RESUMEN
Background/Objective: Ingestion of dietary fiber can influence in the remission of patients with ulcerative colitis (UC). There are no current recommendations for fiber intake in UC; therefore, we evaluate the association between dietary fiber and the activity of the disease. Methods: Ours is a cross-sectional study in patients with a confirmed diagnosis of UC to whom a 24 h recall was applied; this allowed for the estimation and classification of type of dietary fiber. The patients were divided into two groups: (1) remission and (2) active UC. We analyzed the quantity and type of fiber with the grades of disease activity through Spearman correlation and logistic regression. Results: A total of 152 patients were included; it was found that those with clinically active UC consumed less total fiber (p = 0.016) and insoluble fiber (p = 0.018). Meanwhile, in endoscopic grade, the difference was for insoluble fiber (p = 0.038). Insoluble fiber had an inversely significant correlation with fecal calprotectin levels (r = -0.204; p = 0.018). Logistic regression showed that less than 11 g of insoluble fiber was a risk factor for clinical activity (OR = 2.37; 95% CI 1.107-5.019; p = 0.026). Conclusions: Consumption below the current recommendation of total and insoluble dietary fiber is associated with clinical activity of UC.
Asunto(s)
Colitis Ulcerosa , Fibras de la Dieta , Humanos , Colitis Ulcerosa/dietoterapia , Fibras de la Dieta/administración & dosificación , Fibras de la Dieta/análisis , Masculino , Femenino , Estudios Transversales , Adulto , México , Persona de Mediana Edad , Heces/química , Complejo de Antígeno L1 de Leucocito/análisis , Adulto Joven , Modelos LogísticosRESUMEN
The aim of this study was to describe the dietary intake of British vegetarians according to the Nova classification and to evaluate the association between the consumption of ultra-processed foods and the nutritional quality of the diet. We used data from the UK national survey (2008/2019). Food collected through a 4-d record were classified according to the Nova system. In all tertiles of the energy contribution of ultra-processed foods, differences in the average nutrient intake, as well as in the prevalence of inadequate intake, were analysed, considering the values recommended by international authorities. Ultra-processed foods had the highest dietary contribution (56·3 % of energy intake), followed by fresh or minimally processed foods (29·2 %), processed foods (9·4 %) and culinary ingredients (5 %). A positive linear trend was found between the contribution tertiles of ultra-processed foods and the content of free sugars (ß 0·25, P < 0·001), while an inverse relationship was observed for dietary fibre (ß -0·26, P = 0·002), potassium (ß -0·38, P < 0·001), Mg (ß -0·31, P < 0·001), Cu (ß -0·22, P < 0·003), vitamin A (ß -0·37, P < 0·001) and vitamin C (ß -0·22, P < 0·001). As the contribution of ultra-processed foods to total energy intake increased (from the first to the last tertile of consumption), the prevalence of inadequate intake of free sugars increased (from 32·9 % to 60·7 %, respectively), as well as the prevalence of inadequate fibre intake (from 26·1 % to 47·5 %). The influence of ultra-processed foods on the vegetarian diet in the UK is of considerable magnitude, and the consumption of this food was associated with poorer diet quality.
Asunto(s)
Dieta Vegetariana , Comida Rápida , Valor Nutritivo , Vegetarianos , Humanos , Reino Unido , Adulto , Femenino , Masculino , Persona de Mediana Edad , Manipulación de Alimentos , Ingestión de Energía , Adulto Joven , Dieta , Fibras de la Dieta/análisis , Fibras de la Dieta/administración & dosificación , Alimentos ProcesadosRESUMEN
Yeast and fibrolytic enzymes serve as additives incorporated into the nutrition of ruminants to regulate rumen fermentation and increase the digestibility of fiber, thereby enhancing the efficiency of rumen fermentation. Two experiments were conducted to assess the impact of five diets: a control diet without additives, diets with yeast (Saccharomyces cerevisiae) or exogenous fibrolytic enzymes (EFE), and diets with a blend of 0.7yeast + 0.3EFE or 0.7EFE + 0.3Yeast (based on recommended levels in g/kg of total DM). In the first experiment, 40 five-month-old Santa Ines lambs (mean weight 25.0 ± 1.3 kg) were distributed in a completely randomized design (5 treatments and 8 lambs) for 81 days to evaluate performance, ingestive behaviour, and serum metabolites. In the second experiment, 25 Santa Ines male lambs weighing 25.7 ± 4.1 kg were housed in metabolic cages, in a randomized design with 5 treatments and 5 lambs, evaluating digestibility, nitrogen balance, and rumen pH. EFE supplementation increased intakes of dry matter (DM), total digestible nutrients (TDN), and apNDF (mean of 38.1, 5.26, and 27%, respectively) compared to yeast or the 0.7yeast-0.3EFE blend. Feed conversion was most efficient (mean of 27.1%) in lambs fed Yeast, 0.7EFE + 0.3yeast, and the control diet. Lambs fed 0.7yeast + 0.3EFE spent less time eating (mean of 16.5%) and more time idling (mean of 10.75%), whereas EFE-fed lambs spent more time eating (mean of 19.73%), and 0.7EFE + 0.3yeast-fed lambs spent more time ruminating (mean of 20.14%). Control group lambs chewed and ruminated less (means of 24.64 and 17.21%, respectively) compared to other treatments. Lambs on the 0.7yeast + 0.3EFE blend had higher eating and rumination efficiency rates for DM and apNDF (mean of 19.11 and 17.95%, respectively) compared to other additive treatments or individual additives. They also exhibited lower (means 7.59 g/d) urinary N excretion, with improved N retention (mean 3185 g/d) compared to the control group. There were significant effects on serum albumin and cholesterol concentrations, with the 0.7yeast + 0.3EFE blend showing higher albumin (mean 4.08 g/dL) levels, while diets without additives and yeast-EFE blends had higher cholesterol (mean of 62.51 g/dL) concentrations. Including Saccharomyces cerevisiae yeast along with 0.7 yeast + 0.3 EFE blend is recommended when feeding similar lamb diets to those used herein because it improves the efficiency of intake, rumination of DM and NDF, and nitrogen utilization without affecting the lamb performance.
Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Digestión , Rumen , Saccharomyces cerevisiae , Animales , Alimentación Animal/análisis , Masculino , Digestión/efectos de los fármacos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Oveja Doméstica/fisiología , Fermentación , Distribución Aleatoria , Fibras de la Dieta/análisis , Fibras de la Dieta/administración & dosificaciónRESUMEN
Peruvian fava beans (PFB) are used in traditional cuisine as a nutrient-rich, flavorful, and textural ingredient; however, little is known about their industrial properties. This study evaluated the physicochemical, nutritional, and techno-functional characteristics of PFB varieties: Verde, Quelcao, and Peruanita. PFB exhibited distinct physical characteristics, quality parameters, and morphology. The color patterns of the seed coat and the hardness were the main parameters for distinguishing them. Nutritionally, all three samples exhibited high protein (23.88-24.88 g/100 g), with high proportion of essential amino acids, high dietary fiber (21.74-25.28 g/100 g), and mineral content. They also contain polyphenols (0.79-1.25 mg GAE/g) and flavonoids (0.91-1.06 mg CE/g) with antioxidant potential (16.60-21.01 and 4.68-5.17 µmol TE/g for ABTS and DPPH assays, respectively). Through XRD measurements, the semi-crystalline nature of samples was identified, belonging to the C-type crystalline form. Regarding techno-functionality, PFB flours displayed great foaming capacity, with Verde variety being the most stable. Emulsifying capacity was similar among samples, although Peruanita was more stable during heating. Upon heating with water, PFB flours reached peak viscosities between 175 and 272 cP, and final viscosities between 242 and 384 cP. Quelcao and Verde formed firmer gels after refrigeration. Based on these results, PFB would be useful to developing innovative, nutritious, and healthy products that meet market needs.
Asunto(s)
Antioxidantes , Valor Nutritivo , Polifenoles , Semillas , Vicia faba , Antioxidantes/análisis , Semillas/química , Polifenoles/análisis , Vicia faba/química , Fibras de la Dieta/análisis , Flavonoides/análisis , Perú , Color , Harina/análisis , Manipulación de Alimentos/métodos , Minerales/análisisRESUMEN
This study applies natural resources, prioritizing recyclable and renewable inputs produced by pinhão cultivation, whose purpose is to use the failures, shells, and almonds as a source of bioactive compounds addition in yogurt, ensuring intelligent use of these natural resources. Thus, one açaí yogurt sample and eight yogurt formulations containing portions of pinhão byproducts between 5 % and 10 % were elaborated. These formulations were compared regarding their physicochemical, nutritional, functional properties, antimicrobial activity, and multi-elemental profile properties. Enriching açaí yogurt with pinhão byproducts does not significantly differ in protein, lipid, moisture, and mineral salt content between all samples with pinhão byproducts. Açaí yogurts enriched with pinhão byproducts had 5.71 to 26.07 % times total protein than the control sample, and total fiber also had a significant increase in samples ranging between 18.62 to 85.29 % times more than the control sample. Regarding color settings, all yogurt samples tended to be red-purple. A sample of açaí yogurt with pine nut flour and whole pine nut flour caused a biofilm mass amount of 46.58, 45.55, and 11.85 % for Listeria monocytogenes, Salmonella enteritidis and Pseudomonas aeruginosa. The behavior of pathogenic bacteria is related to the total polyphenol content in yogurts enriched with pinhão byproducts, which increased from 8.27 to 18.24 mg/100 g. Yogurt with açaí enriched with whole pinhão flour showed high antioxidant capacity. The sample's antioxidant activity results increased by 47.62 % and 130.38 % in the ABTS and DPPH analyses, respectively. The compounds in pinhão failure nanosuspensions, pinhão flour, whole pinhão flour, and yogurts were identified and divided into hydrophilic and lipophilic classes. Five classes (amino acids, organic acids, sugars, phenols, and cyclitols) were identified as hydrophilic. Lipophilic compounds were identified and separated into six classes (carboxylic acids, diterpenes, alcohols, Α-hydroxy acids, sterols, and triterpenes). The addition of pinhão byproducts increased the contents of Ca, Fe, K, Na, and P. Açaí yogurt with pinhão nanosuspension, pinhão flour, and whole pinhão flour had the highest Ca content (2164.38 ± 2.16 µg/L). Açaí yogurt with pinhão flour and whole pinhão flour had the highest Fe content (84.02 ± 0.08 µg/L).
Asunto(s)
Valor Nutritivo , Yogur , Yogur/análisis , Yogur/microbiología , Antioxidantes/análisis , Pinus/química , Manipulación de Alimentos/métodos , Antiinfecciosos/farmacología , Antiinfecciosos/análisis , Microbiología de Alimentos , Fibras de la Dieta/análisisRESUMEN
This study aimed at comparing the carbohydrate composition of three banana varieties (cv. Nanica, Nanicão, and Prata) and investigating the effect of a single dose of cooked green banana pulp beverage (GBPd) on plasma glycemic homeostasis indexes (glucose, PYY, GIP, insulin) and hunger and satiety sensation (visual analog scale-VAS). The bananas were classified according to the color scale. The fiber, total carbohydrate, and resistant starch (RS) were determined using validated methods. Glucose homeostasis indexes and hunger/satiety sensation were determined in ten healthy women in two stages before and after intake: (1) glucose solution (250 g/L); (2) one week later, consumption of the glucose solution plus 75 g/L of GBPd. Blood samples were collected twice in stage-1 and every 15 min for 2 h in stage-2. Cv. Nanicão was selected, because it presented a higher content in RS and dietary fiber on dry base than the other cultivars. Thus, it was used to test glycemic response. After 2 h of GBPd intake, no difference was observed in hunger/satiety sensation and plasma glycemic homeostasis indexes, except for a decrease in plasma glucose concentration (-15%, p = 0.0232) compared to stage-1. These results suggest that cv. Nanicão has a higher potential as a functional ingredient and can influence the reduction in the glycemic index of a meal compared to other cultivars. However, it had not a short-term effect on hormones GIP and PYY in healthy women. Further research is needed to understand the long-term effects and mechanisms of green banana on glycemic control and satiety.
Asunto(s)
Glucemia , Fibras de la Dieta , Insulina , Musa , Humanos , Musa/química , Femenino , Glucemia/análisis , Adulto , Insulina/sangre , Estudios Transversales , Adulto Joven , Fibras de la Dieta/análisis , Carbohidratos de la Dieta/análisis , Índice Glucémico , Hambre , Bebidas/análisis , Saciedad/efectos de los fármacos , Péptido YY/sangre , Polipéptido Inhibidor Gástrico/sangre , Culinaria/métodos , Frutas/químicaRESUMEN
Andean crops such as quinoa, amaranth, cañihua, beans, maize, and tarwi have gained interest in recent years for being gluten-free and their high nutritional values; they have high protein content with a well-balanced essential amino acids profile, minerals, vitamins, dietary fiber, and antioxidant compounds. During the germination bioprocess, the seed metabolism is reactivated resulting in the catabolism and degradation of macronutrients and some anti-nutritional compounds. Therefore, germination is frequently used to improve nutritional quality, protein digestibility, and availability of certain minerals and vitamins; furthermore, in specific cases, biosynthesis of new bioactive compounds could occur through the activation of secondary metabolic pathways. These changes could alter the technological and sensory properties, such as the hardness, consistency and viscosity of the formulations prepared with them. In addition, the flavor profile may undergo improvement or alteration, a critical factor to consider when integrating sprouted grains into food formulations. This review summarizes recent research on the nutritional, technological, functional, and sensory changes occur during the germination of Andean grains and analyze their potential applications in various food products.
Asunto(s)
Productos Agrícolas , Germinación , Valor Nutritivo , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Semillas/química , Semillas/crecimiento & desarrollo , Zea mays/química , Zea mays/crecimiento & desarrollo , Humanos , Chenopodium quinoa/química , Gusto , Fibras de la Dieta/análisis , Amaranthus/química , Amaranthus/crecimiento & desarrollo , Minerales/análisis , Proteínas en la Dieta/análisis , Fabaceae/químicaRESUMEN
OBJECTIVES: Whole-grain pearl millet is a nutritious cereal source of dietary fiber, vitamins, minerals, and bioactive compounds. It offers health benefits such as glycemic control and satiety. Extrusion cooking for diverse formulations, including beverages, can alter its chemical composition, impacting the nutritional value. This study aimed to evaluate the sensory acceptability of an extruded millet flour beverage and its acute effects on glycemic index (GI), glycemic and insulinemic response, food intake, and subjective appetite sensations in euglycemic and eutrophic adults. METHODS: This is an acute, single-blind, randomized, controlled, cross-over clinical study comprising 14 euglycemic and eutrophic adults. Initially, beverages based on whole extruded millet flour were developed, and sensorially and chemically analyzed. Next, a clinical trial was conducted with participants undergoing four sessions and consuming one of the following options: extruded millet beverage, a maltodextrin control beverage, or a glucose solution administered in two separate sessions. Blood glucose, insulin, and appetite responses were assessed over a 2-h period, in addition to determining the GI of the beverages and analyzing food intake in the 24 h following each session. RESULTS: The extruded millet flour strawberry-flavored beverage had the best sensory acceptance and was classified as having as high GI. Consumption of the extruded millet beverage showed similar glycemic and insulinemic responses, as well as appetite control and food intake of the subjects, when compared with consumption of the maltodextrin control beverage. CONCLUSIONS: Intake of the extruded millet beverage maintained glycemic and insulinemic responses, appetite control, and food intake in euglycemic and eutrophic subjects.
Asunto(s)
Apetito , Bebidas , Glucemia , Estudios Cruzados , Harina , Índice Glucémico , Insulina , Pennisetum , Humanos , Adulto , Masculino , Método Simple Ciego , Femenino , Apetito/efectos de los fármacos , Harina/análisis , Bebidas/análisis , Insulina/sangre , Glucemia/análisis , Control Glucémico/métodos , Ingestión de Alimentos/fisiología , Persona de Mediana Edad , Adulto Joven , Granos Enteros , Fibras de la Dieta/administración & dosificación , Fibras de la Dieta/análisisRESUMEN
With the increasing need to promote healthy and sustainable diets, seaweeds emerge as an environmentally friendly food source, offering a promising alternative for food production. The aim of this study was to characterize the brown seaweed Sargassum filipendula from the coast of São Paulo, Brazil, regarding its nutritional and techno-functional properties using two dehydration methods, oven drying and lyophilized. A commercial dried sample was used as a control. Analyses of proximate composition, mineral determination, amino acid determination, antioxidant capacity, pH, color, scanning electron microscopy, X-ray diffraction, thermal properties, Fourier-transform infrared spectroscopy, and techno-functional properties were performed. Seaweed flours showed significant differences in physicochemical composition, with dietary fiber content of seaweed flours exceeding 70 %. Glutamic and aspartic acids were the most abundant amino acids, with contents of 88.56 and 56.88 mg/g of protein in Sargassum oven drying. Both for antioxidant potential and bioactive compounds, Sargassum lyophilized flours showed the highest levels of compounds. Sargassum lyophilized exhibited lighter color compared to Sargassum oven drying and Sargassum commercial. Emulsion formation, foam formation capacity and stability were higher in Sargassum lyophilized, as well as water and oil absorption. The results suggest that seaweeds can be used to formulate a wide variety of food products, such as sausages, bread, cakes, soups, and sauces.
