Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.153
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39337270

RESUMEN

The cytoskeleton mediates fundamental cellular processes by organizing inter-organelle interactions. Pathogenic variants of inverted formin 2 (INF2) CAAX isoform, an actin assembly factor that is predominantly expressed in the endoplasmic reticulum (ER), are linked to focal segmental glomerulosclerosis (FSGS) and Charcot-Marie-Tooth (CMT) neuropathy. To investigate how pathogenic INF2 variants alter ER integrity, we used high-resolution live imaging of HeLa cells. Cells expressing wild-type (WT) INF2 showed a predominant tubular ER with perinuclear clustering. Cells expressing INF2 FSGS variants that cause mild and intermediate disease induced more sheet-like ER, a pattern similar to that seen for cells expressing WT-INF2 that were treated with actin and microtubule (MT) inhibitors. Dual CMT-FSGS INF2 variants led to more severe ER dysmorphism, with a diffuse, fragmented ER and coarse INF2 aggregates. Proper organization of both F-actin and MT was needed to modulate the tubule vs. sheet conformation balance, while MT arrays regulated spatial expansion of tubular ER in the cell periphery. Pathogenic INF2 variants also induced mitochondria fragmentation and dysregulated mitochondria distribution. Such mitochondrial abnormalities were more prominent for cells expressing CMT-FSGS compared to those with FSGS variants, indicating that the severity of the dysfunction is linked to the degree of cytoskeletal disorganization. Our observations suggest that pathogenic INF2 variants disrupt ER continuity by altering interactions between the ER and the cytoskeleton that in turn impairs inter-organelle communication, especially at ER-mitochondria contact sites. ER continuity defects may be a common disease mechanism involved in both peripheral neuropathy and glomerulopathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Retículo Endoplásmico , Forminas , Mitocondrias , Humanos , Retículo Endoplásmico/metabolismo , Forminas/metabolismo , Forminas/genética , Células HeLa , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Mitocondrias/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/genética , Actinas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/metabolismo
2.
Mol Biol Cell ; 35(11): ar137, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39259762

RESUMEN

Formin HOmology Domain 2-containing (FHOD) proteins are a subfamily of actin-organizing formins important for striated muscle development in many animals. We showed previously that absence of the sole FHOD protein, FHOD-1, from Caenorhabditis elegans results in thin body wall muscles with misshapen dense bodies that serve as sarcomere Z-lines. We demonstrate here that mutations predicted to specifically disrupt actin polymerization by FHOD-1 similarly disrupt muscle development, and that FHOD-1 cooperates with profilin PFN-3 for dense body morphogenesis, and with profilins PFN-2 and PFN-3 to promote body wall muscle growth. We further demonstrate that dense bodies in worms lacking FHOD-1 or PFN-2/PFN-3 are less stable than in wild-type animals, having a higher proportion of dynamic protein, and becoming distorted by prolonged muscle contraction. We also observe accumulation of actin and actin depolymerization factor/cofilin homologue UNC-60B in body wall muscle of these mutants. Such accumulations may indicate targeted disassembly of thin filaments dislodged from unstable dense bodies, possibly accounting for the abnormally slow growth and reduced body wall muscle strength in fhod-1 mutants. Overall, these results implicate FHOD protein-mediated actin assembly in forming stable sarcomere Z-lines, and identify profilin as a new contributor to FHOD activity in striated muscle development.


