Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 2976, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016977

RESUMEN

The recycling of ribosomes at stop codons for use in further rounds of translation is critical for efficient protein synthesis. Removal of the 60S subunit is catalyzed by the ATPase Rli1 (ABCE1) while removal of the 40S is thought to require Tma64 (eIF2D), Tma20 (MCT-1), and Tma22 (DENR). However, it remains unclear how these Tma proteins cause 40S removal and control reinitiation of downstream translation. Here we used a 40S ribosome footprinting strategy to directly observe intermediate steps of ribosome recycling in cells. Deletion of the genes encoding these Tma proteins resulted in broad accumulation of unrecycled 40S subunits at stop codons, directly establishing their role in 40S recycling. Furthermore, the Tma20/Tma22 heterodimer was responsible for a majority of 40S recycling events while Tma64 played a minor role. Introduction of an autism-associated mutation into TMA22 resulted in a loss of 40S recycling activity, linking ribosome recycling and neurological disease.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Trastorno del Espectro Autista/genética , Codón Iniciador , Codón de Terminación , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/aislamiento & purificación , Técnicas de Inactivación de Genes , Glutarredoxinas/genética , Humanos , Mutación , Sistemas de Lectura Abierta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
2.
Methods Mol Biol ; 725: 63-76, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21528447

RESUMEN

Most complexes involved in RNA silencing were thought to be concentrated in cytoplasmic sites called P-bodies in the absence of stress. Accumulating evidence suggests that distinct cellular organelles or sites may be involved in the maturation of RNA-induced silencing complexes (RISC), decapping and deadenylation of miRNA-repressed mRNA, transport of translationally repressed mRNA, and disassembly of RISC complexes. Significant fractions of proteins essential for RNA silencing associate with membranes in general (GW182, AGO, and DICER), or more specifically with endoplasmic reticulum and Golgi (AGO), or endosomes and multivesicular bodies (AGO, GW182). In contrast, mRNA decapping and decay occur mainly in the cytoplasm. Continuous density gradients capable of partitioning these cellular compartments are valuable tools in efforts to decipher the complexes, trafficking and regulation of RISC throughout its biogenesis, action and turnover.


Asunto(s)
Autoantígenos/aislamiento & purificación , Autoantígenos/metabolismo , Bioquímica/métodos , Factores Eucarióticos de Iniciación/aislamiento & purificación , Factores Eucarióticos de Iniciación/metabolismo , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Unión al ARN/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico/fisiología , Línea Celular , Centrifugación por Gradiente de Densidad , Precipitación Fraccionada , Células HeLa , Humanos , ARN/aislamiento & purificación , ARN/metabolismo
3.
Methods Enzymol ; 431: 33-45, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17923229

RESUMEN

The discovery of Green Fluorescent Protein (GFP) and the development of technology that allows specific proteins to be tagged with GFP has fundamentally altered the types of question that can be asked using cell biological methods. It is now possible not only to study where a protein is within a cell, but also feasible to study the precise dynamics of protein movement within living cells. We have exploited these technical developments and applied them to the study of translation initiation factors in yeast, focusing particularly on the key regulated guanine nucleotide exchange step involving eIF2B and eIF2. This chapter summarizes current methodologies for the tagging and visualization of GFP-tagged proteins involved in translation initiation in live yeast cells.


Asunto(s)
Factores Eucarióticos de Iniciación/aislamiento & purificación , Factores Eucarióticos de Iniciación/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Marcadores de Afinidad/metabolismo , Transporte Biológico , Técnicas de Cultivo de Célula , Factores Eucarióticos de Iniciación/genética , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Microscopía Fluorescente , Modelos Biológicos , ARN/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Distribución Tisular , Transformación Genética
4.
Methods Enzymol ; 429: 83-104, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17913620

