Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Intervalo de año de publicación
1.
Genes (Basel) ; 11(11)2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105635

RESUMEN

Bacterial conjugation, also referred to as bacterial sex, is a major horizontal gene transfer mechanism through which DNA is transferred from a donor to a recipient bacterium by direct contact. Conjugation is universally conserved among bacteria and occurs in a wide range of environments (soil, plant surfaces, water, sewage, biofilms, and host-associated bacterial communities). Within these habitats, conjugation drives the rapid evolution and adaptation of bacterial strains by mediating the propagation of various metabolic properties, including symbiotic lifestyle, virulence, biofilm formation, resistance to heavy metals, and, most importantly, resistance to antibiotics. These properties make conjugation a fundamentally important process, and it is thus the focus of extensive study. Here, we review the key steps of plasmid transfer by conjugation in Gram-negative bacteria, by following the life cycle of the F factor during its transfer from the donor to the recipient cell. We also discuss our current knowledge of the extent and impact of conjugation within an environmentally and clinically relevant bacterial habitat, bacterial biofilms.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana/genética , Factor F/genética , Transferencia de Gen Horizontal/genética , Bacterias Gramnegativas/genética , ADN Bacteriano/genética , Factor F/fisiología , Fimbrias Bacterianas/metabolismo
2.
Science ; 364(6442): 778-782, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31123134

RESUMEN

Drug-resistance dissemination by horizontal gene transfer remains poorly understood at the cellular scale. Using live-cell microscopy, we reveal the dynamics of resistance acquisition by transfer of the Escherichia coli fertility factor-conjugation plasmid encoding the tetracycline-efflux pump TetA. The entry of the single-stranded DNA plasmid into the recipient cell is rapidly followed by complementary-strand synthesis, plasmid-gene expression, and production of TetA. In the presence of translation-inhibiting antibiotics, resistance acquisition depends on the AcrAB-TolC multidrug efflux pump, because it reduces tetracycline concentrations in the cell. Protein synthesis can thus persist and TetA expression can be initiated immediately after plasmid acquisition. AcrAB-TolC efflux activity can also preserve resistance acquisition by plasmid transfer in the presence of antibiotics with other modes of action.


Asunto(s)
Proteínas Portadoras/fisiología , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Factor F/fisiología , Antibacterianos/farmacología , Antiportadores/antagonistas & inhibidores , Antiportadores/biosíntesis , Antiportadores/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Conjugación Genética , ADN de Cadena Simple , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Factor F/genética , Microscopía , Biosíntesis de Proteínas/efectos de los fármacos , Tetraciclina/farmacología
3.
Mol Microbiol ; 64(5): 1198-213, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17542915

RESUMEN

The F plasmid is actively partitioned to daughter cells by the sopABC gene. To elucidate the partitioning mechanisms, we simultaneously analysed movements of the plasmid and the SopA ATPase in single living cells. SopA, which is a putative motor protein assembled densely near nucleoid borders and formed a single discrete focus associated with less dense filamentous distribution along the long axis of the cell. The dense SopA focus oscillates between cell poles. The direction of the plasmid motion switches as the SopA focus switches its position. The velocity of the plasmid motion stays constant while it oscillates moving towards the SopA focus. The low density filamentous distribution of SopA persisted throughout the SopA oscillation. The focus associated with filamentous distribution of SopA was also observed in a cell without nucleoid. The SopA filament may guide the movement of the plasmid as a railway track and lead it to cell quarters.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Factor F/fisiología , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Modelos Biológicos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
4.
Folia Microbiol (Praha) ; 52(5): 479-83, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18298044

RESUMEN

Cell viability during chronological aging and after apoptotic stimuli in some yeast mutants with altered mitochondrial morphology was followed; a function for the corresponding genes in the apoptotic process was assessed. MDM30 and DNM1, the genes encoding an F-box protein and the dynamin-related GTPase, respectively, are involved in triggering aging and apoptosis. In contrast, YME1, encoding a subunit of the mitochondrial inner membrane i-AAA proteinase complex, has a protective role in these processes. FIS1, the mitochondrial fission gene, might play a protective role after an apoptotic insult while it seems to promote cell death in aging cells.


Asunto(s)
Mitocondrias/fisiología , Mutación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Proteasas ATP-Dependientes , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Apoptosis , Factor F/genética , Factor F/fisiología , Proteínas F-Box/genética , Proteínas F-Box/fisiología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/fisiología , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Estrés Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
5.
J Evol Biol ; 19(5): 1671-6, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16910996

RESUMEN

It is widely assumed that microsatellites are generated by replication slippage, a mutation process specific to repetitive DNA. Consistent with their high mutation rate, microsatellites are highly abundant in most eukaryotic genomes. In Escherichia coli, however, microsatellites are rare and short despite the fact that a high microsatellite mutation rate was described. We show that this high microsatellite instability depends on the presence of the F-plasmid. E. coli cells lacking the F-plasmid have extremely low microsatellite mutation rates. This result provides a possible explanation for the genome-wide low density of microsatellites in E. coli. Furthermore, we show that the F-plasmid induced microsatellite instability is independent of the mismatch repair pathway.


Asunto(s)
Escherichia coli/genética , Evolución Molecular , Inestabilidad Genómica , Repeticiones de Microsatélite , Mutación , Conjugación Genética , Factor F/genética , Factor F/fisiología , Genoma Bacteriano
6.
Plasmid ; 54(1): 48-56, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15907538

RESUMEN

Host-range, a fundamental property of a bacterial plasmid, is primarily determined by the plasmid replication system. To investigate the basis of the restricted host-range of the well-studied F-plasmid of Escherichia coli, we characterized in vitro the interactions of the host DnaA initiation protein and DnaB helicase from Pseudomonas aeruginosa and Pseudomonas putida with the replication origin, oriS, and initiation protein, RepE, of the RepFIA replicon. The results presented here show that a pre-priming complex can form at the F-origin with the replication proteins from the non-native hosts in the presence of RepE. However, RepE cannot form a stable complex with DnaB of P. aeruginosa or P. putida but does stably interact with E. coli DnaB. This unstable association may affect the ability of F to replicate in Pseudomonas. In addition, replication studies in vivo suggest that inefficient expression of the RepE initiation protein from its native promoter in Pseudomonas is a factor in restricting its host-range. This, however, is not the only barrier to F replication, as mini-F derivatives with an alternative promoter for RepE expression do not replicate in P. putida and are not stably maintained in P. aeruginosa.


Asunto(s)
Replicación del ADN/genética , Factor F/fisiología , Pseudomonas/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , AdnB Helicasas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factor F/genética , Regiones Promotoras Genéticas , Origen de Réplica/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Especificidad de la Especie
7.
J Mol Biol ; 348(5): 1091-102, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15854646

RESUMEN

Gyrase is an ubiquitous bacterial enzyme that is responsible for disentangling DNA during DNA replication and transcription. It is the target of the toxin CcdB, a paradigm for plasmid addiction systems and related bacterial toxin-antitoxin systems. The crystal structure of CcdB and the dimerization domain of the A subunit of gyrase (GyrA14) dictates an open conformation for the catalytic domain of gyrase when CcdB is bound. The action of CcdB is one of a wedge that stabilizes a dead-end covalent gyrase:DNA adduct. Although CcdB and GyrA14 form a globally symmetric complex where the two 2-fold axes of both dimers align, the complex is asymmetric in its details. At the centre of the interaction site, the Trp99 pair of CcdB stacks with the Arg462 pair of GyrA14, explaining why the Arg462Cys mutation in the A subunit of gyrase confers resistance to CcdB. Overexpression of GyrA14 protects Escherichia coli cells against CcdB, mimicking the action of the antidote CcdA.


Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/química , Girasa de ADN/química , Inhibidores de Topoisomerasa II , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Dominio Catalítico/genética , Dominio Catalítico/fisiología , Cristalografía , Girasa de ADN/genética , Dimerización , Escherichia coli/genética , Escherichia coli/fisiología , Factor F/genética , Factor F/fisiología , Estructura Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Estructura Terciaria de Proteína
8.
J Bacteriol ; 187(2): 697-706, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15629940

RESUMEN

The F-plasmid-encoded TraI protein, also known as DNA helicase I, is a bifunctional protein required for conjugative DNA transfer. The enzyme catalyzes two distinct but functionally related reactions required for the DNA processing events associated with conjugation: the site- and strand-specific transesterification (relaxase) reaction that provides the nick required to initiate strand transfer and a processive 5'-to-3' helicase reaction that provides the motive force for strand transfer. Previous studies have identified the relaxase domain, which encompasses the first approximately 310 amino acids of the protein. The helicase-associated motifs lie between amino acids 990 and 1450. The function of the region between amino acids 310 and 990 and the region from amino acid 1450 to the C-terminal end is unknown. A protein lacking the C-terminal 252 amino acids (TraIDelta252) was constructed and shown to have essentially wild-type levels of transesterase and helicase activity. In addition, the protein was capable of a functional interaction with other components of the minimal relaxosome. However, TraIDelta252 was not able to support conjugative DNA transfer in genetic complementation experiments. We conclude that TraIDelta252 lacks an essential C-terminal domain that is required for DNA transfer. We speculate this domain may be involved in essential protein-protein interactions with other components of the DNA transfer machinery.


Asunto(s)
ADN Helicasas/genética , ADN Helicasas/fisiología , ADN/metabolismo , Factor F/genética , Transporte Biológico , Conjugación Genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Escherichia coli , Factor F/fisiología , Técnicas de Transferencia de Gen , Prueba de Complementación Genética , Unión Proteica , Estructura Terciaria de Proteína , Eliminación de Secuencia
9.
J Mol Biol ; 329(5): 875-89, 2003 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12798679

RESUMEN

Active partition of the F plasmid to dividing daughter cells is assured by interactions between proteins SopA and SopB, and a centromere, sopC. A close homologue of the sop operon is present in the linear prophage N15 and, together with sopC-like sequences, it ensures stability of this replicon. We have exploited this sequence similarity to construct hybrid sop operons with the aim of locating specific interaction determinants within the SopA and SopB proteins that are needed for partition function and for autoregulation of sopAB expression. Centromere binding was found to be specified entirely by a central 25 residue region of SopB strongly predicted to form a helix-turn-helix structure. SopB protein also carries a species-specific SopA-interaction determinant within its N-terminal 45 amino acids, and, as shown by Escherichia coli two-hybrid analysis, a dimerization domain within its C-terminal 75 (F) or 97 (N15) residues. Promoter-operator binding specificity was located within an N-terminal 66 residue region of SopA, which is predicted to contain a helix-turn-helix motif. Two other regions of SopA protein, one next to the ATPase Walker A-box, the other C-terminal, specify interaction with SopB. Yeast two-hybrid analysis indicated that these regions contact SopB directly. Evidence for the involvement of the SopA N terminus in autoinhibition of SopA function was obtained, revealing a possible new aspect of the role of SopB in SopA activation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli , Factor F/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Bacteriófagos/genética , Sitios de Unión , Centrómero/genética , Centrómero/metabolismo , Dimerización , Factor F/fisiología , Secuencias Hélice-Giro-Hélice , Datos de Secuencia Molecular , Regiones Operadoras Genéticas , Operón , Fenotipo , Ingeniería de Proteínas/métodos , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
10.
J Bacteriol ; 184(11): 3126-9, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12003956

RESUMEN

We have examined the functional role of two internal cysteine residues of the F-plasmid TraV outer membrane lipoprotein. Each was mutated to a serine separately and together to yield three mutant traV genes: traV(C10S), traV(C18S), and traV(C10S/C18S). All three cysteine mutations complemented a traV mutant for DNA donor activity and for sensitivity to donor-specific bacteriophage; however, when measured by a transduction assay, the donor-specific DNA bacteriophage sensitivities of the traV(C18S) and, especially, traV(C10S/C18S) mutant strains were significantly less than those of the traV(+) and traV(C10S) strains. Thus, unlike the Agrobacterium tumefaciens T-plasmid-encoded VirB7 outer membrane lipoprotein, TraV does not require either internal cysteine to retain significant biological activity. By Western blot analysis, all three mutant TraV proteins were shown to accumulate in the outer membrane. However, by nonreducing gel electrophoresis, wild-type TraV and especially the TraV(C18S) mutant were shown to form mixed disulfides with numerous cell envelope proteins. This was not observed with the TraV(C10S) or TraV(C10S/C18S) proteins. Thus, it appears that TraV C10 is unusually reactive and that this reactivity is reduced by C18, perhaps by intramolecular oxidation. Finally, whereas the TraV(C10S) and TraV(C18S) proteins fractionated primarily with the outer membrane, as did the wild-type protein, the TraV(C10S/C18S) protein was found in osmotic shock fluid and inner membrane fractions as well as outer membrane fractions. Hence, at least one cysteine is required for the efficient localization of TraV to the outer membrane.


Asunto(s)
Agrobacterium tumefaciens/metabolismo , Proteínas de la Membrana Bacteriana Externa/fisiología , Cisteína/fisiología , Proteínas de Escherichia coli , Factor F/fisiología , Lipoproteínas/fisiología , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/virología , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Membrana Celular/metabolismo , Conjugación Genética , Cisteína/química , Lipoproteínas/química , Datos de Secuencia Molecular , Mutación , Fagos ARN/crecimiento & desarrollo , Alineación de Secuencia
11.
J Biol Chem ; 277(5): 3733-42, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11741897

RESUMEN

The ccd addiction system plays a crucial role in the stable maintenance of the Escherichia coli F plasmid. It codes for a stable toxin (CcdB) and a less stable antidote (CcdA). Both are expressed at low levels during normal cell growth. Upon plasmid loss, CcdB outlives CcdA and kills the cell by poisoning gyrase. The interactions between CcdB, CcdA, and its promoter DNA were analyzed. In solution, the CcdA-CcdB interaction is complex, leading to various complexes with different stoichiometry. CcdA has two binding sites for CcdB and vice versa, permitting soluble hexamer formation but also causing precipitation, especially at CcdA:CcdB ratios close to one. CcdA alone, but not CcdB, binds to promoter DNA with high on and off rates. The presence of CcdB enhances the affinity and the specificity of CcdA-DNA binding and results in a stable CcdA*CcdB*DNA complex with a CcdA:CcdB ratio of one. This (CcdA(2)CcdB(2))(n) complex has multiple DNA-binding sites and spirals around the 120-bp promoter region.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Escherichia coli/genética , Factor F/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Citotoxinas/genética , Cinética , Modelos Moleculares , Conformación Proteica , Espectrofotometría Ultravioleta
12.
EMBO J ; 18(13): 3856-67, 1999 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-10393200

RESUMEN

In bacteria, plasmids and some DNA viruses, DNA replication is initiated and regulated by binding of initiator proteins to repetitive sequences. To understand the control mechanism we used the plasmid mini-F, whose copy number is stringently maintained in Escherichia coli, mainly by its initiator protein RepE and the incC region. The monomers of RepE protein bound to incC iterons, which exert incompatibility in trans and control the copy number of mini-F plasmid in cis. Many incompatibility defective mutants carrying mutations in their incC iterons had lost the affinity to bind to RepE, while one mutant retained high level binding affinity. The mutated incC mini-F plasmids lost the function to control the copy number. The copy number of the wild-type mini-F plasmid did not increase in the presence of excess RepE. These results suggested that the control of replication by incC iterons does not rely on their capacity to titrate RepE protein. Using a ligation assay, we found that RepE proteins mediated a cross-link structure between ori2 and incC, for which the dimerization domain of RepE and the structure of incC seem to be important. The structure probably causes inhibition of extra rounds of DNA replication initiation on mini-F plasmids, thereby keeping mini-F plasmid at a low copy number.


Asunto(s)
Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Factor F/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Origen de Réplica/genética , Proteínas Represoras/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Dimerización , Escherichia coli/fisiología , Factor F/fisiología , Dosificación de Gen , Expresión Génica , Modelos Genéticos , Conformación Molecular , Mutación , Fenotipo , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos/fisiología , Proteínas Represoras/química , Proteínas Represoras/genética , Transformación Bacteriana
13.
FEMS Microbiol Lett ; 163(2): 217-22, 1998 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-9673025

RESUMEN

There have been various proposals for the pattern of F-plasmid replication during the division cycle. Here we show that the recent studies of Gordon et al. (Cell 90, 1113-1121, 1997) on the duplication and segregation of green fluorescent protein (GFP) labeled replication origins of the Escherichia coli chromosome and the F plasmid during the division cycle support the proposal that the F plasmid replicates with a cell-cycle-specific (artiocyclic) pattern.


Asunto(s)
Replicación del ADN , Escherichia coli/fisiología , Factor F/fisiología , Origen de Réplica , Ciclo Celular/fisiología , Escherichia coli/genética , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes
14.
Mol Gen Genet ; 257(4): 392-403, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9529520

RESUMEN

The sopAB operon and the sopC sequence, which acts as a centromere, are essential for stable maintenance of the mini-F plasmid. Immunoprecipitation experiments with purified SopA and SopB proteins have demonstrated that these proteins interact in vitro. Expression studies using the lacZ gene as a reporter revealed that the sopAB operon is repressed by the cooperative action of SopA and SopB. Using immunofluorescence microscopy, we found discrete fluorescent foci of SopA and SopB in cells that produce both SopA and SopB in the presence of the sopC DNA segment, but not in the absence of sopC, suggesting the SopA-SopB complex binds to sopC segments. SopA was exclusively found to colocalize with nucleoids in cells that produced only SopA, while, in the absence of SopA, SopB was distributed in the cytosolic spaces.


Asunto(s)
Proteínas Bacterianas/genética , ADN Bacteriano/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Factor F/genética , Secuencia de Bases , Citosol/química , Escherichia coli/ultraestructura , Factor F/fisiología , Microscopía Fluorescente , Datos de Secuencia Molecular , Operón
15.
Cell ; 90(5): 951-7, 1997 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-9298906

RESUMEN

F plasmid is partitioned with fidelity to daughter cells during cell division cycle owing to two trans-acting genes, sopA and sopB, and a cis-acting site, sopC. We visualized the subcellular distribution of mini-F-plasmid molecules by fluorescence in situ hybridization. Mini-F-plasmid molecules having the sopABC segment were localized at midcell in newborn cells. Replicated plasmid molecules migrated to cell positions 1/4 and 3/4 without coupling with cell elongation and were tethered to these positions until completion of cell division. In contrast, molecules of a mini F plasmid lacking the sopABC segment were distributed randomly in spaces not occupied by nucleoids. The sopABC system caused replicated plasmid molecules to be positioned and tethered at the cell quarter sites.


Asunto(s)
Escherichia coli/citología , Factor F/análisis , Factor F/fisiología , División Celular/genética , Citosol/química , ADN Bacteriano/análisis , Escherichia coli/química , Escherichia coli/genética , Hibridación Fluorescente in Situ , Plásmidos/análisis , Plásmidos/fisiología
16.
J Mol Biol ; 274(1): 27-38, 1997 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-9398513

RESUMEN

The RepE protein (251 residues, 29 kDa) of mini-F plasmid, mostly found as dimers, plays a key role in mini-F replication. Whereas monomers bind to the origin to initiate replication, dimers bind to the repE operator to repress its own transcription. Among the host factors required for mini-F replication, a set of molecular chaperones (DnaK, DnaJ and GrpE) is thought to facilitate monomerization of RepE dimers. To further understand the structural basis of functional differentiation between the two forms of RepE, we examined the region(s) critical for dimerization by isolation and characterization of RepE mutants that were defective in autogenous repressor function. Such mutations were isolated from two separate regions of RepE, the central region (residues 111 to 161) and the C-terminal region (residues 195 to 208). The central region overlapped the region where the chaperone-independent copy-up mutations were previously isolated (residues 93 to 135). Likewise the mini-F mutant plasmids, carrying the mutations in the central region, could replicate in a dnaK null mutant host. One of them, S111P (111th serine changed to proline), showed a very high origin-binding activity vis-à-vis a severely reduced operator-binding activity, much like the RepE54 (R118P) mutant previously shown to form only monomers. Gel filtration and chemical crosslinking studies with purified RepE revealed that S111P primarily formed monomers, whereas other mutant proteins formed mostly dimers. On the other hand, analysis of deletion mutants revealed that the N-terminal 42 and the C-terminal 57 residues were dispensable for dimerization. Thus, the region spanning residues 93 to 161 of RepE (including Ser111 and Arg118) appeared to be primarily involved in dimerization, contributing to the negative regulation of plasmid replication.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Escherichia coli , Factor F/fisiología , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Cromatografía en Gel , Reactivos de Enlaces Cruzados , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Dimerización , Factor F/efectos de los fármacos , Dosificación de Gen , Chaperonas Moleculares/fisiología , Mutagénesis Insercional , Unión Proteica/genética , Proteínas Represoras/aislamiento & purificación , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN
17.
Mol Microbiol ; 13(6): 939-53, 1994 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-7854127

RESUMEN

The effects of defined mutations in the lipopolysaccharide (LPS) and the outer membrane protein OmpA of the recipient cell on mating-pair formation in liquid media by the transfer systems of the F-like plasmids pOX38 (F), ColB2 and R100-1 were investigated. Transfer of all three plasmids was affected differently by mutations in the rfa (LPS) locus of the recipient cell, the F plasmid being most sensitive to mutations that affected rfaP gene expression which is responsible for the addition of pyrophosphorylethanolamine (PPEA) to heptose I of the inner core of the LPS. ColB2 transfer was more strongly affected by mutations in the heptose II-heptose III region of the LPS (rfaF) whereas R100-1 was not strongly affected by any of the rfa mutations tested. ompA but not rfa mutations further decreased the mating efficiency of an F plasmid carrying a mutation in the mating-pair stabilization protein TraN. An F derivative with a chloramphenicol acetyltransferase (CAT) cassette interrupting the traA pilin gene was constructed and pilin genes from F-like plasmids (F, ColB2, R100-1) were used to complement this mutation. Unexpectedly, the results suggested that the differences in the pilin sequences were not responsible for recognizing specific groups in the LPS, OmpA or the TraT surface exclusion protein. Other corroborating evidence is presented suggesting the presence of an adhesin at the F pilus tip.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/fisiología , Conjugación Genética/fisiología , Proteínas de Escherichia coli , Escherichia coli/fisiología , Factor F/fisiología , Lipopolisacáridos/metabolismo , Pili Sexual/fisiología , Plásmidos/fisiología , Salmonella typhimurium/fisiología , Secuencia de Aminoácidos , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Carbohidratos , Escherichia coli/genética , Etanolaminas/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Datos de Secuencia Molecular , Salmonella typhimurium/genética
18.
New Microbiol ; 17(1): 65-8, 1994 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8127232

RESUMEN

Several antimicrobial agents including mitomycin C and molecules belonging to the 4-quinolone, aminoglycoside and beta-lactam groups inhibited plasmid transfer to a varying extent, in actively growing Escherichia coli. In contrast, the same antibiotics did not prevent effective conjugation in nongrowing bacteria with the exception of mitomycin C. These results indicate that the drugs inhibit plasmid transfer by interfering with bacterial host functions rather than by recognizing a specific plasmid-mediated target. Several drugs are therefore capable, in principle, of reducing the spread of plasmid-mediated antibiotic resistance.


Asunto(s)
Antibacterianos/farmacología , Conjugación Genética/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Factor F/efectos de los fármacos , Farmacorresistencia Microbiana , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Factor F/fisiología
19.
Acta andin ; 2(2): 141-60, 1993. tab
Artículo en Español | LILACS | ID: lil-129310

RESUMEN

La fecundidad de las mujeres de una sociedad está condicionada por factores culturales, socioeconómicos, religiosos y biológicos. Aquí se enfocarán las variables biomédicas que influencian la fertilidad en la altura. Entre estas variables tenemos la edad de menarquia, la edad de menopausia y el intervalo intergenésico por la lactancia materna. La menarquia está retarda en su presentación en las pobladoras de altura mientras que la menopausia se presenta a edades más tempranas. Esto implica que el período de vida reproductiva es más corto en la altura que a nivel del mar; así la vida reproductiva a nivel del mar tiene una duración de 35.4 años mientras que en Cerro de Pasco (4340 m) 30.6 años. Este hallazgo es sorprendente pues se observa una situación donde la Tasa Global de Fecundidad está grandemente elevada a pesar que la longitud de vida reproductiva está acortada. Una alta Tasa Global de Fecundidad puede deberse tanto a un inicio temprano de la maternidad como a espacios intergenésicos cortos. La tasa de embarazos en adolescentes fue similar en la altura como en nivel del mar por lo que la explicación de la alta Tasa Global de Fecundidad en la altura debe estar en los espacios intergenésicos cortos. Nuestros resultados demuestran que el espacio intergenésico disminuye conforme se incrementa la altitud de la residencia. El espacio intergenésico depende de la duración de la lactancia, sobretodo en aquellas poblaciones como la nuestra que tienen baja cobertura de contracepción postparto. La duración de la lactancia es similar a nivel del mar y en la altura, sin embargo el porcentaje de mujeres que se embarazan durante la lactancia aumenta con la altitud de residencia. Considerando que la edad de inicio de la primera maternidad es similar a nivel del mar en la altura, y que la duración de la lactancia es similar entre ambas poblaciones,y que la paridad es significativamente mayor en la altura, a pesar de que ambas poblaciones estudiadas no usan métodos contraceptivos, se concluye que la fertilidad esté elevada en la altura no sólo por factores culturales o sociales sino también debido a factores biomédicos probablemente influenciados por el medio ambiente, y que determinan una mayor eficiencia reproductiva a un medio adverso, como mecanismo de adaptación a la altura.


Asunto(s)
Humanos , Embarazo , Femenino , Adulto , Persona de Mediana Edad , Altitud , Factor F/fisiología , Fertilidad/fisiología , Lactancia Materna , Menopausia , Menstruación , Perú , Factores Socioeconómicos
20.
Mol Microbiol ; 6(6): 771-80, 1992 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-1374147

RESUMEN

The FinOP system of F-like plasmids consists of an antisense RNA (FinP) and a 22 kDa protein (FinO) which act in concert to prevent the translation of TraJ, the positive regulator of the transfer operon. Earlier studies suggested that two different variants of finO were responsible for differential levels of fertility inhibition among F-like plasmids. We have shown that these variations are due to the presence of an additional open reading frame (orf286) upstream of the finO gene of conjugative plasmids that are highly repressed for transfer. When orf286 and finO are linked in cis, the level of FinO expression is increased because of a rise in the cellular concentration of finO mRNA. orf286 frameshift and deletion mutants also gave the same concentration of finO transcript, suggesting that the effect is due to mRNA stabilization. We suggest that the levels of fertility inhibition exhibited by F-like plasmids are a function of their cellular FinO concentration.


Asunto(s)
Proteínas Bacterianas/metabolismo , Conjugación Genética/genética , Proteínas de Escherichia coli , Factor F/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Proteínas Represoras , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Bases , Northern Blotting , Southern Blotting , Clonación Molecular , ADN Bacteriano , Escherichia coli/genética , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , ARN Bacteriano/metabolismo , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...