Asunto(s)
Actinas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Forminas , Contracción Muscular , Profilinas , Sarcómeros , Animales , Caenorhabditis elegans/metabolismo , Profilinas/metabolismo , Profilinas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Sarcómeros/metabolismo , Contracción Muscular/fisiología , Forminas/metabolismo , Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Mutación/genética , Desarrollo de Músculos/fisiología , Citoesqueleto de Actina/metabolismo , Músculo Estriado/metabolismo , Músculos/metabolismo , Factores Despolimerizantes de la Actina/metabolismo
3.
Front Biosci (Landmark Ed) ; 29(9): 327, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39344330

RESUMEN

BACKGROUND: Cathepsin C (CTSC) participates in the development of numerous cancers; however, its function in bladder cancer (BCa) remains largely unknown. METHODS: Bioinformatics prediction, quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay, and Western blot assay were used to determine CTSC expression in BCa tissues, paracancer tissues, BCa cells, and normal uroepithelial cells (SV-HUC-1). Colony formation, cell counting kit-8 (CCK-8), and Transwell assays were utilised to ascertain the involvement of CTSC in BCa. The effect of CTSC on BCa was further studied in vivo via animal experiments. RESULTS: CTSC exhibited a heightened expression in BCa cells and tissues; meanwhile, bladder urothelial carcinoma (BLCA) patients with enhanced CTSC expression had a remarkably reduced overall survival than those with low CTSC expression. The overexpression of CTSC substantially enhanced the activity, proliferation, migration, and invasion of BCa cells, whereas its suppression repressed the above biological phenotypes. CTSC could activate the Wnt/ß-catenin signalling pathway and upregulate diaphanous-related formin 3 (DIAPH3). CTSC overexpression combined with DIAPH3 knockdown partially reversed the impact of CTSC overexpression on the biological behaviour of BCa cells and the activation of the Wnt/ß-catenin signalling pathway. CONCLUSIONS: CTSC was upregulated in tissues and BCa cells, and high CTSC expression was associated with poor overall survival. CTSC could enhance the activity, proliferation, migration, and invasion of BCa cells via upregulating DIAPH3 and activating the Wnt/ß-catenin pathway.


Asunto(s)
Carcinogénesis , Catepsina C , Proliferación Celular , Neoplasias de la Vejiga Urinaria , Vía de Señalización Wnt , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Humanos , Vía de Señalización Wnt/genética , Animales , Línea Celular Tumoral , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proliferación Celular/genética , Catepsina C/metabolismo , Catepsina C/genética , Movimiento Celular/genética , Ratones Desnudos , Forminas/genética , Forminas/metabolismo , Masculino , Regulación Neoplásica de la Expresión Génica , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Femenino , Ratones , beta Catenina/metabolismo , beta Catenina/genética
4.
Atherosclerosis ; 3942024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39131441

RESUMEN

Background and aims: In hyperglycemia, inflammation, oxidative stress and aging, Damage Associated Molecular Patterns (DAMPs) accumulate in conditions such as atherosclerosis. Binding of DAMPs to receptors such as the receptor for advanced glycation end products (RAGE) activates signal transduction cascades that contribute to cellular stress. The cytoplasmic domain (tail) of RAGE (ctRAGE) binds to the formin Diaphanous1 (DIAPH1), which is important for RAGE signaling. This Review will detail the evidence linking the RAGE/DIAPH1 signaling pathway to atherosclerosis and envisages future therapeutic opportunities from the "inside-out" point of view in affected cells. Methods: PubMed was searched using a variety of search terms, including "receptor for advanced glycation end products" along with various combinations including "and atherosclerosis," "soluble RAGE and atherosclerosis," "statins and RAGE," "PPAR and RAGE" and "SGLT2 inhibitor and RAGE." Results: In non-diabetic and diabetic mice, antagonism or global deletion of Ager (the gene encoding RAGE) retards progression and accelerates regression of atherosclerosis. Global deletion of Diaph1 in mice devoid of the low density lipoprotein receptor (Ldlr) significantly attenuates atherosclerosis; mice devoid of both Diaph1 and Ldlr display significantly lower plasma and liver concentrations of cholesterol and triglyceride compared to mice devoid of Ldlr. Associations between RAGE pathway and human atherosclerosis have been identified based on relationships between plasma/serum concentrations of RAGE ligands, soluble RAGEs and atherosclerosis. Conclusions: Efforts to target RAGE/DIAPH1 signaling through a small molecule antagonist therapeutic strategy hold promise to quell accelerated atherosclerosis in diabetes and in other forms of cardiovascular disease.


