Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Clin. transl. oncol. (Print) ; 26(1): 231-238, jan. 2024.
Artículo en Inglés | IBECS | ID: ibc-229161

RESUMEN

Objectives Among the most promising antibody formats in terms of inhibiting carcinogenesis are single-stranded variable fragments, whose targeted binding to the Fzd7 receptor has been proven effective at suppressing tumorigenesis. In this study, we investigated the effectiveness of an anti-Fzd7 antibody fragment against both tumor growth and metastasis of breast cancer cells. Methods To develop anti-Fzd7 antibodies, bioinformatics approaches were used and the antibodies were expressed recombinantly in E. coli BL21 (DE3). The expression of anti-Fzd7 fragments was verified by Western blotting. Analysis of the antibody's binding capacity to Fzd7 was conducted by flow cytometry. Cell death and apoptosis were assessed by MTT and Annexin V/PI assays. The transwell migration and invasion assays, as well as the scratch method, were used to evaluate cell motility and invasiveness. Results The anti-Fzd7 antibody was expressed successfully as a single band of 31 kDa. It could bind to 21.5% of MDA-MB-231 cells, as opposed to only 0.54% of SKBR-3 cells as negative control. According to MTT assay, induced apoptosis was 73.7% in MDA-MB-231 cells, compared with 29.5% in SKBR-3 cells. Also, the antibody exerted a significant inhibitory effect of 76% and 58% on migration and invasion of MDA-MB-231 cells, respectively. Conclusion The recombinantly developed anti-Fzd7 scFv of this study could exhibit significant antiproliferative and antimigratory properties, along with a high apoptosis-inducing potential, making it suitable for the immunotherapy of triple negative breast cancer (AU)


Asunto(s)
Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama Triple Negativas/patología , Far-Western Blotting , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular
2.
Fish Shellfish Immunol ; 138: 108810, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37169109

RESUMEN

N-glycosylation, one of the main protein posttranslational modifications (PTMs), plays an important role in the pathogenic process of pathogens through binding and invasion of host cells or regulating the internal environment of host cells to benefit their survival. However, N-glycosylation has remained mostly unexplored in Spiroplasma eriocheiris, a novel type of pathogen which has serious adverse effects on aquaculture. In most cases, N-glycoproteins can be detected and analyzed by lectins dependent on sugar recognition domains. In this study, three Macrobrachium nipponense C-type lectins, namely, MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3, were used to screen S. eriocheiris glycosylated proteins. First, qRT-PCR results showed that the expression levels of the three kinds of lectins were all significantly up-regulated in prawn hearts when the host was against S. eriocheiris infection. A bacterial binding assay showed that purified recombinant MnCTLDcp1, MnCTLDcp2 and MnCTLDcp3 could directly bind to S. eriocheiris in vitro. Second, three S. eriocheiris glycosylated proteins, ATP synthase subunit beta (ATP beta), molecular chaperone Dnak (Dnak) and fructose bisphosphate aldolase (FBPA), were screened and identified using the three kinds of full-length C-type lectins. Far-Western blot and coimmunoprecipitation (CO-IP) further demonstrated that there were interactions between the three lectins with ATP beta, Dnak and FBPA. Furthermore, antibody neutralization assay results showed that pretreatment of S. eriocheiris with ATP beta, Dnak and FBPA antibodies could significantly block this pathogen infection. All the above studies showed that the glycosylated protein played a vital role in the process of S. eriocheiris infection.


Asunto(s)
Lectinas , Palaemonidae , Spiroplasma , Palaemonidae/inmunología , Palaemonidae/microbiología , Glicosilación , Lectinas/química , Lectinas/metabolismo , Spiroplasma/metabolismo , Inmunidad Innata , Expresión Génica , Transcripción Genética , Far-Western Blotting , Procesamiento Proteico-Postraduccional , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno
3.
Microb Pathog ; 150: 104682, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33296715

RESUMEN

Atypical enteropathogenic Escherichia coli (aEPEC) is a subgroup of EPEC, which is one of the major pathogens responsible for fatal diarrhoea in children. Compared with typical EPEC (tEPEC), aEPEC lack an EAF (EPEC adherence factor) plasmid (pEAF), which encodes a series of virulence-associated genes. The extracellular matrix (ECM) component of human cells has been reported to be an important element in the interaction between host and bacterial pathogens. In this research, a 2D-Far Western blot method was performed to identifiy the bacterial proteins that could bind to fibronectin, one of the most common constituents of ECM. A total of 17 protein spots were identified, including 4 outer membrane proteins (OMPs), namely, OmpC, OmpD, OmpX and LamB. In vitro studies were used to determine whether these OMPs were involved in the adherence process. Through indirect immunofluorescence assays, four OMPs could be observed on the surfaces of host cells. After incubating the cells with the recombinant proteins, the adhesion rate of the O55:H7 isolate was decreased. Furthermore, the deletion of OmpX and LamB can also decrease the adhesion rate of WT. Taken together, a high-throughput screening method for host ECM-binding proteins based on 2D Far-Western blot was established, and four outer membrane proteins identified by this method were found to be involved in the adherence process.


Asunto(s)
Escherichia coli Enteropatógena , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Far-Western Blotting , Proteínas Portadoras , Niño , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fibronectinas , Humanos , Serogrupo
4.
Anal Chem ; 92(1): 1074-1080, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31820937

RESUMEN

Polyubiquitination encompasses complex topologies through various linkage types to deliver diverse cellular signals, which has been recognized as a sophisticated ubiquitin code. Accurate comparison of polyubiquitination signals is critical for revealing the dynamic cellular ubiquitination-regulated events. Western blotting (WB) is the most widely used biochemical method to quantify proteins and posttranslational modifications under diverse physiological conditions. The accuracy and sensitivity of the WB mainly depend on the quality and specificity of the antibody. In this study, we found that the antiubiquitin antibodies exhibited different affinities to the eight linkage types of ubiquitin chains, with the highest sensitivity for the K63-linked chain, lower efficiency for M1 and K48, and very low affinity for the other types of chains. Herein, we introduced the tandem hybrid ubiquitin-binding domain (ThUBD)-based far-Western blotting (TUF-WB) to visualize the signal of synthetic ubiquitin chains or ubiquitinated conjugates on a solid membrane by utilizing the unbiased affinity of ThUBD to all types of ubiquitin linkages. As compared to antiubiquitin antibody detection, TUF-WB can accurately quantify the signal intensity to the mass amounts of all eight ubiquitin chains. Meanwhile, the sensitivity of this method in detecting complex ubiquitinated samples was 4-5-fold higher than those of antibodies. Consequently, TUF-WB allows accurate quantification of polyubiquitination signal on the membrane with great sensitivity and wider dynamic range.


Asunto(s)
Far-Western Blotting/métodos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinación , Proteínas Portadoras/análisis , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Escherichia coli/química , Células HEK293 , Humanos , Proteínas de la Membrana/química , Dominios Proteicos , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Anaerobe ; 51: 124-130, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29753109

RESUMEN

During research to identify fibronectin (Fn)-binding proteins (Fbps) on the surface of Clostridium perfringens cells, we identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a candidate Fbp. GAPDH is a glycolytic enzyme found in a wide range of prokaryotes and eukaryotes. The Fn-binding activity of recombinant C. perfringens GAPDH (rGAPDH) was investigated using both ligand blotting analysis and enzyme-linked immunosorbent assay (ELISA). rGAPDH strongly bound plasminogen but not laminin or gelatin. Although GAPDH has no signal sequence, it is expressed on the cell surface of many microorganisms. The presence of GAPDH on the surface of C. perfringens cells was analyzed using ELISA and flow cytometry analyses; purified rGAPDH bound to the surface of C. perfringens cells. As autolysin is reportedly involved in the binding of GAPDH to the cell surface, we evaluated the interaction between rGAPDH and the C. perfringens autolysin Acp by both ELISA and ligand blotting assay. These assays revealed that rGAPDH binds to the catalytic domain of Acp but not the cell wall binding domains. These results suggest that autolysin mediates expression of GAPDH on the surface of C. perfringens cells and indicate a possible moonlighting function for GAPDH in binding both Fn and plasminogen.


Asunto(s)
Clostridium perfringens/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/metabolismo , Far-Western Blotting , Proteínas Portadoras/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Péptidos y Proteínas de Señalización Intracelular , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Plasminógeno/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas Recombinantes/metabolismo
6.
Exp Eye Res ; 168: 89-99, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29196060

RESUMEN

miRs play critical roles in oxidative stress-related retinopathy pathogenesis. miR-365 was identified in a previously constructed library from glyoxal-treated rat Müller cell. This report explores epigenetic alterations in Müller cells under oxidative stress to develop a novel therapeutic strategy. To examine the miR-365 expression pattern, in situ hybridization and quantitative RT-PCR were performed. Bioinformatical analysis and dual luciferase report assay were applied to identify and confirm target genes. Streptozotocin (STZ)-treated rats were used as the diabetic retinopathy (DR) model. Lentivirus-mediated anti-miR-365 was delivered subretinally and intravitreally into the rats' eyes. The functional and structural changes were evaluated by electroretinogram (ERG), histologically, and through examination of expression levels of metallopeptidase inhibitor 3 (Timp3), glial fibrillary acidic protein (Gfap), recoverin (Rcvrn) and vascular endothelia growth factor A (Vegfa). Oxidative stress factors and pro-inflammatory cytokines were analyzed. miR-365 expression was confirmed in the glyoxal-treated rat Müller cell line (glyoxal-treated rMC-1). In the retina, miR-365 mainly localized in the inner nuclear layer (INL). The increased miR-365 participated in Müller cell gliosis through oxidative stress aggravation, as observed in glyoxal-treated rMC-1 and DR rats before 6 weeks. Timp3 was a target and negatively regulated by miR-365. When miR-365 was inhibited, Timp3 expression was upregulated, Müller cell gliosis was alleviated, and retinal oxidative stress was attenuated. Visual function was also partially rescued as detected by ERG. miR-365 was found to be highly expressed in the retina and the abnormality of miR-365/Timp3 pathway is closely related to the pathology, like Müller gliosis, and the visual injury in DR. The mechanism might be through oxidative stress, and miR-365/Timp3 could be a potential therapeutic target for treating DR.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Retinopatía Diabética/fisiopatología , MicroARNs/fisiología , Estrés Oxidativo/fisiología , Retina/metabolismo , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Análisis de Varianza , Animales , Far-Western Blotting , Células Cultivadas , Electrorretinografía , Células Ependimogliales/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
7.
Gut ; 67(11): 2035-2044, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-28899983

RESUMEN

BACKGROUND AND AIMS: HBV infection represents a major health problem worldwide, but the immunological mechanisms by which HBV causes chronic persistent infection remain only partly understood. Recently, cell subsets with suppressive features have been recognised among monocytes and natural killer (NK) cells. Here we examine the effects of HBV on monocytes and NK cells. METHODS: Monocytes and NK cells derived from chronic HBV-infected patients and healthy controls were purified and characterised for phenotype, gene expression and cytokines secretion by flow cytometry, quantitative real-time (qRT)-PCR, ELISA and western blotting. Culture and coculture of monocytes and NK cells were used to determine NK cell activation, using intracellular cytokines staining. RESULTS: In chronic HBV infection, monocytes express higher levels of PD-L1, HLA-E, interleukin (IL)-10 and TGF-ß, and NK cells express higher levels of PD-1, CD94 and IL-10, compared with healthy individuals. HBV employs hepatitis B surface antigen (HBsAg) to induce suppressive monocytes with HLA-E, PD-L1, IL-10 and TGF-ß expression via the MyD88/NFκB signalling pathway. HBV-treated monocytes induce NK cells to produce IL-10, via PD-L1 and HLA-E signals. Such NK cells inhibit autologous T cell activation. CONCLUSIONS: Our findings reveal an immunosuppressive cascade, in which HBV generates suppressive monocytes, which initiate regulatory NK cells differentiation resulting in T cell inhibition.


Asunto(s)
Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Células Asesinas Naturales/inmunología , Monocitos/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Far-Western Blotting , Técnicas de Cultivo de Célula , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Humanos , Tolerancia Inmunológica , Células Asesinas Naturales/metabolismo , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Methods Mol Biol ; 1690: 95-103, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29032539

RESUMEN

Acquisition of host-derived proteins possessing key regulatory function is a hallmark of Borrelia burgdorferi, and an important step to successfully infect the human host, inhibiting activation of complement as innate immunity's first line of defense. Hence, the identification and characterization of interacting ligands is a prerequisite to gain deeper insights into the molecular principles of how spirochetes overcome the detrimental effects of complement. Far western blotting enables the detection of protein-protein interactions in vitro using cell lysates containing the prey proteins and purified complement proteins or human serum as a source for soluble complement proteins as bait proteins. Here, the methodology for the detection and characterization of Borrelia-derived proteins interacting with complement regulator Factor H is described, including the preparation of whole cell lysates, the separation of proteins by Tris-Tricine SDS-PAGE, the transfer of the proteins to nitrocellulose membranes, and the detection of Factor H-interacting proteins by Far western.


Asunto(s)
Proteínas Bacterianas/inmunología , Far-Western Blotting/métodos , Borrelia burgdorferi/inmunología , Electroforesis en Gel de Poliacrilamida/métodos , Enfermedad de Lyme/inmunología , Animales , Borrelia burgdorferi/fisiología , Factor H de Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Interacciones Huésped-Patógeno , Humanos , Enfermedad de Lyme/microbiología
9.
Methods Mol Biol ; 1690: 259-277, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29032550

RESUMEN

The proteome of Borrelia burgdorferi undergoes dynamic alterations as the microbe cycles through and persists in diverse host or vector environments. Therefore, studies of B. burgdorferi proteome and protein-protein interactions, which play central roles in biological processes in diverse organisms, are critical in understanding biology and infectivity of spirochetes. Here, we describe the proteomic analysis of B. burgdorferi by two-dimensional (2-D) gel electrophoresis followed by protein identification via liquid chromatography-mass spectrometry and database searching. We also describe assays for studying the interaction between borrelial proteins: a novel high-throughput luciferase assay, yeast two-hybrid assay, and a far-Western assay that are routinely used in our laboratories.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Enfermedad de Lyme/microbiología , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Proteómica/métodos , Proteínas Bacterianas/análisis , Far-Western Blotting/métodos , Borrelia burgdorferi/química , Electroforesis en Gel Bidimensional/métodos , Electroforesis en Gel de Poliacrilamida/métodos , Células HEK293 , Humanos , Espectrometría de Masas/métodos , Proteoma/análisis , Proteoma/metabolismo , Técnicas del Sistema de Dos Híbridos
10.
FEBS Lett ; 591(23): 3872-3880, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29110302

RESUMEN

The sucrose synthase (SUS) interactome of developing castor oilseeds (COS; Ricinus communis) was assessed using coimmunoprecipitation (co-IP) with anti-(COS RcSUS1)-IgG followed by proteomic analysis. A 41-kDa polypeptide (p41) that coimmunoprecipitated with RcSUS1 from COS extracts was identified as reversibly glycosylated polypeptide-1 (RcRGP1) by LC-MS/MS and anti-RcRGP1 immunoblotting. Reciprocal Far-western immunodot blotting corroborated the specific interaction between RcSUS1 and RcRGP1. Co-IP using anti-(COS RcSUS1)-IgG and clarified extracts from other developing seeds as well as cluster (proteoid) roots of white lupin and Harsh Hakea consistently recovered 90 kDa SUS polypeptides along with p41/RGP as a SUS interactor. The results suggest that SUS interacts with RGP in diverse sink tissues to channel UDP-glucose derived from imported sucrose into hemicellulose and/or glycoprotein/glycolipid biosynthesis.


Asunto(s)
Glucosiltransferasas/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Ricinus communis/química , Ricinus communis/enzimología , Ricinus/química , Ricinus/enzimología , Far-Western Blotting , Ricinus communis/genética , Glucosiltransferasas/química , Glucosiltransferasas/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Glicosilación , Inmunoprecipitación , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mapeo de Interacción de Proteínas , Proteómica , Ricinus/genética , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA