clamping. NFkB, IL-6, IL-10, VEGFa and Notch1 gene expression were assessed. These samples were collected in two specific times: group 1 (n= 6) - control, samples were collected before recipient's total hepatectomy and group 2 - liver transplantation group (n=6), where the samples were collected one hour after graft reperfusion. RESULTS: Liver transplantation was successfully performed in all recipients. Liver enzymes were elevated in the transplantation group. NFkB gene expression was significantly decreased in the transplantation group in comparison with the control group (0.62±0.19 versus 0.39±0.08; p= 0.016). No difference was observed between groups Interleucine 6 (IL-6), interleucine 10 (IL-10), VEGFa and Notch homolog 1 (Notch1). CONCLUSIONS: In this survey a decreased NFkB gene expression in a porcine model of liver transplantation was observed.


Asunto(s)
Trasplante de Hígado , FN-kappa B , Factor A de Crecimiento Endotelial Vascular , Animales , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/análisis , Porcinos , FN-kappa B/metabolismo , Interleucina-10/análisis , Interleucina-6/análisis , Interleucina-6/genética , Daño por Reperfusión , Expresión Génica , Modelos Animales de Enfermedad , Receptor Notch1/genética , Citocinas , Hígado/metabolismo , Modelos Animales , Masculino
5.
Sci Adv ; 10(27): eado2365, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959302

RESUMEN

Pityriasis rubra pilaris (PRP) is a rare inflammatory skin disease with a poorly understood pathogenesis. Through a molecularly driven precision medicine approach and an extensive mechanistic pathway analysis in PRP skin samples, compared to psoriasis, atopic dermatitis, healed PRP, and healthy controls, we identified IL-1ß as a key mediator, orchestrating an NF-κB-mediated IL-1ß-CCL20 axis, including activation of CARD14 and NOD2. Treatment of three patients with the IL-1 antagonists anakinra and canakinumab resulted in rapid clinical improvement and reversal of the PRP-associated molecular signature with a 50% improvement in skin lesions after 2 to 3 weeks. This transcriptional signature was consistent with in vitro stimulation of keratinocytes with IL-1ß. With the central role of IL-1ß underscoring its potential as a therapeutic target, our findings propose a redefinition of PRP as an autoinflammatory keratinization disorder. Further clinical trials are needed to validate the efficacy of IL-1ß antagonists in PRP.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-1beta , Queratinocitos , Pitiriasis Rubra Pilaris , Humanos , Pitiriasis Rubra Pilaris/tratamiento farmacológico , Pitiriasis Rubra Pilaris/patología , Pitiriasis Rubra Pilaris/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/antagonistas & inhibidores , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Masculino , FN-kappa B/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/antagonistas & inhibidores , Femenino , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización CARD/genética , Piel/patología , Piel/metabolismo , Piel/efectos de los fármacos , Interleucina-1/antagonistas & inhibidores , Interleucina-1/metabolismo , Interleucina-1/genética , Persona de Mediana Edad , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/antagonistas & inhibidores , Guanilato Ciclasa/genética , Adulto , Transducción de Señal/efectos de los fármacos , Proteínas de la Membrana
6.
Sci Adv ; 10(27): eadg3747, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959314

RESUMEN

Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells. Screening on primary cells identified an imidazopyrimidine, dubbed PVP-037. Moreover, while PVP-037 did not overtly activate THP-1 cells, it demonstrated broad innate immune activation, including NF-κB and cytokine induction from primary human leukocytes in vitro as well as enhancement of influenza and SARS-CoV-2 antigen-specific humoral responses in mice. Several de novo synthesis structural enhancements iteratively improved PVP-037's in vitro efficacy, potency, species-specific activity, and in vivo adjuvanticity. Overall, we identified imidazopyrimidine Toll-like receptor-7/8 adjuvants that act in synergy with oil-in-water emulsion to enhance immune responses.