Asunto(s)
Aterosclerosis , Forminas , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Aterosclerosis/metabolismo , Animales , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Humanos , Forminas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones
5.
J Clin Immunol ; 44(8): 175, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120629

RESUMEN

Loss of function mutations in Diaphanous related formin 1 (DIAPH1) are associated with seizures, cortical blindness, and microcephaly syndrome (SCBMS) and are recently linked to combined immunodeficiency. However, the extent of defects in T and innate lymphoid cells (ILCs) remain unexplored. Herein, we characterized the primary T, natural killer (NK) and helper ILCs of six patients carrying two novel loss of function mutation in DIAPH1 and Jurkat cells after DIAPH1 knockdown. Mutations were identified by whole exome sequencing. T-cell immunophenotyping, proliferation, migration, cytokine signaling, survival, and NK cell cytotoxicity were studied via flow cytometry-based assays, confocal microscopy, and real-time qPCR. CD4+ T cell proteome was analyzed by mass spectrometry. p.R351* and p.R322*variants led to a significant reduction in the DIAPH1 mRNA and protein levels. DIAPH1-deficient T cells showed proliferation, activation, as well as TCR-mediated signaling defects. DIAPH1-deficient PBMCs also displayed impaired transwell migration, defective STAT5 phosphorylation in response to IL-2, IL-7 and IL-15. In vitro generation/expansion of Treg cells from naïve T cells was significantly reduced. shRNA-mediated silencing of DIAPH1 in Jurkat cells reduced DIAPH1 protein level and inhibited T cell proliferation and IL-2/STAT5 axis. Additionally, NK cells from patients had diminished cytotoxic activity, function and IL-2/STAT5 axis. Lastly, DIAPH1-deficient patients' peripheral blood contained dramatically reduced numbers of all helper ILC subsets. DIAPH1 deficiency results in major functional defects in T, NK cells and helper ILCs underlining the critical role of formin DIAPH1 in the biology of those cell subsets.


Asunto(s)
Forminas , Células Asesinas Naturales , Humanos , Forminas/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Células Jurkat , Femenino , Mutación , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Niño , Inmunidad Innata , Preescolar , Citocinas/metabolismo , Transducción de Señal , Inmunofenotipificación , Linfocitos T/inmunología , Linfocitos T/metabolismo
6.
Mol Biol Cell ; 35(10): ar133, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39196658

RESUMEN

Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type versus functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both two-dimensional and three-dimensional cell migration, while the SAP-domain function is important selectively for three-dimensional cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction with MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases versus primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human BC, justifying future development of specific small molecule inhibitors of the MRTF-SRF transcriptional complex as potential therapeutic agents in BC.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Forminas , Transactivadores , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Forminas/metabolismo , Femenino , Transactivadores/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Factor de Respuesta Sérica/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética
7.
PLoS One ; 19(8): e0309353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39186738

RESUMEN

Formin proteins, characterized by the FH2 domain, are critical in regulating actin-driven cellular processes and cytoskeletal dynamics during abiotic stress. However, no genome-wide analysis of the formin gene family has yet to be conducted in the economically significant plant potato (Solanum tuberosum L.). In this study, 26 formin genes were identified and characterized in the potato genome (named as StFH), each containing the typical FH2 domain and distributed across the ten chromosomes. The StFH was categorized into seven subgroups (A-G) and the gene structure and motif analysis demonstrated higher structural similarities within the subgroups. Besides, the StFH exhibited ancestry and functional similarities with Arabidopsis. The Ka/Ks ratio indicated that StFH gene pairs were evolving through purifying selection, with five gene pairs exhibiting segmental duplications and two pairs exhibiting tandem duplications. Subcellular localization analysis suggested that most of the StFH genes were located in the chloroplast and plasma membrane. Moreover, 54 cis-acting regulatory elements (CAREs) were identified in the promoter regions, some of which were associated with stress responses. According to gene ontology analysis, the majority of the StFH genes were involved in biological processes, with 63 out of 74 GO terms affecting actin polymerization. Six major transcription factor families, including bZIP, C2H2, ERF, GATA, LBD, NAC, and HSF, were identified that were involved in the regulation of StFH genes in various abiotic stresses, including drought. Further, the 60 unique microRNAs targeted 24 StFH by regulating gene expression in response to drought stress were identified. The expression of StFH genes in 14 different tissues, particularly in drought-responsive tissues such as root, stem, shoot apex, and leaf, underscores their significance in managing drought stress. RNA-seq analysis of the drought-resistant Qingshu No. 9 variety revealed the potential role of up-regulated genes, including StFH2, StFH10, StFH19, and StFH25, in alleviating drought stress. Overall, these findings provide crucial insights into the response to drought stress in potatoes and can be utilized in breeding programs to develop potato cultivars with enhanced drought-tolerant traits.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas , Solanum tuberosum , Estrés Fisiológico , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Forminas/genética , Genoma de Planta , MicroARNs/genética , Perfilación de la Expresión Génica
8.
Cell Mol Life Sci ; 81(1): 353, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39154297

RESUMEN

The morphology of dendritic spines, the postsynaptic compartment of most excitatory synapses, decisively modulates the function of neuronal circuits as also evident from human brain disorders associated with altered spine density or morphology. Actin filaments (F-actin) form the backbone of spines, and a number of actin-binding proteins (ABP) have been implicated in shaping the cytoskeleton in mature spines. Instead, only little is known about the mechanisms that control the reorganization from unbranched F-actin of immature spines to the complex, highly branched cytoskeleton of mature spines. Here, we demonstrate impaired spine maturation in hippocampal neurons upon genetic inactivation of cyclase-associated protein 1 (CAP1) and CAP2, but not of CAP1 or CAP2 alone. We found a similar spine maturation defect upon overactivation of inverted formin 2 (INF2), a nucleator of unbranched F-actin with hitherto unknown synaptic function. While INF2 overactivation failed in altering spine density or morphology in CAP-deficient neurons, INF2 inactivation largely rescued their spine defects. From our data we conclude that CAPs inhibit INF2 to induce spine maturation. Since we previously showed that CAPs promote cofilin1-mediated cytoskeletal remodeling in mature spines, we identified them as a molecular switch that control transition from filopodia-like to mature spines.


Asunto(s)
Proteínas del Citoesqueleto , Espinas Dendríticas , Forminas , Hipocampo , Proteínas de Microfilamentos , Espinas Dendríticas/metabolismo , Animales , Ratones , Forminas/metabolismo , Forminas/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Hipocampo/metabolismo , Hipocampo/citología , Células Cultivadas , Neuronas/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Ratones Noqueados , Humanos , Proteínas Portadoras
9.
Cell Rep ; 43(7): 114423, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38968072

RESUMEN

Actin assembly and dynamics are crucial for maintaining cell structure and changing physiological states. The broad impact of actin on various cellular processes makes it challenging to dissect the specific role of actin regulatory proteins. Using actin waves that propagate on the cortex of mast cells as a model, we discovered that formins (FMNL1 and mDia3) are recruited before the Arp2/3 complex in actin waves. GTPase Cdc42 interactions drive FMNL1 oscillations, with active Cdc42 and the constitutively active mutant of FMNL1 capable of forming waves on the plasma membrane independently of actin waves. Additionally, the delayed recruitment of Arp2/3 antagonizes FMNL1 and active Cdc42. This antagonism is not due to competition for monomeric actin but rather for their common upstream regulator, active Cdc42, whose levels are negatively regulated by Arp2/3 via SHIP1 recruitment. Collectively, our study highlights the complex feedback loops in the dynamic control of the actin cytoskeletal network.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Actinas , Forminas , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Animales , Forminas/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Humanos , Mastocitos/metabolismo , Ratones , Citoesqueleto de Actina/metabolismo
10.
Reprod Biol Endocrinol ; 22(1): 82, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010074

