Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (60)2012 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-22395237

RESUMEN

A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification(1). Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast(2,3) but more recently has been adapted to use in mammalian cells(4-8). As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E(9,10).The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation(10). The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence(8). To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter. Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous proteins apparently specific to the eIF4E pull-down (when compared to control cell lines expressing the TAP tag alone). The identities of the proteins were obtained by excision of the bands from 1D SDS-PAGE and subsequent tandem mass spectrometry. The identified components included the known eIF4E binding proteins eIF4G and 4EBP-1. In addition, other components of the eIF4F complex, of which eIF4E is a component were identified, namely eIF4A and Poly-A binding protein. The ability to identify not only known direct binding partners as well as secondary interacting proteins, further highlights the utility of this approach in the characterization of proteins of unknown function.


Asunto(s)
Cromatografía de Afinidad/métodos , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Espectrometría de Masas en Tándem/métodos , Animales , Proteínas Bacterianas/química , Endopeptidasas/química , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Factor 1 Eucariótico de Iniciación/metabolismo , Ratones , Proteínas/aislamiento & purificación
2.
Methods Mol Biol ; 540: 265-79, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19381566

RESUMEN

The heat shock (HS) response is the major cellular defense mechanism against acute exposure to environmental stresses. The hallmark of the HS response, which is conserved in all eukaryotes, is the rapid and massive induction of expression of a set of cytoprotective genes. Most of the induction occurs at the level of transcription. The master regulator, heat shock transcription factor (HSF, or HSF1 in vertebrates), is responsible for the induction of HS gene transcription in response to elevated temperature. Under normal conditions HSF is present in the cell as an inactive monomer. During HS, HSF trimerizes and binds to a consensus sequence in the promoter of HS genes, stimulating their transcription by up to 200-fold. We have shown that a large, noncoding RNA, HSR1, and the translation elongation factor eEF1A form a complex with HSF during HS and are required for its activation.


Asunto(s)
Respuesta al Choque Térmico/genética , Biología Molecular/métodos , ARN no Traducido/aislamiento & purificación , Células 3T3 , Animales , Extractos Celulares , Proteínas de Unión al ADN/genética , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Células HeLa , Factores de Transcripción del Choque Térmico , Humanos , Ratones , ARN no Traducido/genética , Proteínas Recombinantes/aislamiento & purificación , Factores de Transcripción/genética , Transcripción Genética
3.
Methods Enzymol ; 430: 111-45, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17913637

RESUMEN

To facilitate the mechanistic dissection of eukaryotic translation initiation we have reconstituted the steps of this process using purified Saccharomyces cerevisiae components. This system provides a bridge between biochemical studies in vitro and powerful yeast genetic techniques, and complements existing reconstituted mammalian translation systems (Benne and Hershey, 1978; Pestova and Hellen, 2000; Pestova et al., 1998; Trachsel et al., 1977). The following describes methods for synthesizing and purifying the components of the yeast initiation system and assays useful for its characterization.


Asunto(s)
Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/aislamiento & purificación , Factor 2 Eucariótico de Iniciación/metabolismo , Metionina/metabolismo , Metionina-ARNt Ligasa/aislamiento & purificación , Metionina-ARNt Ligasa/metabolismo , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , ARN de Hongos/genética , ARN de Hongos/aislamiento & purificación , ARN de Hongos/metabolismo , ARN Ribosómico/aislamiento & purificación , ARN Ribosómico/metabolismo , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
RNA ; 12(5): 751-64, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16565414

RESUMEN

All three kingdoms of life employ two methionine tRNAs, one for translation initiation and the other for insertion of methionines at internal positions within growing polypeptide chains. We have used a reconstituted yeast translation initiation system to explore the interactions of the initiator tRNA with the translation initiation machinery. Our data indicate that in addition to its previously characterized role in binding of the initiator tRNA to eukaryotic initiation factor 2 (eIF2), the initiator-specific A1:U72 base pair at the top of the acceptor stem is important for the binding of the eIF2.GTP.Met-tRNA(i) ternary complex to the 40S ribosomal subunit. We have also shown that the initiator-specific G:C base pairs in the anticodon stem of the initiator tRNA are required for the strong thermodynamic coupling between binding of the ternary complex and mRNA to the ribosome. This coupling reflects interactions that occur within the complex upon recognition of the start codon, suggesting that these initiator-specific G:C pairs influence this step. The effect of these anticodon stem identity elements is influenced by bases in the T loop of the tRNA, suggesting that conformational coupling between the D-loop-T-loop substructure and the anticodon stem of the initiator tRNA may occur during AUG codon selection in the ribosomal P-site, similar to the conformational coupling that occurs in A-site tRNAs engaged in mRNA decoding during the elongation phase of protein synthesis.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Secuencia Conservada , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/aislamiento & purificación , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/aislamiento & purificación , Factor 5 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/aislamiento & purificación , Guanosina Trifosfato/metabolismo , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Puromicina/análogos & derivados , Puromicina/análisis , Puromicina/biosíntesis , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/aislamiento & purificación , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética
5.
J Biol Chem ; 281(13): 8469-75, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16461768

RESUMEN

Eukaryotic initiation factor 5B (eIF5B) is a GTPase that facilitates joining of the 60 S ribosomal subunit to the 40 S ribosomal subunit during translation initiation. Formation of the resulting 80 S initiation complex triggers eIF5B to hydrolyze its bound GTP, reducing the affinity of the factor for the complex and allowing it to dissociate. Here we present a kinetic analysis of GTP hydrolysis by eIF5B in the context of the translation initiation pathway. Our data indicate that stimulation of GTP hydrolysis by eIF5B requires the completion of early steps in translation initiation, including the eIF1- and eIF1A-dependent delivery of initiator methionyl-tRNA to the 40 S ribosomal subunit and subsequent GTP hydrolysis by eIF2. Full activation of GTP hydrolysis by eIF5B requires the extreme C terminus of eIF1A, which has previously been shown to interact with the C terminus of eIF5B. Disruption of either isoleucine residue in the eIF1A C-terminal sequence DIDDI reduces the rate constant for GTP hydrolysis by approximately 20-fold, whereas changing the aspartic acid residues has no effect. Changing the isoleucines in the C terminus of eIF1A also disrupts the ability of eIF5B to facilitate subunit joining. These data indicate that the interaction of the C terminus of eIF1A with eIF5B promotes ribosomal subunit joining and possibly provides a checkpoint for correct complex formation, allowing full activation of GTP hydrolysis only upon formation of a properly organized 80 S initiation complex.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Escherichia coli/genética , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/aislamiento & purificación , Polarización de Fluorescencia , GTP Fosfohidrolasas/análisis , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Histidina/química , Hidrólisis , Isoleucina/metabolismo , Cinética , Metionina/metabolismo , Modelos Biológicos , Radioisótopos de Fósforo , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Radioisótopos de Azufre
6.
J Biol Chem ; 278(8): 6580-7, 2003 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-12493757

RESUMEN

We have examined the role of the mammalian initiation factor eIF1 in the formation of the 40 S preinitiation complex using in vitro binding of initiator Met-tRNA (as Met-tRNA(i).eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA. We observed that, although both eIF1A and eIF3 are essential to generate a stable 40 S preinitiation complex, quantitative binding of the ternary complex to 40 S subunits also required eIF1. The 40 S preinitiation complex contained, in addition to eIF3, both eIF1 and eIF1A in a 1:1 stoichiometry with respect to the bound Met-tRNA(i). These three initiation factors also bind to free 40 S subunits, and the resulting complex can act as an acceptor of the ternary complex to form the 40 S preinitiation complex (40 S.eIF3.eIF1.eIF1A.Met-tRNA(i).eIF2.GTP). The stable association of eIF1 with 40 S subunits required the presence of eIF3. In contrast, the binding of eIF1A to free 40 S ribosomes as well as to the 40 S preinitiation complex was stabilized by the presence of both eIF1 and eIF3. These studies suggest that it is possible for eIF1 and eIF1A to bind the 40 S preinitiation complex prior to mRNA binding.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Iniciación de la Cadena Peptídica Traduccional/fisiología , Factores de Iniciación de Péptidos/metabolismo , ARN de Transferencia de Metionina/metabolismo , Animales , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Factor 3 de Iniciación Eucariótica/aislamiento & purificación , Guanosina Trifosfato/metabolismo , Cinética , Hígado/metabolismo , Factores de Iniciación de Péptidos/aislamiento & purificación , Unión Proteica , Conejos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo
7.
EMBO J ; 20(11): 2954-65, 2001 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-11387228

RESUMEN

Yeast translation initiation factor 3 contains five core subunits (known as TIF32, PRT1, NIP1, TIF34 and TIF35) and a less tightly associated component known as HCR1. We found that a stable subcomplex of His8-PRT1, NIP1 and TIF32 (PN2 subcomplex) could be affinity purified from a strain overexpressing these eIF3 subunits. eIF5, eIF1 and HCR1 co-purified with this subcomplex, but not with distinct His8-PRT1- TIF34-TIF35 (P45) or His8-PRT1-TIF32 (P2) sub complexes. His8-PRT1 and NIP1 did not form a stable binary subcomplex. These results provide in vivo evidence that TIF32 bridges PRT1 and NIP1, and that eIFs 1 and 5 bind to NIP1, in native eIF3. Heat-treated prt1-1 extracts are defective for Met-tRNA(i)Met binding to 40S subunits, and we also observed defective 40S binding of mRNA, eIFs 1 and 5 and eIF3 itself in these extracts. We could rescue 40S binding of Met- tRNA(i)Met and mRNA, and translation of luciferase mRNA, in a prt1-1 extract almost as well with purified PN2 subcomplex as with five-subunit eIF3, whereas the P45 subcomplex was nearly inactive. Thus, several key functions of eIF3 can be carried out by the PRT1-TIF32-NIP1 subcomplex.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica , Proteínas Fúngicas/metabolismo , Factores de Iniciación de Péptidos/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Factor 5 Eucariótico de Iniciación , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Genotipo , Cinética , Modelos Moleculares , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/aislamiento & purificación , Factor 3 Procariótico de Iniciación , Biosíntesis de Proteínas , Subunidades de Proteína , ARN Mensajero/química , ARN Mensajero/aislamiento & purificación , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/aislamiento & purificación , Ribosomas/ultraestructura , Termodinámica
8.
Biochimie ; 78(1): 51-61, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-8725011

RESUMEN

A convenient method to purify each of the non-ribosomal proteins required to translate a native mRNA in vitro is described. In this scheme, the ribosome is used as an 'affinity' matrix to selectively elute the non-ribosomal proteins required for translation that are bound to these particles. Different sets of these proteins can be eluted with solutions of Mg2+ and NH4+ of various concentrations from either 70S, or 30S and 50S particles. A scheme for the purification of each initiation, elongation and release factor and 20 aminoacyl-tRNA synthetases is described. Specific examples of the purification of the initiation (IF-1, IF-2, IF-3) and elongation (EF-Tu and EF-G) factors and for a protein called 'rescue', which affects the association of native ribosomal subunits, are given. A scheme for the purification of EF-P, which stimulates peptide-bond synthesis and one of the W proteins, which permit reconstitution of translation is also described. The procedure markedly simplifies the isolation, in homogeneous form, of all the non-ribosomal proteins required to reconstruct translation.


Asunto(s)
Factores de Elongación de Péptidos/aislamiento & purificación , Factores de Iniciación de Péptidos/aislamiento & purificación , Ribosomas/química , Aminoacil-ARNt Sintetasas/aislamiento & purificación , Cromatografía , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Factor Tu de Elongación Peptídica/aislamiento & purificación , Factor 2 Procariótico de Iniciación , Factor 3 Procariótico de Iniciación , Biosíntesis de Proteínas
9.
FEBS Lett ; 365(1): 47-50, 1995 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-7774713

RESUMEN

Eukaryotic initiation factor eIF-1 was purified from rabbit reticulocytes. Amino acid sequence analysis revealed that the protein contained a blocked amino-terminus. After cleavage with the endoproteinase Asp-N, three peptides were sequenced. The obtained partial sequences were identical to sequences of SUI1ISO1, the human homologue of the yeast translation initiation factor SUI1. The SUI1 gene product was identified as a protein involved in the recognition of the protein synthesis initiation codon. A similar mode of action has been suggested for eIF-1.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Fragmentos de Péptidos/química , Factores de Iniciación de Péptidos , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Animales , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Factor 1 Eucariótico de Iniciación/metabolismo , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , ARN de Transferencia de Metionina/metabolismo , Conejos , Análisis de Secuencia
10.
J Biol Chem ; 270(11): 6156-62, 1995 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-7890750

RESUMEN

Two cytosolic proteins of murine epidermis or porcine spleen with molecular masses of 37 kDa (p37) and 50 kDa (p50) are differentially phosphorylated in vitro by the purified protein kinase C (PKC) isoenzymes alpha, beta, gamma (cPKC) and PKC delta. p37, identified as annexin I, is preferentially phosphorylated by cPKC, whereas p50, identified as elongation factor eEF-1 alpha, is phosphorylated with much greater efficacy by PKC delta than by cPKC. Using the recombinant PKC isoenzymes alpha, beta, gamma, delta, epsilon, eta, and zeta, we could show that purified eEF-1 alpha is indeed a specific substrate of PKC delta. It is not significantly phosphorylated by PKC epsilon, -eta, and -zeta and only slightly by PKC alpha, -beta, and -gamma. PKC delta phosphorylates eEF-1 alpha at Thr-431 (based on the murine amino acid sequence). The peptide RFAVRDMRQTVAVGVIKAVDKK with a sequence corresponding to that of 422-443 from murine eEF-1 alpha and containing Thr-431 is an absolutely specific substrate for the delta-type of PKC. The single basic amino acid close to Thr-431 (Arg-429) is essential for recognition of the peptide as a substrate by PKC delta and for the selectivity of this recognition. Substitution of Arg-429 by alanine abolishes the ability of PKC delta to phosphorylate the peptide, and insertion of additional basic amino acids in the vicinity of Thr-431 causes a complete loss of selectivity.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Isoenzimas/metabolismo , Fragmentos de Péptidos/metabolismo , Proteína Quinasa C/metabolismo , Piel/metabolismo , Bazo/metabolismo , Treonina , Secuencia de Aminoácidos , Animales , Cromatografía por Intercambio Iónico , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Cinética , Ratones , Datos de Secuencia Molecular , Peso Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Mapeo Peptídico , Fosforilación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...