RESUMEN

In vitro assembly of eukaryotic translation initiation complexes requires purification of ribosomal subunits, eukaryotic initiation factors, and initiator tRNA from natural sources and therefore yields only limited material for functional and structural studies. In this chapter, we describe a robust, affinity chromatography-based method for the isolation of eukaryotic 48S initiation complexes from rabbit reticulocyte lysate (RRL). Both canonical and internal ribosome entry site (IRES)-containing mRNAs labeled with a streptomycin aptamer sequence at the 3' end can be used to purify milligram quantities of 48S particles in a simple, two-step procedure. The 48S complexes purified with this method are properly assembled at the initiation codon, contain the expected RNA and protein components in a 1:1 stoichiometry, and are functional intermediates along the initiation pathway.


Asunto(s)
Cromatografía de Afinidad/métodos , Factores Eucarióticos de Iniciación/aislamiento & purificación , Factores Eucarióticos de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/síntesis química , Animales , Aptámeros de Nucleótidos/síntesis química , Extractos Celulares , Sistema Libre de Células , Centrifugación por Gradiente de Densidad , Immunoblotting , Conejos , Reticulocitos/metabolismo , Estreptomicina/química
5.
RNA Biol ; 4(2): 76-84, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17637574

RESUMEN

MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that regulate gene expression on the level of translation and/or mRNA stability. Mammalian miRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences in the 3' untranslated region (UTR) of specific target mRNAs. Computer algorithms based on factors such as free binding energy or sequence conservation have been used to predict miRNA target mRNAs. Based on such predictions, up to one third of all mammalian mRNAs seem to be under miRNA regulation. However, due to the low degree of complementarity between the miRNA and its target, such computer programs are often imprecise and therefore not very reliable. Here we report the first biochemical identification approach of miRNA targets from human cells. Using highly specific monoclonal antibodies against members of the Ago protein family, we co-immunoprecipitate Ago-bound mRNAs and identify them by cloning. Interestingly, most of the identified targets are also predicted by different computer programs. Moreover, we randomly analyzed six different target candidates and were able to experimentally validate five as miRNA targets. Our data clearly indicate that miRNA targets can be experimentally identified from Ago complexes and therefore provide a new tool to directly analyze miRNA function.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , MicroARNs/metabolismo , ARN Mensajero/genética , Animales , Proteínas Argonautas , Línea Celular , Factor 2 Eucariótico de Iniciación/aislamiento & purificación , Factores Eucarióticos de Iniciación/aislamiento & purificación , Humanos , MicroARNs/genética , MicroARNs/aislamiento & purificación , ARN Mensajero/aislamiento & purificación , ARN Mensajero/metabolismo , Ratas
6.
EMBO J ; 26(13): 3109-23, 2007 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-17568775

RESUMEN

Eukaryotic translation initiation factor eIF5B is a ribosome-dependent GTPase that mediates displacement of initiation factors from the 40S ribosomal subunit in 48S initiation complexes and joining of 40S and 60S subunits. Here, we determined eIF5B's position on 80S ribosomes by directed hydroxyl radical cleavage. In the resulting model, eIF5B is located in the intersubunit cleft of the 80S ribosome: domain 1 is positioned near the GTPase activating center of the 60S subunit, domain 2 interacts with the 40S subunit (helices 3, 5 and the base of helix 15 of 18S rRNA and ribosomal protein (rp) rpS23), domain 3 is sandwiched between subunits and directly contacts several ribosomal elements including Helix 95 of 28S rRNA and helix 44 of 18S rRNA, domain 4 is near the peptidyl-transferase center and its helical subdomain contacts rpL10E. The cleavage data also indicate that binding of eIF5B might induce conformational changes in both subunits, with ribosomal segments wrapping around the factor. Some of these changes could also occur upon binding of other translational GTPases, and may contribute to factor recognition.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Radical Hidroxilo/metabolismo , Ribosomas/metabolismo , Secuencia de Bases , Cisteína/genética , Cisteína/metabolismo , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/aislamiento & purificación , Humanos , Modelos Moleculares , Mutación/genética , Conformación de Ácido Nucleico , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética
7.
RNA ; 12(5): 751-64, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16565414

RESUMEN

All three kingdoms of life employ two methionine tRNAs, one for translation initiation and the other for insertion of methionines at internal positions within growing polypeptide chains. We have used a reconstituted yeast translation initiation system to explore the interactions of the initiator tRNA with the translation initiation machinery. Our data indicate that in addition to its previously characterized role in binding of the initiator tRNA to eukaryotic initiation factor 2 (eIF2), the initiator-specific A1:U72 base pair at the top of the acceptor stem is important for the binding of the eIF2.GTP.Met-tRNA(i) ternary complex to the 40S ribosomal subunit. We have also shown that the initiator-specific G:C base pairs in the anticodon stem of the initiator tRNA are required for the strong thermodynamic coupling between binding of the ternary complex and mRNA to the ribosome. This coupling reflects interactions that occur within the complex upon recognition of the start codon, suggesting that these initiator-specific G:C pairs influence this step. The effect of these anticodon stem identity elements is influenced by bases in the T loop of the tRNA, suggesting that conformational coupling between the D-loop-T-loop substructure and the anticodon stem of the initiator tRNA may occur during AUG codon selection in the ribosomal P-site, similar to the conformational coupling that occurs in A-site tRNAs engaged in mRNA decoding during the elongation phase of protein synthesis.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , ARN de Transferencia de Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Secuencia Conservada , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/aislamiento & purificación , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/aislamiento & purificación , Factor 5 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/aislamiento & purificación , Guanosina Trifosfato/metabolismo , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Puromicina/análogos & derivados , Puromicina/análisis , Puromicina/biosíntesis , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/aislamiento & purificación , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética
8.
RNA ; 12(4): 683-90, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16484374

RESUMEN

In vitro assembly of translation initiation complexes from higher eukaryotes requires purification of ribosomal subunits, eukaryotic initiation factors, and initiator tRNA from natural sources, and therefore yields only limited material for functional and structural studies. Here we describe a robust, affinity chromatography-based purification of eukaryotic 48S initiation complexes from rabbit reticulocyte lysate (RRL), which significantly reduces the number of individual purification steps. Hybrid RNA molecules, consisting of either a canonical 5' UTR or an internal ribosome entry site (IRES) RNA followed by a short open reading frame and a streptomycin aptamer sequence, are incubated in RRL to form 48S complexes. The assembly reaction is then applied to a dihydrostreptomycin-sepharose column; bound complexes are washed and specifically eluted upon addition of streptomycin. The eluted fractions are further purified by centrifugation through a sucrose density gradient to yield pure 48S particles. Using this purification scheme, properly assembled IRES-mediated as well as canonical 48S complexes were purified in milligram quantities.


Asunto(s)
Cromatografía de Afinidad/métodos , Factores Eucarióticos de Iniciación/aislamiento & purificación , Regiones no Traducidas 5' , Animales , Secuencia de Bases , Northern Blotting , Western Blotting , Cartilla de ADN , Conejos
9.
J Biol Chem ; 281(13): 8469-75, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16461768