Asunto(s)
Adyuvantes Inmunológicos , Pirimidinas , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Humanos , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/metabolismo , Animales , Ratones , Adyuvantes Inmunológicos/farmacología , Receptor Toll-Like 7/agonistas , Pirimidinas/farmacología , Pirimidinas/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Imidazoles/farmacología , Imidazoles/química , Células THP-1 , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , COVID-19/virología , COVID-19/inmunología , FN-kappa B/metabolismo , Femenino , Descubrimiento de Drogas/métodos , Inmunidad Innata/efectos de los fármacos
7.
J Nanobiotechnology ; 22(1): 390, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961442

RESUMEN

BACKGROUND: Zinc oxide nanoparticle (ZnO NP) is one of the metal nanomaterials with extensive use in many fields such as feed additive and textile, which is an emerging threat to human health due to widely distributed in the environment. Thus, there is an urgent need to understand the toxic effects associated with ZnO NPs. Although previous studies have found accumulation of ZnO NPs in testis, the molecular mechanism of ZnO NPs dominated a decline in male fertility have not been elucidated. RESULTS: We reported that ZnO NPs exposure caused testicular dysfunction and identified spermatocytes as the primary damaged site induced by ZnO NPs. ZnO NPs led to the dysfunction of spermatocytes, including impaired cell proliferation and mitochondrial damage. In addition, we found that ZnO NPs induced ferroptosis of spermatocytes through the increase of intracellular chelatable iron content and lipid peroxidation level. Moreover, the transcriptome analysis of testis indicated that ZnO NPs weakened the expression of miR-342-5p, which can target Erc1 to block the NF-κB pathway. Eventually, ferroptosis of spermatocytes was ameliorated by suppressing the expression of Erc1. CONCLUSIONS: The present study reveals a novel mechanism in that miR-342-5p targeted Erc1 to activate NF-κB signaling pathway is required for ZnO NPs-induced ferroptosis, and provide potential targets for further research on the prevention and treatment of male reproductive disorders related to ZnO NPs.


Asunto(s)
Ferroptosis , MicroARNs , FN-kappa B , Transducción de Señal , Espermatocitos , Testículo , Óxido de Zinc , Animales , Masculino , Ratones , Proliferación Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Nanopartículas del Metal/química , MicroARNs/metabolismo , MicroARNs/genética , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Espermatocitos/metabolismo , Espermatocitos/efectos de los fármacos , Testículo/metabolismo , Testículo/efectos de los fármacos , Óxido de Zinc/farmacología , Óxido de Zinc/química
8.
Sci Rep ; 14(1): 15406, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965397

RESUMEN

Patients with multiple myeloma (MM) experience relapse and drug resistance; therefore, novel treatments are essential. Clotrimazole (CTZ) is a wide-spectrum antifungal drug with antitumor activity. However, CTZ's effects on MM are unclear. We investigated CTZ's effect on MM cell proliferation and apoptosis induction mechanisms. CTZ's effects on MM.1S, NCI- H929, KMS-11, and U266 cell growth were investigated using Cell Counting Kit-8 (CCK-8) assay. The apoptotic cell percentage was quantified with annexin V-fluorescein isothiocyanate/7-amino actinomycin D staining. Mitochondrial membrane potential (MMP) and cell cycle progression were evaluated. Reactive oxygen species (ROS) levels were measured via fluorescence microscopy. Expression of apoptosis-related and nuclear factor (NF)-κB signaling proteins was analyzed using western blotting. The CCK-8 assay indicated that CTZ inhibited cell proliferation based on both dose and exposure time. Flow cytometry revealed that CTZ decreased apoptosis and MMP and induced G0/G1 arrest. Immunofluorescence demonstrated that CTZ dose-dependently elevated in both total and mitochondrial ROS production. Western blotting showed that CTZ enhanced Bax and cleaved poly ADP-ribose polymerase and caspase-3 while decreasing Bcl-2, p-p65, and p-IκBα. Therefore, CTZ inhibits MM cell proliferation by promoting ROS-mediated mitochondrial apoptosis, inducing G0/G1 arrest, inhibiting the NF-κB pathway, and has the potential for treating MM.


Asunto(s)
Apoptosis , Proliferación Celular , Clotrimazol , Potencial de la Membrana Mitocondrial , Mitocondrias , Mieloma Múltiple , Especies Reactivas de Oxígeno , Humanos , Mieloma Múltiple/patología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Clotrimazol/farmacología , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos
9.
J Exp Clin Cancer Res ; 43(1): 187, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965580

RESUMEN

BACKGROUND: Recent studies have highlighted the significant role of the NF-κB signaling pathway in the initiation and progression of cancer. Furthermore, long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in sustaining the NF-κB signaling pathway's functionality. Despite these findings, the underlying molecular mechanisms through which lncRNAs influence the NF-κB pathway remain largely unexplored. METHODS: Bioinformatic analyses were utilized to investigate the differential expression and prognostic significance of XTP6. The functional roles of XTP6 were further elucidated through both in vitro and in vivo experimental approaches. To estimate the interaction between XTP6 and NDH2, RNA pulldown and RNA Immunoprecipitation (RIP) assays were conducted. The connection between XTP6 and the IκBα promoter was examined using Chromatin Isolation by RNA Purification (ChIRP) assays. Additionally, Chromatin Immunoprecipitation (ChIP) assays were implemented to analyze the binding affinity of c-myc to the XTP6 promoter, providing insights into the regulatory mechanisms at play. RESULTS: XTP6 was remarkedly upregulated in glioblastoma multiforme (GBM) tissues and was connected with adverse prognosis in GBM patients. Our investigations revealed that XTP6 can facilitate the malignant progression of GBM both in vitro and in vivo. Additionally, XTP6 downregulated IκBα expression by recruiting NDH2 to the IκBα promoter, which resulted in elevated levels of H3K27me3, thereby reducing the transcriptional activity of IκBα. Moreover, the progression of GBM was further driven by the c-myc-mediated upregulation of XTP6, establishing a positive feedback loop with IκBα that perpetuated the activation of the NF-κB signaling pathway. Notably, the application of an inhibitor targeting the NF-κB signaling pathway effectively inhibited the continuous activation induced by XTP6, leading to a significant reduction in tumor formation in vivo. CONCLUSION: The results reveal that XTP6 unveils an innovative epigenetic mechanism instrumental in the sustained activation of the NF-κB signaling pathway, suggesting a promising therapeutic target for the treatment of GBM.


Asunto(s)
Progresión de la Enfermedad , Glioblastoma , FN-kappa B , Proteínas Proto-Oncogénicas c-myc , ARN Largo no Codificante , Humanos , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , FN-kappa B/metabolismo , Ratones , Animales , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Pronóstico , Retroalimentación Fisiológica , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Masculino , Proliferación Celular , Femenino
10.
Allergol Immunopathol (Madr) ; 52(4): 91-96, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38970271

RESUMEN

Asthma is a widely prevalent chronic disease that brings great suffering to patients and may result in death if it turns severe. Jolkinolide B (JB) is one diterpenoid component separated from the dried roots of Euphorbia fischeriana Steud (Euphorbiaceae), and has anti--inflammatory, antioxidative, and antitumor properties. However, the detailed regulatory role and associated regulatory mechanism in the progression of asthma remain elusive. In this work, it was demonstrated that the extensive infiltration of bronchial inflammatory cells and the thickening of airway wall were observed in ovalbumin (OVA)-induced mice, but these impacts were reversed by JB (10 mg/kg) treatment, indicating that JB relieved the provocative symptoms in OVA-induced asthma mice. In addition, JB can control OVA-triggered lung function and pulmonary resistance. Moreover, JB attenuated OVA-evoked inflammation by lowering the levels of interleukin (IL)-4, IL-5, and IL-13. Besides, the activated nuclear factor kappa B (NF-κB) and transforming growth factor-beta-mothers against decapentaplegic homolog 3 (TGFß/smad3) pathways in OVA-induced mice are rescued by JB treatment. In conclusion, it was disclosed that JB reduced allergic airway inflammation and airway remodeling in asthmatic mice by modulating the NF-κB and TGFß/smad3 pathways. This work could offer new opinions on JB for lessening progression of asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Modelos Animales de Enfermedad , Diterpenos , Ratones Endogámicos BALB C , FN-kappa B , Ovalbúmina , Animales , Asma/tratamiento farmacológico , Asma/inmunología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Ratones , Diterpenos/farmacología , Diterpenos/administración & dosificación , Diterpenos/uso terapéutico , Ovalbúmina/inmunología , FN-kappa B/metabolismo , Femenino , Factor de Crecimiento Transformador beta/metabolismo , Citocinas/metabolismo , Proteína smad3/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Euphorbia/química
11.
Allergol Immunopathol (Madr) ; 52(4): 97-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38970272

RESUMEN

INTRODUCTION AND OBJECTIVES: Macrophage-induced inflammation plays a key role in defense against injury and harmful pathogens. Autophagy and the inflammatory response are associated; however, the relationship between the autophagy pathway and lipopolysaccharide (LPS)- induced inflammatory responses remains unknown. We aimed to determine the effect of autophagy on the LPS-induced myeloid differentiation factor 88 (MyD88)/nuclear transcription factor kB (NF-kB) pathway-mediated inflammatory response in RAW264.7 cells. MATERIALS AND METHODS: To determine the effect of autophagy on the LPS-induced inflammatory response, using various in vitro assays, we determined the effect of autophagy inhibitors and inducers on the inflammatory response in RAW264.7 cells. RESULTS: Chloroquine (CQ), an autophagy inhibitor, suppressed pro-inflammatory cytokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor α (TNFα) in LPS-stimulated RAW264.7 cells. CQ also affected inflammatory mediators such as myeloid differentiation factor 88 and NF-kB in LPS-stimulated RAW264.7 cells. CONCLUSION: This study demonstrated that CQ regulates the LPS-induced inflammatory response in RAW264.7 cells. We propose that targeting the regulation of pro-inflammatory cytokine levels and inflammatory mediators using CQ is a promising therapeutic approach for preventing inflammatory injury. CQ serves as a potential therapeutic target for treating various inflammatory diseases.


Asunto(s)
Cloroquina , Citocinas , Lipopolisacáridos , Macrófagos , Factor 88 de Diferenciación Mieloide , FN-kappa B , Animales , Ratones , Cloroquina/farmacología , Células RAW 264.7 , FN-kappa B/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Citocinas/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Autofagia/efectos de los fármacos , Autofagia/inmunología , Inflamación/inmunología , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología , Mediadores de Inflamación/metabolismo
12.
Balkan Med J ; 41(4): 286-297, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966918

RESUMEN

Background: Cannabidiol (CBD), extracted from Cannabis sativa, has anticancer, anti-inflammation, and analgesic effects. Nevertheless, its therapeutic effect and the mechanism by which it alleviates oral mucositis (OM) remain unclear. Aims: To explore the impact of CBD on OM in mice and on human oral keratinocyte (HOK) cells. Study Design: Expiremental study. Methods: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, GeneCard, DisGeNET, and Gene Expression Omnibus databases were used to conduct therapeutic target gene screening for drugs against OM. Cytoscape software was used to build networks linking components, targets, and diseases. The STRING database facilitated analysis of intertarget action relationships, and the target genes were analyzed for Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Occurrence of serum inflammation-related factors, hematoxylin and eosin staining, and immunohistochemistry were used to assess OM injury. Cell proliferation, migration, pyroptosis, and apoptosis of HOK cells under different treatments were assessed. Molecular mechanisms were elucidated through western blot and quantitative real-time polymerase chain reaction analyses. Results: A total of 49 overlapping genes were pinpointed as potential targets, with NF-κB1, PIK3R1, NF-κBIA, and AKT1 being recognized as hub genes among them. Additionally, the PI3K/Akt/NF-κB and interleukin-17 signaling pathways were identified as relevant. Our in vivo experiments showed that CBD significantly reduced the proportion of lesion area, mitigated oral mucosal tissue lesions, and downregulated the expression levels of genes and levels of proteins, including NLRP3, P65, AKT, and PI3K. In vitro experiments indicated that CBD enhanced HOK cell proliferation and migration and reduced apoptosis through inhibition of the PI3K/Akt/NF-κB signaling pathway and pyroptosis. Conclusion: Our findings suggest a novel mechanism for controlling OM, in which CBD suppresses the PI3K/Akt/NF-κB signaling pathway and pyroptosis, thereby mitigating OM symptoms.


Asunto(s)
Cannabidiol , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Piroptosis , Estomatitis , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Animales , Piroptosis/efectos de los fármacos , Ratones , Estomatitis/tratamiento farmacológico , FN-kappa B/efectos de los fármacos , FN-kappa B/análisis , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad
13.
Nat Commun ; 15(1): 5697, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972900

RESUMEN

Climate and environmental changes threaten human mental health, but the impacts of specific environmental conditions on neuropsychiatric disorders remain largely unclear. Here, we show the impact of a humid heat environment on the brain and the gut microbiota using a conditioned housing male mouse model. We demonstrate that a humid heat environment can cause anxiety-like behaviour in male mice. Microbial 16 S rRNA sequencing analysis reveals that a humid heat environment caused gut microbiota dysbiosis (e.g., decreased abundance of Lactobacillus murinus), and metabolomics reveals an increase in serum levels of secondary bile acids (e.g., lithocholic acid). Moreover, increased neuroinflammation is indicated by the elevated expression of proinflammatory cytokines in the serum and cortex, activated PI3K/AKT/NF-κB signalling and a microglial response in the cortex. Strikingly, transplantation of the microbiota from mice reared in a humid heat environment readily recapitulates these abnormalities in germ-free mice, and these abnormalities are markedly reversed by Lactobacillus murinus administration. Human samples collected during the humid heat season also show a decrease in Lactobacillus murinus abundance and an increase in the serum lithocholic acid concentration. In conclusion, gut microbiota dysbiosis induced by a humid heat environment drives the progression of anxiety disorders by impairing bile acid metabolism and enhancing neuroinflammation, and probiotic administration is a potential therapeutic strategy for these disorders.


Asunto(s)
Ansiedad , Ácidos y Sales Biliares , Disbiosis , Microbioma Gastrointestinal , Calor , Animales , Masculino , Ratones , Ácidos y Sales Biliares/metabolismo , Humanos , Disbiosis/microbiología , Ansiedad/microbiología , Ratones Endogámicos C57BL , Humedad , Ácido Litocólico/metabolismo , Lactobacillus , Encéfalo/metabolismo , FN-kappa B/metabolismo , ARN Ribosómico 16S/genética , Modelos Animales de Enfermedad , Trastornos de Ansiedad/metabolismo , Trastornos de Ansiedad/microbiología , Trastornos de Ansiedad/etiología , Transducción de Señal , Citocinas/metabolismo
14.
PeerJ ; 12: e17642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978754

RESUMEN

Background: Gingivitis is an inflammation of the gums that is the initial cause of the development of periodontal disease by the activity of Nuclear Factor-kappa B (NF-κB), Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6), p38, and Tumor Necrosis Factor-α (TNF-α). Unaddressed chronic inflammation can lead to persistent disturbances in other parts of the body. Brazilin is a naturally occurring plant chemical that may have antibacterial and anti-inflammatory effects. Treatment based on the natural plant compound, brazilin, is developed in the form of a topical cream for easy application. Objective: The aim is to develop the natural compound brazilin in the form of a topical cream as an anti-inflammatory agent to reduce NF-κB expression through Imunohistochemistry (IHC) methods, and the expression of pro-inflammatory genes IL-1ß, IL-6, p38, and TNF-α. Methods: Male Sprague-Dawley rats were induced with gingivitis using P. gingivalis bacteria. The observed groups included rats treated with a single application of brazilin cream and rats treated with two applications of brazilin cream. The treatment was administered for 15 days. On days 3, 6, 9, 12, and 15, anatomical wound observations and wound histology using hematoxylin-eosin and Masson's Trichrome staining were performed. NF-κB protein expression was analyzed using the IHC method. Gingival inflammation gene expression of NF-κB, IL-1ß, IL-6, p38, and TNF-α was measured using q-RTPCR. Results: Single and double applications of brazilin cream increased angiogenesis and decreased NF-κB protein expression, in addition to the IL-1ß, IL-6, p38, and TNF-α gene expressions. Conclusion: In a rat gingivitis model, Brazilin cream may function as an anti-inflammatory agent in the gingival tissue.


Asunto(s)
Benzopiranos , Caesalpinia , Gingivitis , FN-kappa B , Ratas Sprague-Dawley , Animales , Caesalpinia/química , Masculino , Ratas , Benzopiranos/farmacología , Benzopiranos/administración & dosificación , Benzopiranos/uso terapéutico , FN-kappa B/metabolismo , Gingivitis/tratamiento farmacológico , Gingivitis/patología , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Enfermedades Periodontales/tratamiento farmacológico , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Modelos Animales de Enfermedad , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Front Immunol ; 15: 1404122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979411

RESUMEN

Introduction: Chronic obstructive pulmonary disease (COPD) is a major global cause of mortality with limited effective treatments. Sirtuins (SIRT) are histone deacetylases that are involved in the regulation of redox and inflammatory homeostasis. Hence, the present study aims to investigate the role of SIRT-2 in modulating inflammation in a murine model of COPD. Methods: COPD in mice was established by cigarette smoke (CS) exposure for 60 days, and AK-7 was used as the specific SIRT-2 inhibitor. AK-7 (100 µg/kg and 200 µg/kg body weight) was administered intranasally 1 h before CS exposure. Molecular docking was performed to analyze the binding affinity of different inflammatory proteins with AK-7. Results: Immune cell analysis showed a significantly increased number of macrophages (F4/80), neutrophils (Gr-1), and lymphocytes (CD4+, CD8+, and CD19+) in the COPD, group and their population was declined by AK-7 administration. Total reactive oxygen species, total inducible nitric oxide synthase, inflammatory mediators such as neutrophil elastase, C-reactive protein, histamine, and cytokines as IL4, IL-6, IL-17, and TNF-α were elevated in COPD and declined in the AK-7 group. However, IL-10 showed reverse results representing anti-inflammatory potency. AK-7 administration by inhibiting SIRT-2 decreased the expression of p-NF-κB, p-P38, p-Erk, and p-JNK and increased the expression of Nrf-2. Furthermore, AK-7 also declined the lung injury by inhibiting inflammation, parenchymal destruction, emphysema, collagen, club cells, and Kohn pores. AK-7 also showed good binding affinity with inflammatory proteins. Discussion: The current study reveals that SIRT-2 inhibition mitigates COPD severity and enhances pulmonary therapeutic interventions, suggesting AK-7 as a potential therapeutic molecule for COPD medication development.


Asunto(s)
FN-kappa B , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica , Sirtuina 2 , Animales , Sirtuina 2/metabolismo , Sirtuina 2/antagonistas & inhibidores , Ratones , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Estrés Oxidativo/efectos de los fármacos , FN-kappa B/metabolismo , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Modelos Animales de Enfermedad , Transducción de Señal , Ratones Endogámicos C57BL , Citocinas/metabolismo , Carbazoles
16.
Curr Biol ; 34(13): R618-R620, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981424

RESUMEN

Viral infection causes an increase in age-related intestinal pathologies. New research finds that oral viral infection leads to intestinal stem-cell proliferation and a decrease in lifespan in Drosophila melanogaster that depends on Sting-NF-κB signaling.


Asunto(s)
Envejecimiento , Drosophila melanogaster , FN-kappa B , Transducción de Señal , Animales , FN-kappa B/metabolismo , Drosophila melanogaster/virología , Drosophila melanogaster/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Intestinos/virología , Virosis/metabolismo , Virosis/virología , Virosis/inmunología
17.
Chin Clin Oncol ; 13(3): 34, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38984487

RESUMEN

BACKGROUND: Breast cancer has become one of the leading causes of cancer deaths and is the most frequently diagnosed cancer among females worldwide. Despite advances in breast cancer therapy, metastatic disease in most patients will eventually progress due to the development of de novo or secondary resistance. Thus, it is extremely important to seek novel drugs with high effectiveness and low toxicity for systematic therapy. METHODS: We applied a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in this study to analyze and evaluate the cytotoxic activity of oleanolic acid (OA) and its derivatives in three types of breast cancer cell lines (MDA-MB-231, MCF-7, and MDA-MB-453). A flow cytometry assay was performed to access the mechanisms of apoptosis and cell cycle analysis in SZC010 in MDA-MB-453 cells. Apoptosis- and cyclin-related proteins were evaluated by western blot. The key proteins of the NF-κB and PI3K-Akt-mTOR signaling pathway were also evaluated by western blot. RESULTS: Our results revealed that all OA derivatives were more effective than OA in three types of breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-453). Among these seven OA derivatives, SZC010 exhibited the most potent cytotoxicity in MDA-MB-453 cells. Additionally, we observed that SZC010 treatment induced dose-and time-dependent growth inhibition in MDA-MB-453 cells. Furthermore, we demonstrated that SZC010 induced growth arrest in the G2/M phase and apoptosis by inhibition of NF-κB activation via the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS: Our data indicate that the novel OA derivative, SZC010, has great potential in breast cancer therapy.


Asunto(s)
Apoptosis , Neoplasias de la Mama , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ácido Oleanólico/farmacología , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/uso terapéutico , Proliferación Celular/efectos de los fármacos , Células MCF-7
18.
PLoS One ; 19(7): e0306998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985791

RESUMEN

Infectious and foodborne diseases pose significant global threats, with devastating consequences in low- and middle-income countries. Ozone, derived from atmospheric oxygen, exerts antimicrobial effects against various microorganisms, and degrades fungal toxins, which were initially recognized in the healthcare and food industries. However, highly concentrated ozone gas can be detrimental to human health. In addition, ozonated water is unstable and has a short half-life. Therefore, ultrafine-bubble technology is expected to overcome these issues. Ultrafine bubbles, which are nanoscale entitles that exist in water for considerable durations, have previously demonstrated bactericidal effects against various bacterial species, including antibiotic-resistant strains. This present study investigated the effects of ozone ultrafine bubble water (OUFBW) on various bacterial toxins. This study revealed that OUFBW treatment abolished the toxicity of pneumolysin, a pneumococcal pore-forming toxin, and leukotoxin, a toxin that causes leukocyte injury. Silver staining confirmed the degradation of pneumolysin, leukotoxin, and staphylococcal enterotoxin A, which are potent gastrointestinal toxins, following OUFB treatment. In addition, OUFBW treatment significantly inhibited NF-κB activation by Pam3CSK4, a synthetic triacylated lipopeptide that activates Toll-like receptor 2. Additionally, OUFBW exerted bactericidal activity against Staphylococcus aureus, including an antibiotic-resistant strain, without displaying significant toxicity toward human neutrophils or erythrocytes. These results suggest that OUFBW not only sterilizes bacteria but also degrades bacterial toxins.


Asunto(s)
Toxinas Bacterianas , Ozono , Ozono/química , Ozono/farmacología , Humanos , Toxinas Bacterianas/metabolismo , Agua/química , FN-kappa B/metabolismo , Proteínas Bacterianas/metabolismo
19.
Front Immunol ; 15: 1415565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989285

RESUMEN

How the microbiome regulates responses of systemic innate immune cells is unclear. In the present study, our purpose was to document a novel mechanism by which the microbiome mediates crosstalk with the systemic innate immune system. We have identified a family of microbiome Bacteroidota-derived lipopeptides-the serine-glycine (S/G) lipids, which are TLR2 ligands, access the systemic circulation, and regulate proinflammatory responses of splenic monocytes. To document the role of these lipids in regulating systemic immunity, we used oral gavage with an antibiotic to decrease the production of these lipids and administered exogenously purified lipids to increase the systemic level of these lipids. We found that decreasing systemic S/G lipids by decreasing microbiome Bacteroidota significantly enhanced splenic monocyte proinflammatory responses. Replenishing systemic levels of S/G lipids via exogenous administration returned splenic monocyte responses to control levels. Transcriptomic analysis demonstrated that S/G lipids regulate monocyte proinflammatory responses at the level of gene expression of a small set of upstream inhibitors of TLR and NF-κB pathways that include Trem2 and Irf4. Consistent with enhancement in proinflammatory cytokine responses, decreasing S/G lipids lowered gene expression of specific pathway inhibitors. Replenishing S/G lipids normalized gene expression of these inhibitors. In conclusion, our results suggest that microbiome-derived S/G lipids normally establish a level of buffered signaling activation necessary for well-regulated innate immune responses in systemic monocytes. By regulating gene expression of inflammatory pathway inhibitors such as Trem2, S/G lipids merit broader investigation into the potential dysfunction of other innate immune cells, such as microglia, in diseases such as Alzheimer's disease.


Asunto(s)
Monocitos , Transducción de Señal , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Animales , Ratones , Microbiota/inmunología , Ratones Endogámicos C57BL , Inmunidad Innata , Receptor Toll-Like 2/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Lipopéptidos/farmacología , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , FN-kappa B/metabolismo , Inflamación/inmunología , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Masculino , Lípidos , Bazo/inmunología , Bazo/metabolismo , Citocinas/metabolismo , Femenino
20.
Drug Des Devel Ther ; 18: 2693-2712, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974121

RESUMEN

Background: Chronic kidney disease (CKD) is a significant worldwide health concern that leads to high mortality rates. The bioactive substance costunolide (CTD) has demonstrated several pharmacological effects and holds promise as a CKD treatment. This study aims to investigate the impact of CTD on CKD and delve into its mechanisms of action. Methods: Unilateral ureteral obstruction (UUO) methods and renal fibrosis mice models were created. Various concentrations of CTD were injected into UUO mice models to investigate the therapeutic effects of CTD on renal fibrosis of mice. Then, renal morphology, pathological changes, and the expression of genes related to fibrosis, inflammation and ferroptosis were analysed. RNA sequencing was utilized to identify the main biological processes and pathways involved in renal injury. Finally, both overexpression and inhibition of IKKß were studied to examine their respective effects on fibrosis and inflammation in both in vitro and in vivo models. Results: CTD treatment was found to significantly alleviate fibrosis, inflammation and ferroptosis in UUO-induced renal fibrosis mice models. The results of RNA sequencing suggested that the IKKß acted as key regulatory factor in renal injury and the expression of IKKß was increased in vitro and in vivo renal fibrosis model. Functionally, down-regulated IKKß expression inhibits ferroptosis, inflammatory cytokine production and collagen deposition. Conversely, IKKß overexpression exacerbates progressive renal fibrosis. Mechanistically, CTD alleviated renal fibrosis and inflammation by inhibiting the expression of IKKß and attenuating IKKß/NF-κB pathway. Conclusion: This study demonstrates that CTD could mitigate renal fibrosis, ferroptosis and inflammation in CKD by modulating the IKKß/NF-κB pathway, which indicates targeting IKKß has an enormous potential for treating CKD.


Asunto(s)
Quinasa I-kappa B , Ratones Endogámicos C57BL , FN-kappa B , Insuficiencia Renal Crónica , Sesquiterpenos , Animales , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/antagonistas & inhibidores , Ratones , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Sesquiterpenos/farmacología , Masculino , Modelos Animales de Enfermedad , Fibrosis/tratamiento farmacológico , Humanos , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...