RESUMEN

BACKGROUND: Exploring the molecular mechanisms of primordial germ cell (PGC) migration and the involvement of gonadal somatic cells in gonad development is valuable for comprehending the origins and potential treatments of reproductive-related diseases. METHODS: Diaphanous related formin 1 (Diaph1, also known as mDia1) was screened by analyzing publicly available datasets (ATAC-seq, DNase-seq, and RNA-seq). Subsequently, the CRISPR-Cas9 technology was used to construct Diaph1 knockout mice to investigate the role of Diaph1 in gonad development. RESULTS: Based on data from public databases, a differentially expressed gene Diaph1, was identified in the migration of mouse PGC. Additionally, the number of PGCs was significantly reduced in Diaph1 knockout mice compared to wild type mice, and the expression levels of genes related to proliferation (Dicer1, Mcm9), adhesion (E-cadherin, Cdh1), and migration (Cxcr4, Hmgcr, Dazl) were significantly decreased. Diaph1 knockout also inhibited Leydig cell proliferation and induced apoptosis in the testis, as well as granulosa cell apoptosis in the ovary. Moreover, the sperm count in the epididymal region and the count of ovarian follicles were significantly reduced in Diaph1 knockout mice, resulting in decreased fertility, concomitant with lowered levels of serum testosterone and estradiol. Further research found that in Diaph1 knockout mice, the key enzymes involved in testosterone synthesis (CYP11A1, 3ß-HSD) were decreased in Leydig cells, and the estradiol-associated factor (FSH receptor, AMH) in granulosa cells were also downregulated. CONCLUSIONS: Overall, our findings indicate that the knockout of Diaph1 can disrupt the expression of factors that regulate sex hormone production, leading to impaired secretion of sex hormones, ultimately resulting in damage to reproductive function. These results provide a new perspective on the molecular mechanisms underlying PGC migration and gonadal development, and offer valuable insights for further research on the causes, diagnosis, and treatment of related diseases.


Asunto(s)
Proliferación Celular , Forminas , Células Germinativas , Gónadas , Ratones Noqueados , Animales , Ratones , Femenino , Masculino , Forminas/genética , Forminas/metabolismo , Proliferación Celular/genética , Gónadas/metabolismo , Células Germinativas/metabolismo , Apoptosis/genética , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Testículo/citología , Movimiento Celular/genética , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Ratones Endogámicos C57BL
11.
Front Immunol ; 15: 1406781, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076976

RESUMEN

Children with severe inflammatory diseases are challenging to diagnose and treat, and the etiology of disease often remains unexplained. Here we present DIAPH1 deficiency as an unexpected genetic finding in a child with fatal inflammatory bowel disease who also displayed complex neurological and developmental phenotypes. Bi-allelic mutations of DIAPH1 were first described in patients with a severe neurological phenotype including microcephaly, intellectual disability, seizures, and blindness. Recent findings have expanded the clinical phenotype of DIAPH1 deficiency to include severe susceptibility to infections, placing this monogenic disease amongst the etiologies of inborn errors of immunity. Immune phenotypes in DIAPH1 deficiency are largely driven aberrant lymphocyte activation, particularly the failure to form an effective immune synapse in T cells. We present the case of a child with a novel homozygous deletion in DIAPH1, leading to a premature truncation in the Lasso domain of the protein. Unlike other cases of DIAPH1 deficiency, this patient did not have seizures or lung infections. Her major immune-related clinical symptoms were inflammation and enteropathy, diarrhea and failure to thrive. This patient did not show T or B cell lymphopenia but did have dramatically reduced naïve CD4+ and CD8+ T cells, expanded CD4-CD8- T cells, and elevated IgE. Similar to other cases of DIAPH1 deficiency, this patient had non-hematological phenotypes including microcephaly, developmental delay, and impaired vision. This patient's symptSoms of immune dysregulation were not successfully controlled and were ultimately fatal. This case expands the clinical spectrum of DIAPH1 deficiency and reveals that autoimmune or inflammatory enteropathy may be the most prominent immunological manifestation of disease.


Asunto(s)
Forminas , Mutación , Humanos , Forminas/genética , Femenino , Alelos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Fenotipo , Proteínas Adaptadoras Transductoras de Señales/genética
12.
Commun Biol ; 7(1): 832, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977899

RESUMEN

An important question in cell biology is how cytoskeletal proteins evolved and drove the development of novel structures and functions. Here we address the origin of SPIRE actin nucleators. Mammalian SPIREs work with RAB GTPases, formin (FMN)-subgroup actin assembly proteins and class-5 myosin (MYO5) motors to transport organelles along actin filaments towards the cell membrane. However, the origin and extent of functional conservation of SPIRE among species is unknown. Our sequence searches show that SPIRE exist throughout holozoans (animals and their closest single-celled relatives), but not other eukaryotes. SPIRE from unicellular holozoans (choanoflagellate), interacts with RAB, FMN and MYO5 proteins, nucleates actin filaments and complements mammalian SPIRE function in organelle transport. Meanwhile SPIRE and MYO5 proteins colocalise to organelles in Salpingoeca rosetta choanoflagellates. Based on these observations we propose that SPIRE originated in unicellular ancestors of animals providing an actin-myosin driven exocytic transport mechanism that may have contributed to the evolution of complex multicellular animals.


Asunto(s)
Actomiosina , Orgánulos , Animales , Orgánulos/metabolismo , Actomiosina/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Actinas/metabolismo , Humanos , Coanoflagelados/metabolismo , Citoesqueleto de Actina/metabolismo , Evolución Biológica , Evolución Molecular , Forminas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Filogenia , Proteínas Nucleares
13.
Cancer Lett ; 598: 217125, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39084456

RESUMEN

DIAPH1, a member of the formins family and a Rho effector, was found to be involved in thrombocytopoiesis, and the process of MDS in mice with unknown pathogenesis. In this study, we reported a preliminary study about the heterogeneity in the clinical features and outcomes of DIAPH1 mutations in MDS. DIAPH1 frameshift mutations were identified in 20 out of 88 MDS patients, including 11 frameshift mutations locating at 140892588-141000567 (5q31.3), which causes structure changes at FH1 domain. DIAPH1 mutated cases were correlated with lower megakaryocyte dysplasia in lower-risk patients (IPSS-M score <0) at first diagnosis, and higher megakaryocyte counts pre-transplant. The megakaryopoiesis-related genes: GP1BA and SETBP1 mutation were positively and negatively associated with DIAPH1 mutation, respectively. DIAPH1 mutated cases showed superior overall survival of all patients and low-risk cohorts. In conclusion, we found DIAPH1 frameshift mutations are implicated in megakaryopoiesis of MDS and correlated with superior prognosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Forminas , Mutación del Sistema de Lectura , Síndromes Mielodisplásicos , Humanos , Forminas/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Pronóstico , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Megacariocitos/patología , Megacariocitos/metabolismo , Proteínas Nucleares/genética , Proteínas Portadoras/genética , Anciano de 80 o más Años , Mutación
14.
Nature ; 632(8024): 437-442, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843827

RESUMEN

Humans express 15 formins that play crucial roles in actin-based processes, including cytokinesis, cell motility and mechanotransduction1,2. However, the lack of structures bound to the actin filament (F-actin) has been a major impediment to understanding formin function. Whereas formins are known for their ability to nucleate and elongate F-actin3-7, some formins can additionally depolymerize, sever or bundle F-actin. Two mammalian formins, inverted formin 2 (INF2) and diaphanous 1 (DIA1, encoded by DIAPH1), exemplify this diversity. INF2 shows potent severing activity but elongates weakly8-11 whereas DIA1 has potent elongation activity but does not sever4,8. Using cryo-electron microscopy (cryo-EM) we show five structural states of INF2 and two of DIA1 bound to the middle and barbed end of F-actin. INF2 and DIA1 bind differently to these sites, consistent with their distinct activities. The formin-homology 2 and Wiskott-Aldrich syndrome protein-homology 2 (FH2 and WH2, respectively) domains of INF2 are positioned to sever F-actin, whereas DIA1 appears unsuited for severing. These structures also show how profilin-actin is delivered to the fast-growing barbed end, and how this is followed by a transition of the incoming monomer into the F-actin conformation and the release of profilin. Combined, the seven structures presented here provide step-by-step visualization of the mechanisms of F-actin severing and elongation by formins.


Asunto(s)
Citoesqueleto de Actina , Actinas , Forminas , Animales , Humanos , Ratones , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestructura , Actinas/química , Actinas/metabolismo , Actinas/ultraestructura , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Sitios de Unión , Microscopía por Crioelectrón , Forminas/química , Forminas/metabolismo , Forminas/ultraestructura , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/ultraestructura , Modelos Moleculares , Profilinas/química , Profilinas/metabolismo , Profilinas/ultraestructura , Unión Proteica
15.
J Cell Sci ; 137(14)2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38910449

RESUMEN

RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.


Asunto(s)
Axones , Conos de Crecimiento , Microtúbulos , Transducción de Señal , Proteína de Unión al GTP rhoA , Microtúbulos/metabolismo , Animales , Proteína de Unión al GTP rhoA/metabolismo , Axones/metabolismo , Conos de Crecimiento/metabolismo , Quinasas Asociadas a rho/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Ratas , Forminas/metabolismo , Células Cultivadas , Neuronas/metabolismo
16.
Clin Genet ; 106(4): 494-499, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38860410

RESUMEN

Variants in more than 60 different genes, most of which code for podocyte-related proteins, have been found to be associated with monogenic forms of nephrotic syndrome (NS). Biallelic variants in DAAM2, a member of the formin family, were recently identified to cause autosomal recessive (AR) NS type 24 in four unrelated families with steroid-resistant nephrotic syndrome (SRNS). This case report represents only the fifth reported family of DAAM2-associated NS and the first from India, with two sibs who presented with a complex phenotype characterized by steroid-resistant nephrotic syndrome, short stature, dysmorphic facial features, deep-set toenails, myopia, increased thickness of the calvarium of the skull, and sloping ribs. Both sibs were found to have a homozygous likely pathogenic nonsense variant c.196C>T (p.Arg66Ter; NM_001201427.2) in exon 3 of the DAAM2 gene through whole exome sequencing. The dysmorphic features could possibly be part of the DAAM2-related phenotype which has hitherto not been reported or could represent a blended phenotype, with the extrarenal manifestations resulting from a yet to be identified coexisting genetic condition.


Asunto(s)
Secuenciación del Exoma , Síndrome Nefrótico , Fenotipo , Hermanos , Humanos , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Masculino , Femenino , India , Linaje , Niño , Forminas/genética , Preescolar , Mutación
17.
Cell Mol Life Sci ; 81(1): 279, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916773

RESUMEN

Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.


Asunto(s)
Forminas , Mitosis , Podocitos , Transcriptoma , Humanos , Mitosis/genética , Podocitos/metabolismo , Podocitos/patología , Transcriptoma/genética , Forminas/genética , Forminas/metabolismo , Muerte Celular/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Mutación , Núcleo Celular/metabolismo , Núcleo Celular/genética , Línea Celular
18.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891874

RESUMEN

Formin Homology Proteins (Formins) are a highly conserved family of cytoskeletal regulatory proteins that participate in a diverse range of cellular processes. FMNL2 is a member of the Diaphanous-Related Formin sub-group, and previous reports suggest FMNL2's role in filopodia assembly, force generation at lamellipodia, subcellular trafficking, cell-cell junction assembly, and focal adhesion formation. How FMNL2 is recruited to these sites of action is not well understood. To shed light on how FMNL2 activity is partitioned between subcellular locations, we used biotin proximity labeling and proteomic analysis to identify an FMNL2 interactome. The interactome identified known and new FMNL2 interacting proteins with functions related to previously described FMNL2 activities. In addition, our interactome predicts a novel connection between FMNL2 and extracellular vesicle assembly. We show directly that FMNL2 protein is present in exosomes.


Asunto(s)
Forminas , Forminas/metabolismo , Humanos , Proteómica/métodos , Exosomas/metabolismo , Espectrometría de Masas/métodos , Unión Proteica , Células HEK293 , Mapas de Interacción de Proteínas
19.
Nat Commun ; 15(1): 5250, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38897998

RESUMEN

Cytokinesis is the final step of the cell division cycle that leads to the formation of two new cells. Successful cytokinesis requires significant remodelling of the plasma membrane by spatially distinct ß- and γ-actin networks. These networks are generated by the formin family of actin nucleators, DIAPH3 and DIAPH1 respectively. Here we show that ß- and γ-actin perform specialized and non-redundant roles in cytokinesis and cannot substitute for one another. Expression of hybrid DIAPH1 and DIAPH3 proteins with altered actin isoform specificity relocalized cytokinetic actin isoform networks within the cell, causing cytokinetic failure. Consistent with this we show that ß-actin networks, but not γ-actin networks, are required for the maintenance of non-muscle myosin II and RhoA at the cytokinetic furrow. These data suggest that independent and spatially distinct actin isoform networks form scaffolds of unique interactors that facilitate localized biochemical activities to ensure successful cell division.


Asunto(s)
Actinas , Proteínas Adaptadoras Transductoras de Señales , Citocinesis , Forminas , Miosina Tipo II , Proteína de Unión al GTP rhoA , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Forminas/metabolismo , Forminas/genética , Actinas/metabolismo , Humanos , Miosina Tipo II/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Células HeLa , Animales , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
20.
J Cancer Res Clin Oncol ; 150(6): 295, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844723

RESUMEN

BACKGROUND: The DIAPH2 gene is one of the genes commonly associated with laryngeal squamous cell carcinoma (LSCC). In our study, we considered the four polymorphisms of this gene, i.e. rs5920828, rs4322175, rs12851931 and rs5921830 as potential genetic risk factors for LSCC. METHODS: We determined the genotyping of the genetic variants of DIAPH2 in 230 male patients with histologically confirmed LSCC compared to the European population. Demographic and environmental exposure data of each subject were examined. To conduct the genetic tests, extraction of total DNA was performed. We genotyped all four variants in each patient and determined their frequencies. RESULTS: In the case of the rs12851931 polymorphism in the DIAPH2 gene, a significant difference was observed in the distribution of the T stage depending on the polymorphism. Heterozygotes were more often associated with T2 stage, while homozygotes were more likely to have higher tumor stages. The rs12851931 homozygotes of DIAPH2 were statistically significantly more prevalent in smokers. The results suggested that rs12851931 polymorphism in DIAPH2 could increase the onset risk of LSCC. CONCLUSIONS: Our results provide further information on the role of the DIAPH2 gene in the pathogenesis of LSCC.


Asunto(s)
Forminas , Predisposición Genética a la Enfermedad , Neoplasias Laríngeas , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/epidemiología , Neoplasias Laríngeas/patología , Persona de Mediana Edad , Forminas/genética , Anciano , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Factores de Riesgo , Genotipo , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA