Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.062
Filtrar
1.
Biomed Res Int ; 2024: 4631351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166218

RESUMEN

Campylobacter is a zoonotic foodborne pathogen that is often linked with gastroenteritis and other extraintestinal infections in humans. This study is aimed at determining the genetic determinants of virulence-encoding genes responsible for flagellin motility protein A (flaA), Campylobacter adhesion to fibronectin F (cadF), Campylobacter invasion antigen B (ciaB) and cytolethal distending toxin (cdt) A (cdtA) in Campylobacter species. A total of 29 Campylobacter coli isolates (16 from cattle, 9 from chicken, and 4 from water samples) and 74 Campylobacter jejuni isolates (38 from cattle, 30 from chicken, and 6 from water samples) described in an earlier study in Kajiado County, Kenya, were examined for the occurrence of virulence-associated genes using polymerase chain reaction (PCR) and amplicon sequencing. The correlations among virulence genes were analyzed using Pearson's correlation coefficient (R) method. Among the 103 Campylobacter strains screened, 89 were found to harbour a single or multiple virulence gene(s), giving an overall prevalence of 86.4%. C. jejuni strains had the highest prevalence of multivirulence at 64.9% (48/74), compared to C. coli (58.6%, 17/29). The ciaB and flaA genes were the most common virulence genes detected in C. jejuni (81.1% [60/74] and 62.2% [46/74], respectively) and in C. coli (each at 62.1%; 18/29). Campylobacter isolates from chicken harboured the most virulence-encoding genes. C. jejuni strains from chicken and cattle harboured the highest proportions of the cdtA and ciaB genes, respectively. All the C. coli strains from water samples harboured the cadF and flaA genes. The results obtained further revealed a significant positive correlation between cadF and flaA (R = 0.733). C. jejuni and C. coli strains from cattle, chicken, and water harbour virulence markers responsible for motility/colonization, invasion, adherence, and toxin production, evoking their important role in campylobacteriosis development among humans and livestock. The identification of cattle, chicken, and water samples as reservoirs of virulent Campylobacter spp. highlights the possible risk to human health. These data on some virulence genes of Campylobacter will assist food safety and public health officials in formulating policy statements.


Asunto(s)
Campylobacter coli , Campylobacter jejuni , Pollos , Heces , Animales , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidad , Campylobacter jejuni/aislamiento & purificación , Pollos/microbiología , Bovinos , Campylobacter coli/genética , Campylobacter coli/patogenicidad , Campylobacter coli/aislamiento & purificación , Virulencia/genética , Heces/microbiología , Kenia/epidemiología , Factores de Virulencia/genética , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/veterinaria , Microbiología del Agua , Flagelina/genética , Humanos , Proteínas Bacterianas/genética
3.
Commun Biol ; 7(1): 1029, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169227

RESUMEN

Several bacterial flagellins are O-glycosylated with nonulosonic acids on surface-exposed Serine/Threonine residues by Maf glycosyltransferases. The Clostridium botulinum Maf glycosyltransferase (CbMaf) displays considerable donor substrate promiscuity, enabling flagellin O-glycosylation with N-acetyl neuraminic acid (Neu5Ac) and 3-deoxy-D-manno-octulosonic acid in the absence of the native nonulosonic acid, a legionaminic acid derivative. Here, we have explored the sequence/structure attributes of the acceptor substrate, flagellin, required by CbMaf glycosyltransferase for glycosylation with Neu5Ac and KDO, by co-expressing C. botulinum flagellin constructs with CbMaf glycosyltransferase in an E. coli strain producing cytidine-5'-monophosphate (CMP)-activated Neu5Ac, and employing intact mass spectrometry analysis and sialic acid-specific flagellin biotinylation as readouts. We found that CbMaf was able to glycosylate mini-flagellin constructs containing shortened alpha-helical secondary structural scaffolds and reduced surface-accessible loop regions, but not non-cognate flagellin. Our experiments indicated that CbMaf glycosyltransferase recognizes individual Ser/Thr residues in their local surface-accessible conformations, in turn, supported in place by the secondary structural scaffold. Further, CbMaf glycosyltransferase also robustly glycosylated chimeric proteins constructed by grafting cognate mini-flagellin sequences onto an unrelated beta-sandwich protein. Our recombinant engineering experiments highlight the potential of CbMaf glycosyltransferase in future glycoengineering applications, especially for the neo-O-sialylation of proteins, employing E. coli strains expressing CMP-Neu5Ac (and not CMP-KDO).


Asunto(s)
Clostridium botulinum , Flagelina , Glicosiltransferasas , Especificidad por Sustrato , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Flagelina/metabolismo , Flagelina/genética , Flagelina/química , Clostridium botulinum/enzimología , Clostridium botulinum/metabolismo , Clostridium botulinum/genética , Glicosilación , Escherichia coli/genética , Escherichia coli/metabolismo , Azúcares Ácidos/metabolismo , Ingeniería de Proteínas , Ácido N-Acetilneuramínico/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Ácidos Siálicos
4.
Nat Commun ; 15(1): 6680, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107284

RESUMEN

Synergistic combinations of immunotherapeutic agents can improve the performance of anti-cancer therapies but may lead to immune-mediated adverse effects. These side-effects can be overcome by using a tumor-specific delivery system. Here, we report a method of targeted immunotherapy using an attenuated Salmonella typhimurium (SAM-FC) engineered to release dual payloads: cytolysin A (ClyA), a cytolytic anti-cancer agent, and Vibrio vulnificus flagellin B (FlaB), a potent inducer of anti-tumor innate immunity. Localized secretion of ClyA from SAM-FC induces immunogenic cancer cell death and promotes release of tumor-specific antigens and damage-associated molecular patterns, which establish long-term antitumor memory. Localized secretion of FlaB promotes phenotypic and functional remodeling of intratumoral macrophages that markedly inhibits tumor metastasis in mice bearing tumors of mouse and human origin. Both primary and metastatic tumors from bacteria-treated female mice are characterized by massive infiltration of anti-tumorigenic innate immune cells and activated tumor-specific effector/memory T cells; however, the percentage of immunosuppressive cells is low. Here, we show that SAM-FC induces functional reprogramming of the tumor immune microenvironment by activating both the innate and adaptive arms of the immune system and can be used for targeted delivery of multiple immunotherapeutic payloads for the establishment of potent and long-lasting antitumor immunity.


Asunto(s)
Inmunoterapia , Salmonella typhimurium , Microambiente Tumoral , Animales , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Salmonella typhimurium/inmunología , Salmonella typhimurium/efectos de los fármacos , Femenino , Ratones , Humanos , Inmunoterapia/métodos , Línea Celular Tumoral , Inmunidad Innata/efectos de los fármacos , Ratones Endogámicos C57BL , Flagelina/inmunología , Vibrio vulnificus/inmunología , Vibrio vulnificus/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación
5.
Elife ; 122024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046447

RESUMEN

The Arabidopsis thaliana FLAGELLIN-SENSITIVE2 (FLS2), a typical receptor kinase, recognizes the conserved 22 amino acid sequence in the N-terminal region of flagellin (flg22) to initiate plant defense pathways, which was intensively studied in the past decades. However, the dynamic regulation of FLS2 phosphorylation at the plasma membrane after flg22 recognition needs further elucidation. Through single-particle tracking, we demonstrated that upon flg22 treatment the phosphorylation of Ser-938 in FLS2 impacts its spatiotemporal dynamics and lifetime. Following Förster resonance energy transfer-fluorescence lifetime imaging microscopy and protein proximity indexes assays revealed that flg22 treatment increased the co-localization of GFP-tagged FLS2/FLS2S938D but not FLS2S938A with AtRem1.3-mCherry, a sterol-rich lipid marker, indicating that the phosphorylation of FLS2S938 affects FLS2 sorting efficiency to AtRem1.3-associated nanodomains. Importantly, we found that the phosphorylation of Ser-938 enhanced flg22-induced FLS2 internalization and immune responses, demonstrating that the phosphorylation may activate flg22-triggered immunity through partitioning FLS2 into functional AtRem1.3-associated nanodomains, which fills the gap between the FLS2S938 phosphorylation and FLS2-mediated immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flagelina , Proteínas Quinasas , Imagen Individual de Molécula , Fosforilación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Flagelina/metabolismo , Flagelina/farmacología , Inmunidad de la Planta , Transferencia Resonante de Energía de Fluorescencia , Membrana Celular/metabolismo
6.
Viruses ; 16(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39066226

RESUMEN

Both bacteria product flagellin and macrophages are implicated in HIV-1 infection/disease progression. However, the impact of their interaction on HIV-1 infection and the associated mechanisms remain to be determined. We thus examined the effect of the flagellins on HIV-1 infection of primary human macrophages. We observed that the pretreatment of macrophages with the flagellins from the different bacteria significantly inhibited HIV-1 infection. The mechanistic investigation showed that the flagellin treatment of macrophages downregulated the major HIV-1 entry receptors (CD4 and CCR5) and upregulated the CC chemokines (MIP-1α, MIP-1ß and RANTES), the ligands of CCR5. These effects of the flagellin could be compromised by a toll-like receptor 5 (TLR5) antagonist. Given the important role of flagellin as a vaccine adjuvant in TLR5 activation-mediated immune regulation and in HIV-1 infection of macrophages, future investigations are necessary to determine the in vivo impact of flagellin-TLR5 interaction on macrophage-mediated innate immunity against HIV-1 infection and the effectiveness of flagellin adjuvant-based vaccines studies.


Asunto(s)
Flagelina , Infecciones por VIH , VIH-1 , Macrófagos , Internalización del Virus , Humanos , Bacterias/química , Antígenos CD4/metabolismo , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CCL5/inmunología , Quimiocinas CC/metabolismo , Quimiocinas CC/inmunología , Flagelina/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/fisiología , Macrófagos/inmunología , Macrófagos/virología , Receptores CCR5/metabolismo , Receptor Toll-Like 5/metabolismo , Internalización del Virus/efectos de los fármacos
7.
Microbiome ; 12(1): 141, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075559

RESUMEN

BACKGROUND: Elevated systemic antibody responses against gut microbiota flagellins are observed in both Crohn's disease (CD) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggesting potential serological biomarkers for diagnosis. However, flagellin-specific antibody repertoires and functional roles in the diseases remain incompletely understood. Bacterial flagellins can be categorized into three types depending on their interaction with toll-like receptor 5 (TLR5): (1) "stimulator" and (2) "silent" flagellins, which bind TLR5 through a conserved N-terminal motif, with only stimulators activating TLR5 (involving a C-terminal domain); (3) "evader" flagellins of pathogens, which entirely circumvent TLR5 activation via mutations in the N-terminal TLR5 binding motif. RESULTS: Here, we show that both CD and ME/CFS patients exhibit elevated antibody responses against distinct regions of flagellins compared to healthy individuals. N-terminal binding to Lachnospiraceae flagellins was comparable in both diseases, while C-terminal binding was more prevalent in CD. N-terminal antibody-bound flagellin sequences were similar across CD and ME/CFS, resembling "stimulator" and "silent" flagellins more than evaders. However, C-terminal antibody-bound flagellins showed a higher resemblance to the stimulator than to silent flagellins in CD, which was not observed in ME/CFS. CONCLUSIONS: These findings suggest that antibody binding to the N-terminal domain of stimulator and silent flagellins may impact TLR5 activation in both CD and ME/CFS patients. Blocking this interaction could lead commensal bacteria to be recognized as pathogenic evaders, potentially contributing to dysregulation in both diseases. Furthermore, elevated antibody binding to the C-terminal domain of stimulator flagellins in CD may explain pathophysiological differences between the diseases. Overall, these results highlight the diagnostic potential of these antibody responses and lay a foundation for deeper mechanistic studies of flagellin/TLR5 interactions and their impact on innate/adaptive immunity balance.


Asunto(s)
Enfermedad de Crohn , Síndrome de Fatiga Crónica , Flagelina , Microbioma Gastrointestinal , Receptor Toll-Like 5 , Flagelina/inmunología , Humanos , Síndrome de Fatiga Crónica/inmunología , Síndrome de Fatiga Crónica/microbiología , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/microbiología , Receptor Toll-Like 5/inmunología , Microbioma Gastrointestinal/inmunología , Femenino , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Masculino , Adulto , Formación de Anticuerpos/inmunología , Persona de Mediana Edad , Clostridiales/inmunología
8.
J Immunol Methods ; 531: 113701, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852836

RESUMEN

Flagellum-mediated motility is essential to Pseudomonas aeruginosa (P. aeruginosa) virulence. Antibody against flagellin reduces motility and inhibits the spread of the bacteria from the infection site. The standard soft-agar assay to demonstrate anti-flagella motility inhibition requires long incubation times, is difficult to interpret, and requires large amounts of antibody. We have developed a time-lapse video microscopy method to analyze anti-flagellin P. aeruginosa motility inhibition that has several advantages over the soft agar assay. Antisera from mice immunized with flagellin type A or B were incubated with Green Fluorescent Protein (GFP)-expressing P. aeruginosa strain PAO1 (FlaB+) and GFP-expressing P. aeruginosa strain PAK (FlaA+). We analyzed the motion of the bacteria in video taken in ten second time intervals. An easily measurable decrease in bacterial locomotion was observed microscopically within minutes after the addition of small volumes of flagellin antiserum. From data analysis, we were able to quantify the efficacy of anti-flagellin antibodies in the test serum that decreased P. aeruginosa motility. This new video microscopy method to assess functional activity of anti-flagellin antibodies required less serum, less time, and had more robust and reproducible endpoints than the standard soft agar motility inhibition assay.


Asunto(s)
Anticuerpos Antibacterianos , Flagelos , Flagelina , Sueros Inmunes , Microscopía por Video , Pseudomonas aeruginosa , Flagelina/inmunología , Pseudomonas aeruginosa/inmunología , Animales , Sueros Inmunes/inmunología , Anticuerpos Antibacterianos/inmunología , Flagelos/inmunología , Ratones , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología
9.
Plant J ; 119(4): 1671-1684, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924650

RESUMEN

FLAGELLIN SENSING 2 (FLS2) encodes a pattern recognition receptor that perceives bacterial flagellin. While putative FLS2 orthologs are broadly conserved in plants, their functional characterization remains limited. Here, we report the identification of orthologs in cucumber (Cucumis sativus) and melon (C. melo), named CsFLS2 and CmFLS2, respectively. Homology searching identified CsFLS2, and virus-induced gene silencing (VIGS) demonstrated that CsFLS2 is required for flg22-triggered ROS generation. Interestingly, genome re-sequencing of melon cv. Lennon and subsequent genomic PCR revealed that Lennon has two CmFLS2 haplotypes, haplotype I encoding full-length CmFLS2 and haplotype II encoding a truncated form. We show that VIGS-mediated knockdown of CmFLS2 haplotype I resulted in a significant reduction in both flg22-triggered ROS generation and immunity to a bacterial pathogen in melon cv. Lennon. Remarkably, genomic PCR of CmFLS2 revealed that 68% of tested commercial melon cultivars possess only CmFLS2 haplotype II: these cultivars thus lack functional CmFLS2. To explore evolutionary aspects of CmFLS2 haplotype II occurrence, we genotyped the CmFLS2 locus in 142 melon accessions by genomic PCR and analyzed 437 released sequences. The results suggest that CmFLS2 haplotype II is derived from C. melo subsp. melo. Furthermore, we suggest that the proportion of CmFLS2 haplotype II increased among the improved melo group compared with the primitive melo group. Collectively, these findings suggest that the deleted FLS2 locus generated in the primitive melo subspecies expanded after domestication, resulting in the spread of commercial melon cultivars defective in flagellin recognition, which is critical for bacterial immunity.


Asunto(s)
Flagelina , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domesticación , Haplotipos , Cucurbitaceae/genética , Cucurbitaceae/microbiología , Cucurbitaceae/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Filogenia , Eliminación de Secuencia
10.
mBio ; 15(7): e0104824, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38874412

RESUMEN

More than half of women will experience a urinary tract infection (UTI) with most cases caused by uropathogenic Escherichia coli (UPEC). Bacterial swimming motility enhances UPEC pathogenicity, resulting in more severe disease outcomes including kidney infection. Surprisingly, the connection between motility and iron limitation is mostly unexplored despite the lack of free iron available in the host. We sought to investigate a potential connection between iron restriction and regulation of motility in UPEC. We cultured E. coli CFT073, a prototypical UPEC strain, under iron limitation and observed that CFT073 had elevated fliC (flagella) promoter activity, and this iron-specific response was repressed by the addition of exogenous iron. We confirmed increased flagellar expression in CFT073 by measuring fliC transcript, FliC protein, and surface-expressed flagella under iron-limited conditions. Interestingly, known motility regulator flhDC did not have altered transcription under these conditions. To define the regulatory mechanism of this response, we constructed single knockouts of eight master regulators and found the iron-regulated response was lost in crp, arcA, and fis mutants. Thus, we focused on the five genes regulated by all three regulators. Of the five genes knocked out, the iron-regulated motility response was most strongly dysregulated in the lpdA mutant, which also resulted in significantly lowered fitness in the murine model of ascending UTI, both against the WT and a non-motile fliC mutant. Collectively, we demonstrated that iron-mediated motility in CFT073 is partially regulated by lpdA, which contributes to the understanding of how uropathogens differentially regulate motility mechanisms in the iron-restricted host. IMPORTANCE: Urinary tract infections (UTIs) are ubiquitous and responsible for over five billion dollars in associated health care costs annually. Both iron acquisition and motility are highly studied virulence factors associated with uropathogenic Escherichia coli (UPEC), the main causative agent of uncomplicated UTI. This work is innovative by providing mechanistic insight into the synergistic relationship between these two critical virulence properties. Here, we demonstrate that iron limitation has pleiotropic effects with consequences that extend beyond metabolism and impact other virulence mechanisms. Indeed, targeting iron acquisition as a therapy may lead to an undesirable enhancement of UPEC pathogenesis through increased motility. It is vital to understand the full breadth of UPEC pathogenesis to adequately respond to this common infection, especially with the increase of antibiotic-resistant pathogens.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Regulación Bacteriana de la Expresión Génica , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Femenino , Ratones , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/genética , Flagelos/metabolismo , Flagelina , Hierro/metabolismo , Locomoción , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/metabolismo , Escherichia coli Uropatógena/patogenicidad , Virulencia
11.
Anim Sci J ; 95(1): e13972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38923622

RESUMEN

High grain feeding or weaning, which could compromise the rumen epithelium by increasing ruminal short-chain fatty acid (SCFA) concentrations with pH reduction, is associated with high levels of ruminal toll-like receptor 5 (TLR5). This study aimed to determine the role of TLR5 in the rumen epithelium. Immunohistochemistry revealed that TLR5 was localized in cells on the basal side (i.e., basal and spinous layers) rather than in the granular layer in the rumen epithelium, where tight junctions are most potent, in pre- and post-weaning calves (n = 9). Primary bovine rumen epithelial cells (BRECs) obtained from Holstein cows (n = 3) were cultured to investigate the factors that upregulate TLR5; however, SCFA, low pH (pH 5.6), BHBA, L-lactate, D-lactate, and LPS did not upregulate TLR5 gene expression in BREC. Primary BREC treated with flagellin (TLR5 ligand) had higher expression of interleukin-1ß (IL-1ß) (P < 0.05) than BREC treated with vehicle. In addition, BREC treated with IL-1ß had higher expression of antimicrobial peptides and C-X-C motif chemokine ligand 8 than BREC treated with vehicle (P < 0.05). These results suggest that ruminal TLR5 may recognize epithelial disruption via flagellin and mediate the immune response via IL-1ß during high-grain feeding or weaning.


Asunto(s)
Células Epiteliales , Expresión Génica , Interleucina-1beta , Interleucina-8 , Rumen , Receptor Toll-Like 5 , Animales , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo , Rumen/metabolismo , Bovinos/metabolismo , Células Epiteliales/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Células Cultivadas , Interleucina-8/metabolismo , Interleucina-8/genética , Destete , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Flagelina/farmacología , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , Ligandos , Regulación hacia Arriba
12.
Curr Biol ; 34(13): 2932-2947.e7, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38897200

RESUMEN

Many bacteria glycosylate flagellin on serine or threonine residues using pseudaminic acid (Pse) or other sialic acid-like donor sugars. Successful reconstitution of Pse-dependent sialylation by the conserved Maf-type flagellin glycosyltransferase (fGT) may require (a) missing component(s). Here, we characterize both Maf paralogs in the Gram-negative bacterium Shewanella oneidensis MR-1 and reconstitute Pse-dependent glycosylation in heterologous hosts. Remarkably, we uncovered distinct acceptor determinants and target specificities for each Maf. Whereas Maf-1 uses its C-terminal tetratricopeptide repeat (TPR) domain to confer flagellin acceptor and O-glycosylation specificity, Maf-2 requires the newly identified conserved specificity factor, glycosylation factor for Maf (GlfM), to form a ternary complex with flagellin. GlfM orthologs are co-encoded with Maf-2 in Gram-negative and Gram-positive bacteria and require an invariant aspartate in their four-helix bundle to function with Maf-2. Thus, convergent fGT evolution underlies distinct flagellin-binding modes in tripartite versus bipartite systems and, consequently, distinct O-glycosylation preferences of acceptor serine residues with Pse.


Asunto(s)
Flagelina , Flagelina/metabolismo , Flagelina/genética , Glicosilación , Shewanella/metabolismo , Shewanella/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Bacterias Grampositivas/metabolismo , Bacterias Grampositivas/genética , Evolución Molecular
13.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830808

RESUMEN

Although the genus Aeromonas inhabits the natural environment, it has also been isolated from hospital patient specimens as a causative agent of Aeromonas infections. However, it is not known whether clinical strains live in the natural environment, and if these strains have acquired antimicrobial resistance. In this study, we performed the typing of flagellin A gene (flaA) of clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using Polymerase Chain Reaction (PCR) assay with newly designed primers. Detection rates of the clinical and environmental flaA types of A. hydrophila were 66.7% and 88.2%, and the corresponding rates for A. veronii biovar sobria were 66.7% and 90.9%. The PCR assays could significantly discriminate between clinical and environmental strains of both species in approximately 4 h. Also, among the 63 clinical Aeromonas strains used, only one extended-spectrum ß-lactamase-producing bacteria, no plasmid-mediated quinolone resistance bacteria, and only four multidrug-resistant bacteria were detected. Therefore, the PCR assays could be useful for the rapid diagnosis of these Aeromonas infections and the monitoring of clinical strain invasion into water-related facilities and environments. Also, the frequency of drug-resistant Aeromonas in clinical isolates from Okinawa Prefecture, Japan, appeared to be low.


Asunto(s)
Aeromonas hydrophila , Flagelina , Infecciones por Bacterias Gramnegativas , Reacción en Cadena de la Polimerasa , Aeromonas hydrophila/genética , Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/aislamiento & purificación , Humanos , Infecciones por Bacterias Gramnegativas/microbiología , Reacción en Cadena de la Polimerasa/métodos , Flagelina/genética , Aeromonas veronii/genética , Aeromonas veronii/aislamiento & purificación , Aeromonas veronii/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Microbiología Ambiental
14.
Nat Commun ; 15(1): 5240, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897989

RESUMEN

Like for many bacteria, flagella are crucial for Campylobacter jejuni motility and virulence. Biogenesis of the flagellar machinery requires hierarchical transcription of early, middle (RpoN-dependent), and late (FliA-dependent) genes. However, little is known about post-transcriptional regulation of flagellar biogenesis by small RNAs (sRNAs). Here, we characterized two sRNAs with opposing effects on C. jejuni filament assembly and motility. We demonstrate that CJnc230 sRNA (FlmE), encoded downstream of the flagellar hook protein, is processed from the RpoN-dependent flgE mRNA by RNase III, RNase Y, and PNPase. We identify mRNAs encoding a flagella-interaction regulator and the anti-sigma factor FlgM as direct targets of CJnc230 repression. CJnc230 overexpression upregulates late genes, including the flagellin flaA, culminating in longer flagella and increased motility. In contrast, overexpression of the FliA-dependent sRNA CJnc170 (FlmR) reduces flagellar length and motility. Overall, our study demonstrates how the interplay of two sRNAs post-transcriptionally fine-tunes flagellar biogenesis through balancing of the hierarchically-expressed components.


Asunto(s)
Proteínas Bacterianas , Campylobacter jejuni , Flagelos , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano , ARN Pequeño no Traducido , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Flagelina/metabolismo , Flagelina/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Ribonucleasa III/metabolismo , Ribonucleasa III/genética
15.
Nat Commun ; 15(1): 3762, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704378

RESUMEN

Plants initiate specific defense responses by recognizing conserved epitope peptides within the flagellin proteins derived from bacteria. Proteolytic cleavage of epitope peptides from flagellin by plant apoplastic proteases is thought to be crucial for the perception of the epitope by the plant receptor. However, the identity of the plant proteases involved in this process remains unknown. Here, we establish an efficient identification system for the target proteases in Arabidopsis apoplastic fluid; the method employs native two-dimensional electrophoresis followed by an in-gel proteolytic assay using a fluorescence-quenching peptide substrate. We designed a substrate to specifically detect proteolytic activity at the C-terminus of the flg22 epitope in flagellin and identified two plant subtilases, SBT5.2 and SBT1.7, as specific proteases responsible for the C-terminal cleavage of flg22. In the apoplastic fluid of Arabidopsis mutant plants deficient in these two proteases, we observe a decrease in the C-terminal cleavage of the flg22 domain from flagellin, leading to a decrease in the efficiency of flg22 epitope liberation. Consequently, defensive reactive oxygen species (ROS) production is delayed in sbt5.2 sbt1.7 double-mutant leaf disks compared to wild type following flagellin exposure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Epítopos , Flagelina , Especies Reactivas de Oxígeno , Subtilisinas , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Epítopos/inmunología , Epítopos/metabolismo , Flagelina/metabolismo , Flagelina/inmunología , Mutación , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Subtilisinas/metabolismo , Subtilisinas/genética
16.
Microb Ecol ; 87(1): 65, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695873

RESUMEN

Aeromonas hydrophila is an opportunistic motile pathogen with a broad host range, infecting both terrestrial and aquatic animals. Environmental and geographical conditions exert selective pressure on both geno- and phenotypes of pathogens. Flagellin, directly exposed to external environments and containing important immunogenic epitopes, may display significant variability in response to external conditions. In this study, we conducted a comparative analysis of ~ 150 A. hydrophila genomes, leading to the identification of six subunits of the flagellin gene (fla-1 to fla-4, flaA, and flaB). Individual strains harbored different composition of flagellin subunits and copies. The composition of subunits showed distinct patterns depending on environmental sources. Strains from aquatic environments were mainly comprised of fla-1 to fla-4 subunits, while terrestrial strains predominated in groups harboring flaA and flaB subunits. Each flagellin showed varying levels of expression, with flaA and flaB demonstrating significantly higher expression compared to others. One of the chemotaxis pathways that control flagellin movement through a two-component system was significantly upregulated in flaA(+ 1)/flaB(+ 1) group, whereas flaA and flaB showed different transcriptomic expressions. The genes positively correlated with flaA expression were relevant to biofilm formation and bacterial chemotaxis, but flaB showed a negative correlation with the genes in ABC transporters and quorum sensing pathway. However, the expression patterns of fla-2 to fla-4 were identical. This suggests various types of flagellin subunits may have different biological functions. The composition and expression levels of flagellin subunits could provide valuable insights into the adaptation of A. hydrophila and the differences among strains in response to various external environments.


Asunto(s)
Aeromonas hydrophila , Flagelina , Transcriptoma , Flagelina/genética , Aeromonas hydrophila/genética , Aeromonas hydrophila/fisiología , Filogeografía , Adaptación Fisiológica/genética , Filogenia , Biopelículas/crecimiento & desarrollo
17.
J Agric Food Chem ; 72(22): 12673-12684, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38772747

RESUMEN

Biogenic selenium nanoparticles (SeNPs) are the most favorable Se form for nutritional supplementation due to their high stability, low toxicity, and high activity. However, the interaction between the surface-binding proteins and their stable biogenic SeNPs, as well as their impact on the stability and bioavailability of SeNPs, remains to be understood. In vitro stabilization experiments revealed an amino acid segment (F(235-386)) in Rahnella aquatilis' flagellin FliC, with surfactant-like properties, stabilizing SeNPs under harsh conditions. FliC and F(235-386) were employed as stabilizers to synthesize SeNPs (FliC@SeNPs and F(235-386)@SeNPs), and surface chemistry analysis revealed coordination reactions between the proteins and Se atoms on the surface of SeNPs. Both FliC and F(235-386) enhanced SeNPs uptake in wheat seedlings but reduced it in bacteria and yeast. This study highlights FliC's core function in stabilizing SeNPs and enhancing their bioavailability, paving the way for agricultural and nutritional applications.


Asunto(s)
Disponibilidad Biológica , Flagelina , Nanopartículas , Selenio , Tensoactivos , Selenio/química , Selenio/metabolismo , Flagelina/química , Flagelina/metabolismo , Tensoactivos/química , Tensoactivos/metabolismo , Nanopartículas/química , Triticum/química , Triticum/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
18.
J Food Prot ; 87(7): 100308, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815809

RESUMEN

Human gastrointestinal infections caused by Campylobacter species is the second most important foodborne illness after salmonellosis worldwide. Poultry represent one of the main sources of Campylobacter organisms. In the present study, the short variable region of flagellin gene (SVR-flaA) typing was carried out to determine the variation among the circulating strains of Campylobacter jejuni and Campylobacter coli. The C. jejuni and C. coli isolated from poultry and poultry meat were screened for the presence of virulence determinants like cadF, flaA, cdtB, and wlaN gene. The screening for wlaN gene is crucial in view of the fact that most patients with Guillian Barre's (GB) syndrome with a preceding history of diarrheal illness have been found to harbor wlaN gene-positive C jejuni strains. Out of the 200 samples comprising poultry meat and cloacal swabs, 21.5% of samples were found to harbor Campylobacter spp. of which 2.5% were Campylobacter jejuni, and 19% were confirmed as Campylobacter coli. The cadF, flaA, cdtB virulence genes were detected in all the Campylobacter spp. isolated in the present study. The presence of the wlaN gene in the Campylobacter jejuni isolated in the present study may pose a public health threat with long-term human health implications. The SVR-flaA typing of twelve Campylobacter isolates obtained in the present study revealed that Campylobacter coli flaA sequence OL471375 is a new strain with a novel allele type 1,675 and peptide sequence 5 which stands deposited in pubMLST database for Campylobacter. The other flaA-SVR gene sequences identified in this study were OL471369, OL471370, OL471371, OL471372, OL471373, and OL471374. Among twelve Campylobacter spp., three distinct DdeI-RFLP patterns were observed, each varying in size from 100 to 1,000 base pairs. Antimicrobial profiling of the Campylobacter spp. isolated in the present study revealed that 50% of the strains were multidrug resistant. All the Campylobacter spp. were resistant to ciprofloxacin (CIP), ampicillin (AMP), penicillin (PEN), and nalidixic acid (NAL) whereas 57.1% of strains were resistant to tetracycline (TET) and erythromycin (ERY) 28% to amoxicillin (AMX) and enrofloxacin (ENO), 85% to amikacin (AMK). The high degree of resistance to fluoroquinolones observed in the present study is crucial in view of fluoroquinolones being drugs of choice for the treatment of human Campylobacter infections.


Asunto(s)
Campylobacter coli , Campylobacter jejuni , Farmacorresistencia Bacteriana Múltiple , Flagelina , Aves de Corral , Animales , Flagelina/genética , Humanos , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/genética , India , Campylobacter coli/efectos de los fármacos , Campylobacter coli/genética , Virulencia , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Factores de Virulencia/genética , Campylobacter/efectos de los fármacos , Campylobacter/genética , Carne/microbiología , Variación Genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
19.
Vet Microbiol ; 294: 110131, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805917

RESUMEN

Outer membrane vesicles (OMVs) are membranous structures frequently observed in Gram-negative bacteria that contain bioactive substances. These vesicles are rich in bacterial antigens that can activate the host's immune system, making them a promising candidate vaccine to prevent and manage bacterial infections. The aim of this study was to assess the immunogenicity and protective efficacy of OMVs derived from Salmonella enterica serovar Typhimurium and S. Choleraesuis, while also focusing on enhancing OMV production. Initial experiments showed that OMVs from wild-type strains did not provide complete protection against homologous Salmonella challenge, possible due to the presence of flagella in the purified OMVs samples, which may elicit an unnecessary immune response. To address this, flagellin-deficient mutants of S. Typhimurium and S. Choleraesuis were constructed, designated rSC0196 and rSC0199, respectively. These mutants exhibited reduced cell motility and their OMVs were found to be flagellin-free. Immunization with non-flagellin OMVs derived from rSC0196 induced robust antibody responses and improved survival rates in mice, as compared to the OMVs derived from the wild-type UK-1. In order to enhance OMV production, deletions of ompA or tolR were introduced into rSC0196. The deletion of tolR not only increase the yield of OMVs, but also conferred complete protection against homologous S. Typhimurium challenge in mice. Collectively, these findings indicate that the flagellin-deficient OMVs with a tolR mutation have the potential to serve as a versatile vaccine platform, capable of inducing broad-spectrum protection against significant pathogens.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Ratones Endogámicos BALB C , Vacunas contra la Salmonella , Salmonella typhimurium , Animales , Salmonella typhimurium/inmunología , Salmonella typhimurium/genética , Ratones , Vacunas contra la Salmonella/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Femenino , Flagelina/inmunología , Flagelina/genética , Salmonelosis Animal/prevención & control , Salmonelosis Animal/microbiología , Salmonelosis Animal/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Membrana Externa Bacteriana/inmunología , Salmonella/inmunología , Salmonella/genética , Inmunogenicidad Vacunal , Antígenos Bacterianos/inmunología
20.
Vaccine ; 42(12): 3075-3083, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38584060

RESUMEN

As the major outer membrane protein (OMP) presents in the Pasteurella multocida envelope, OmpH was frequently expressed for laboratory assessments of its immunogenicity against P. multocida infections, but the results are not good. In this study, we modified OmpH with dendritic cell targeting peptide (Depeps) and/or Salmonella FliCd flagellin, and expressed three types of recombinant proteins with the MBP tag (rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, rFliC-OmpH-MBP). Assessments in mouse models revealed that vaccination with rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, or rFliC-OmpH-MBP induced significant higher level of antibodies as well as IFN-γ and IL-4 in murine sera than vaccination with rOmpH-MBP (P < 0.5). Vaccination with the three modified proteins also provided increased protection (rDepeps-FliC-OmpH-MBP, 70 %; rDepeps-OmpH-MBP, 50 %; rFliC-OmpH-MBP, 60 %) against P. multocida serotype D compared to vaccination with rOmpH-MBP (30 %). In mice vaccinated with different types of modified OmpHs, a significantly decreased bacterial strains were recovered from bloods, lungs, and spleens compared to rOmpH-MBP-vaccinated mice (P < 0.5). Notably, our assessments also demonstrated that vaccination with rDepeps-FliC-OmpH-MBP provided good protection against infections caused by a heterogeneous group of P. multocida serotypes (A, B, D). Our above findings indicate that modification with DCpep and Salmonella flagellin could be used as a promising strategy to improve vaccine effectiveness.


Asunto(s)
Infecciones por Pasteurella , Pasteurella multocida , Animales , Ratones , Serogrupo , Infecciones por Pasteurella/prevención & control , Flagelina/metabolismo , Proteínas de la Membrana Bacteriana Externa , Péptidos/metabolismo , Células Dendríticas , Vacunas Bacterianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...