Asunto(s)
Antioxidantes , Liofilización , Valor Nutritivo , Sargassum , Algas Marinas , Sargassum/química , Antioxidantes/análisis , Algas Marinas/química , Fibras de la Dieta/análisis , Brasil , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Aminoácidos/análisis , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Desecación/métodosRESUMEN
This study examined the effects of replacing alkaline phosphate (AP) with bamboo fiber (BF), isolated pea protein (PP), and mushroom powder (MP) on the nutritional, technological, oxidative, and sensory characteristics of low-sodium mortadellas. Results indicated that this reformulation maintained the nutritional quality of the products. Natural substitutes were more effective than AP in reducing water and fat exudation. This led to decreased texture profile analysis (TPA) values such as hardness, cohesiveness, gumminess, and chewiness. The reformulation reduced the L* values and increased the b* values, leading to color modifications rated from noticeable to appreciable according to the National Bureau of Standards (NBS) index. Despite minor changes in oxidative stability indicated by increased values in TBARS (from 0.19 to 0.33 mg MDA/kg), carbonyls (from 2.1 to 4.4 nmol carbonyl/mg protein), and the volatile compound profile, the sensory profile revealed a beneficial increase in salty taste, especially due to the inclusion of MP, which was enhanced by the synergy with BF and PP. In summary, the results confirmed the potential of natural alternatives to replace chemical additives in meat products. Incorporating natural antioxidants into future formulations could address the minor oxidation issues observed and enhance the applicability of this reformulation strategy.
Asunto(s)
Agaricales , Fibras de la Dieta , Productos de la Carne , Valor Nutritivo , Proteínas de Guisantes , Gusto , Proteínas de Guisantes/química , Animales , Productos de la Carne/análisis , Fibras de la Dieta/análisis , Agaricales/química , Humanos , Antioxidantes , Polvos , Manipulación de Alimentos/métodos , Masculino , Fosfatos , Color , Oxidación-Reducción , Porcinos , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Femenino , Sasa/químicaRESUMEN
The Cerrado is one of the most biodiverse biomes in the world, characterized by a wealth of native fruits with unique nutritional characteristics. In this sense, the social, economic, and environmental importance of fully utilizing food is widely recognized. Therefore, generally considered waste, fruit shells can be transformed into a coproduct with high added value. The objective of this work was to carry out a comprehensive assessment of the physicochemical properties, carbohydrate and fatty acid profile, phytochemical compounds, phenolic profile, and antioxidant potential of the recovered extracts of buriti (Mauritia flexuosa) shells in natura and dehydrated at 55 °C (flour). In addition, the functional properties were verified by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) from buriti shell flour. The results indicated high fiber content and energy value for the sample processed at 55 °C (58.95 g/100 g and 378.91 kcal/100 g, respectively) and low lipid and protein content (1.03 g/100 g and 1.39 g/100 g, respectively). Regardless of the sample analyzed, maltose was the majority sugar (37.33 - 281.01 g/100 g). The main fatty acids detected were oleic acid (61.33 - 62.08 %) followed by palmitic acid (33.91 - 34.40 %). The analysis of the mineral profile demonstrated that the samples did not differ significantly from each other, showing that the drying process did not interfere with the results obtained (p ≤ 0.05). The analysis of individual phenolics allowed the identification of six phenolic compounds in buriti shells. However, it is possible to observe that the drying method had a positive and significant influence on the phenolic profile (p ≤ 0.05), with chlorogenic acid (2.63 - 8.27 mg/100 g) and trigonelline (1.06 - 41.52 mg/100 g), the majority compounds. On the other hand, it is important to highlight that buriti shells have a high content of carotenoids, mainly ß-carotene (27.18 - 62.94 µg/100 g) and α-carotene (18.23 - 60.28 µg/100 g), also being positively influenced by the drying process at 55 °C (p ≤ 0.05). The dried shells showed a high content of phytochemical compounds and high antioxidant activity based on the different methods tested. The results show that buriti shell flour can be fully utilized and has nutritional and chemical aspects that can be applied to develop new sustainable, nutritious, and functional food formulations.
Asunto(s)
Antioxidantes , Harina , Frutas , Valor Nutritivo , Antioxidantes/análisis , Frutas/química , Brasil , Harina/análisis , Ácidos Grasos/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Fenoles/análisis , Extractos Vegetales/química , Extractos Vegetales/análisis , Fibras de la Dieta/análisis , Cucurbitaceae/química , Fitoquímicos/análisisRESUMEN
This study aimed to evaluate the effect of extrusion and of open-pan cooking on whole germinated and non-germinated grains of pearl millet (Pennisetum glaucum L. R. Br.), on its chemical-nutritional composition and in vitro iron bioavailability. The experimental design consisted of three flours: non-germination open-pan cooked millet flour (NGOPCMF), germination open-pan cooked millet flour (GOPCMF), and extrusion cooked millet flour (ECMF). The ECMF increased the carbohydrates, iron, manganese, diosmin, and cyanidin and decreased the total dietary fiber, resistant starch, lipids, and total vitamin E, in relation to NGOPCMF. The GOPCMF increased the lysine and vitamin C and decreased the phytate, lipids, total phenolic, total vitamin E, and riboflavin concentration, in relation to NGOPCMF. Furthermore, germinated cooked millet flour and extruded millet flour improved iron availability in vitro compared to non-germinated cooked millet flour. GOPCMF and ECMF generally preserved the chemical-nutritional composition of pearl millet and improved in vitro iron bioavailability; therefore, they are nutritionally equivalent and can be used to develop pearl millet-based products.
Asunto(s)
Disponibilidad Biológica , Culinaria , Harina , Germinación , Hierro , Pennisetum , Pennisetum/química , Pennisetum/metabolismo , Pennisetum/crecimiento & desarrollo , Hierro/análisis , Hierro/metabolismo , Harina/análisis , Valor Nutritivo , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Fibras de la Dieta/análisis , Fibras de la Dieta/metabolismoRESUMEN
The chemical composition, antioxidant capacity and functional properties of mixtures of baru by-products, named baru food ingredients (BFI), were investigated and applied in a plant-based burger formulation. BFI were prepared from wasted baru by-products - partially defatted baru nut cake and baru pulp plus peel. A plant-based burger was developed and its chemical composition, antioxidant capacity, cooking and texture parameters were determined. BFI1 (50% partially defatted baru nut cake + 50% baru pulp plus peel) had the highest content of carbohydrate (31.9%), and dietary fibre (28.3%). BFI2 (75% partially defatted baru nut cake + 25% baru pulp plus peel) and BFI3 (90% partially defatted baru nut cake + 10% baru pulp plus peel) showed high concentration of protein and dietary fibre, and BFI3 had the highest protein content (29.5%). All BFI showed high concentration of total phenolics (402-443 mg GAE/100 g). Replacing textured pea protein of control burger (PPB) with 35% of BFI3 in the formulation of baru protein burger (BPB) resulted in a low-fat product (2.9%), with protein content (19.2%) comparable to the PPB (15.9%) and the commercial burger (mixed plant proteins - 16.3%). The BPB also showed a higher concentration of dietary fibre (4.9%) and phenolic compounds (128 mg GAE/100 g) than the control burger. BPB's cooking yield was the highest among the tested burgers. BPB had a softer texture when compared to other burgers. Baru food ingredients can be used as nutritive ingredients of health-promoting foods, especially in plant-based products, such as burger and meat analogues, or in hybrid meat products. BPB showed a healthy and nutritious profile.
Asunto(s)
Antioxidantes , Culinaria , Fibras de la Dieta , Ingredientes Alimentarios , Valor Nutritivo , Fibras de la Dieta/análisis , Culinaria/métodos , Antioxidantes/análisis , Ingredientes Alimentarios/análisis , Fenoles/análisis , Alimentos Funcionales , Nueces/química , Proteínas en la Dieta/análisis , Manipulación de Alimentos/métodos , Carbohidratos de la Dieta/análisisRESUMEN
Cell components soluble in neutral detergent are a diverse group, both compositionally and nutritionally. The present study aimed to evaluate production responses, behavior (eating, ruminating, and idling), and nitrogen balance of dairy goats fed different ratios of neutral detergent-soluble carbohydrate fractions. Five multiparous Alpine does with mean ± SD initial body mass of 49.5 ± 7.9 kg and 60 days of lactation were randomly assigned in a 5 × 5 Latin square design. The treatments were the ratios of starch (starch associated with soluble sugar [StSS]) to neutral detergent-soluble fiber (NDSF) (StSS:NDSF): 0.89, 1.05, 1.24, 1.73, and 2.92. No effect was observed (P > 0.05) of StSS:NDSF on the intakes of neutral detergent fiber (NDF) and NDSC. However, DM intake showed a quadratic behavior (P = 0.049). The ingestive behavior was affected by StSS:NDSF linearly increased (P = 0.002) the feeding efficiency. The increase in StSS:NDSF caused a linear increase in fecal (P = 0.011), urinary (P < 0.001), and milk nitrogen excretion (P = 0.024). The increase in StSS:NDSF affected (P = 0.048) milk yield and net energy lactation (P = 0.036). In conclusion, dairy goats experience reduced dry matter intake and milk yield when subjected to high-NDSC diets, specifically those above 1.24 StSS:NDSF ratio. Elevated NDSC levels in the diets lead to decreased feeding time, whereas rumination remains unaffected. Nitrogen losses in goats increase linearly with high-NDSC diets, and a significant impact on nitrogen balance.
Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Cabras , Lactancia , Leche , Nitrógeno , Animales , Cabras/fisiología , Femenino , Nitrógeno/metabolismo , Nitrógeno/análisis , Dieta/veterinaria , Leche/química , Alimentación Animal/análisis , Conducta Alimentaria/efectos de los fármacos , Distribución Aleatoria , Fibras de la Dieta/análisis , Fibras de la Dieta/administración & dosificación , Carbohidratos de la Dieta/análisis , Carbohidratos de la Dieta/administración & dosificaciónRESUMEN
This study explores the impact of co-ingesting cereals and legumes on starch and protein during simulated infant in vitro digestion. Various legumes (chickpeas, lentils, peas) were added to cereals (durum wheat, brown rice, white maize), and their effects on starch and protein hydrolysis were analyzed. Substituting 50% of cereal with legumes increased proteins, minerals, and dietary fiber. Infant food with legumes exhibited smoother pasting properties. Legumes in cereal purées led to varying starch hydrolysis trends, with the lowest values in durum wheat with chickpea and all cereal blends with peas. Resistant starch levels exceeding 50% were found in infant food samples. Digested protein hydrolysis increased with legumes in durum wheat, except for peas. Brown rice mixtures decreased significantly compared to the control with chickpeas (61%) and peas (42%), while lentil blends increased by 46%. Legumes generally did not significantly affect starch bioavailability, even with α-amylase inhibitors. Lentil-cereal purées could enhance infant food nutritional value.
Asunto(s)
Proteínas en la Dieta , Digestión , Grano Comestible , Fabaceae , Alimentos Infantiles , Almidón , Almidón/metabolismo , Grano Comestible/química , Alimentos Infantiles/análisis , Humanos , Fabaceae/química , Lactante , Proteínas en la Dieta/análisis , Valor Nutritivo , Fenómenos Fisiológicos Nutricionales del Lactante , Fibras de la Dieta/análisis , Hidrólisis , Lens (Planta)/química , Triticum/química , Cicer/química , Oryza/química , Pisum sativum/químicaRESUMEN
This study aimed to provide an updated critical review of the nutritional, therapeutic, biotechnological, and environmental aspects involved in the exploitation of Chenopodium quinoa Willd and its biowastes. Special attention was devoted to investigations of the therapeutic and nutritional properties of different parts and varieties of quinoa as well as of the use of the biowaste resulting from the processing of grain. Studies published from 2018 onward were prioritized. Extracts and fractions obtained from several Chenopodium quinoa matrices showed antioxidant, antidiabetic, immunoregulatory, neuroprotective, and antimicrobial effects in in vitro and in vivo models and some clinical studies. The activities were attributed to the presence of phytochemicals such as polyphenols, saponins, peptides, polysaccharides, and dietary fibers. Quinoa wastes are abundant and low-cost sources of bioactive molecules for the development of new drugs, natural antioxidants, preservatives, dyes, emulsifiers, and carriers for food and cosmetics applications. Among the demands to be fulfilled in the coming years are the following: (1) isolation of new bioactive phytochemicals from quinoa varieties that are still underexploited; (2) optimization of green approaches to the sustainable recovery of compounds of industrial interest from quinoa by-products; and (3) well-conducted clinical trials to attest safety and efficacy of extracts and compounds.
Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/química , Antioxidantes/farmacología , Antioxidantes/química , Polifenoles , Fibras de la Dieta/análisis , PolisacáridosRESUMEN
The effects of high-pressure processing (HPP) (450 MPa/600 MPa/3 min) on the carotenoid and vitamin E contents of smoothies made from strawberry, orange juice, banana and apple, and the same smoothies enriched with dietary fiber from discarded carrots were compared. The contents and bioaccessibilities of these compounds were also evaluated over the course of 28 days at 4 °C. The application of HPP in the formulations significantly increased the contents of ß-cryptoxanthin, α-carotene and ß-carotene and retained the contents of lutein, zeaxanthin and vitamin E compared to untreated samples. A decreasing trend in the content of each compound was observed with an increase in storage time. The application of HPP initially led to reductions in the bioaccessibility of individual compounds. However, overall, during storage, there was an increase in bioaccessibility. This suggests that HPP influences cell structure, favoring compound release and micelle formation. HPP is a sustainable method that preserves or enhances carotenoid extractability in ready-to-drink fruit beverages. Furthermore, the incorporation of dietary fiber from carrot processing discards supports circular economy practices and enhances the health potential of the product.
Asunto(s)
Daucus carota , Daucus carota/metabolismo , Vitamina E/análisis , Frutas/química , Carotenoides/análisis , Fibras de la Dieta/análisisRESUMEN
The present investigation finds that Chondracanthus chamissoi seaweed abounding in Peruvian coasts is characterized by its nutritional composition, total polyphenols, antioxidant capacity, and functional properties such as water-holding capacity (WHC), oil-holding capacity (OHC), and swelling capacity (SC). Boiling and steaming were applied before dehydration to evaluate the effect of these thermal treatments, keeping a control sample. The results indicated that the control dried seaweed sample presented 20.2 ± 0.16 g/100 g dw of proteins, 20.0 ± 0.61 g/100 g dw of ash, and 56.6 ± 0.08 g/100 g dw of total dietary fiber. In addition, the control sample presented 1.6 ± 0.07 mg GAE/g of total polyphenol content and 2.4 ± 0.30 mM Trolox mg/g of antioxidant capacity. In boiling samples, the apparent nutrient retention factors for proteins, fat, and dietary fiber are 96, 47 and 74%, respectively. In the steaming sample, the values were 102, 29, and 92%. The boiling before dehydration causes a significant decrease (p < 0.05) in total polyphenols and increases carbohydrates. Steaming before dehydration, a significant (p < 0.05) increase occurs in carbohydrates without significantly altering the concentration of total polyphenols. Regarding the functional properties, C. chamissoi presents 17.6 ± 0.15 g/g of WHC, 2.4 ± 0.78 g/g of OHC, and 9.8 ± 0.75 mL/g of SC. Boiling produces an increase in WHC and OHC; steaming does not affect the properties of the control sample.C. chamissoi seaweed collected from the coasts of Perú is an excellent alternative for use as food and ingredients in processed foods for human consumption.
Asunto(s)
Antioxidantes , Algas Marinas , Humanos , Antioxidantes/análisis , Algas Marinas/química , Perú , Deshidratación , Polifenoles/análisis , Verduras , Carbohidratos , Fibras de la Dieta/análisisRESUMEN
Arabinoxylans (AXs) are compounds with high nutritional value and applicability, including prebiotics or supplementary ingredients, in food manufacturing industries. Unfortunately, the recovery of AXs may require advanced separation and integrated strategies. Here, an analysis of the emerging techniques to extract AXs from cereals and their by-products is discussed. This review covers distinct methods implemented over the last 2-3 years, identifying that the type of method, extraction source, AX physicochemical properties and pre-treatment conditions are the main factors influencing the recovery yield. Alkaline extraction is among the most used methods nowadays, mostly due to its simplicity and high recovery yield. Concurrently, recovered AXs applied in food applications is timely reviewed, such as potential bread ingredient, prebiotic and as a wall material for probiotic encapsulation, in beer and non-alcoholic beverage manufacturing, complementary ingredient in bakery products and cookies, improvers in Chinese noodles, 3D food printing and designing of nanostructures for delivery platforms.
Asunto(s)
Fibras de la Dieta , Probióticos , Fibras de la Dieta/análisis , Prebióticos/análisis , Xilanos/químicaRESUMEN
Heavy metal exposure is a growing concern due to its adverse effects on human health, including the disruption of gut microbiota composition and function. Dietary fibers have been shown to positively impact the gut microbiota and could mitigate some of the heavy metal negative effects. This study aimed to investigate the effects of different heavy metals (As, Cd and Hg in different concentrations) on gut microbiota in the presence and absence of different dietary fibers that included fructooligosaccharides, pectin, resistant starch, and wheat bran. We observed that whereas heavy metals impaired fiber fermentation outcomes for some fiber types, the presence of fibers generally protected gut microbial communities from heavy metal-induced changes, especially for As and Cd. Notably, the protective effects varied depending on fiber types, and heavy metal type and concentration and were overall stronger for wheat bran and pectin than other fiber types. Our findings suggest that dietary fibers play a role in mitigating the adverse effects of heavy metal exposure on gut microbiota health and may have implications for the development of dietary interventions to reduce dysbiosis associated with heavy metal exposure. Moreover, fiber-type specific outcomes highlight the importance of evidence-based selection of prebiotic dietary fibers to mitigate heavy metal toxicity to the gut microbiota.