RESUMEN

Eukaryotic initiation factor 5B (eIF5B) is a GTPase that facilitates joining of the 60 S ribosomal subunit to the 40 S ribosomal subunit during translation initiation. Formation of the resulting 80 S initiation complex triggers eIF5B to hydrolyze its bound GTP, reducing the affinity of the factor for the complex and allowing it to dissociate. Here we present a kinetic analysis of GTP hydrolysis by eIF5B in the context of the translation initiation pathway. Our data indicate that stimulation of GTP hydrolysis by eIF5B requires the completion of early steps in translation initiation, including the eIF1- and eIF1A-dependent delivery of initiator methionyl-tRNA to the 40 S ribosomal subunit and subsequent GTP hydrolysis by eIF2. Full activation of GTP hydrolysis by eIF5B requires the extreme C terminus of eIF1A, which has previously been shown to interact with the C terminus of eIF5B. Disruption of either isoleucine residue in the eIF1A C-terminal sequence DIDDI reduces the rate constant for GTP hydrolysis by approximately 20-fold, whereas changing the aspartic acid residues has no effect. Changing the isoleucines in the C terminus of eIF1A also disrupts the ability of eIF5B to facilitate subunit joining. These data indicate that the interaction of the C terminus of eIF1A with eIF5B promotes ribosomal subunit joining and possibly provides a checkpoint for correct complex formation, allowing full activation of GTP hydrolysis only upon formation of a properly organized 80 S initiation complex.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Escherichia coli/genética , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/aislamiento & purificación , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/aislamiento & purificación , Polarización de Fluorescencia , GTP Fosfohidrolasas/análisis , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Histidina/química , Hidrólisis , Isoleucina/metabolismo , Cinética , Metionina/metabolismo , Modelos Biológicos , Radioisótopos de Fósforo , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Radioisótopos de Azufre
10.
Plant Cell ; 17(11): 2940-53, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16227452

RESUMEN

Ribosomal protein L24 (RPL24) is implicated in translation reinitiation of polycistronic genes. A newly isolated Arabidopsis thaliana short valve1 (stv1) mutant, in which one of the RPL24-encoding genes, RPL24B, is deleted, shows specific defects in the apical-basal patterning of the gynoecium, in addition to phenotypes induced by ribosome deficiency. A similar gynoecium phenotype is caused by mutations in the auxin response factor (ARF) genes ETTIN (ETT) and MONOPTEROS (MP), which have upstream open reading frames (uORFs) in their 5'-transcript leader sequences. Gynoecia of a double mutant of stv1 and a weak ett mutant allele are similar to those of a strong ett allele, and transformation with a uORF-eliminated ETT construct partially suppressed the stv1 gynoecium phenotype, implying that STV1 could influence ETT translation through its uORFs. Analyses of 5'-leader-reporter gene fusions showed that the uORFs of ETT and MP negatively regulate the translation of the downstream major ORFs, indicating that translation reinitiation is an important step for the expression of these proteins. Taken together, we propose that perturbation of translation reinitiation of the ARF transcripts causes the defects in gynoecium patterning observed in the stv1 mutant.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Flores/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Secuencia de Bases , ADN Complementario/análisis , ADN Complementario/genética , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/aislamiento & purificación , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/fisiología , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/aislamiento & purificación
11.
Arch Biochem Biophys ; 413(2): 243-52, 2003 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12729623

RESUMEN

Yeast mitochondrial initiation factor 2 (ymIF2) is encoded by the nuclear IFM1 gene. A His-tagged version of ymIF2, lacking its predicted mitochondrial presequence, was expressed in Escherichia coli and purified. Purified ymIF2 bound both E. coli fMet-tRNA(f)(Met) and Met-tRNA(f)(Met), but binding of formylated initiator tRNA was about four times higher than that of the unformylated species under the same conditions. In addition, the isolated ymIF2 was compared to E. coli IF2 in four other assays commonly used to characterize this initiation factor. Formylated and nonformylated Met-tRNA(f)(Met) were bound to E. coli 30S ribosomal subunits in the presence of ymIF2, GTP, and a short synthetic mRNA. The GTPase activity of ymIF2 was found to be dependent on the presence of E. coli ribosomes. The ymIF2 protected fMet-tRNA(f)(Met) to about the same extent as E. coli IF2 against nonenzymatic deaminoacylation. In contrast to E. coli IF2, the complex formed between ymIF2 and fMet-tRNA(f)(Met) was not stable enough to be analyzed in a gel shift assay. In similarity to other IF2 species isolated from bacteria or bovine mitochondria, the N-terminal domain could be eliminated without loss of initiator tRNA binding activity.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Animales , Bovinos , Cromatografía en Capa Delgada , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales , Plásmidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia de Metionina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA