Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 11(10)2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35626701

RESUMEN

Huntington's disease (HD) is a neurodegenerative inherited genetic disorder, which leads to the onset of motor, neuropsychiatric and cognitive disturbances. HD is characterized by the loss of gamma-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs). To date, there is no treatment for HD. Mesenchymal stem cells (MSCs) provide a substantial therapeutic opportunity for the HD treatment. Herein, we investigated the therapeutic potential of human immature dental pulp stem cells (hIDPSC), a special type of MSC originated from the neural crest, for HD treatment. Two different doses of hIDPSC were intravenously administrated in a subacute 3-nitropropionic acid (3NP)-induced rat model. We demonstrated hIDPSC homing in the striatum, cortex and subventricular zone using specific markers for human cells. Thirty days after hIDPSC administration, the cells found in the brain are still express hallmarks of undifferentiated MSC. Immunohistochemistry quantities analysis revealed a significant increase in the number of BDNF, DARPP32 and D2R positive stained cells in the striatum and cortex in the groups that received hIDPSC. The differences were more expressive in animals that received only one administration of hIDPSC. Altogether, these data suggest that the intravenous administration of hIDPSCs can restore the BDNF, DARPP32 and D2R expression, promoting neuroprotection and neurogenesis.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Fosfoproteína 32 Regulada por Dopamina y AMPc , Enfermedad de Huntington , Trasplante de Células Madre , Células Madre , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Pulpa Dental/citología , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Infusiones Intravenosas , Ratas , Células Madre/citología
2.
Genet Mol Res ; 11(1): 725-30, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22576830

RESUMEN

A number of studies have pointed to the association of BDNF (brain-derived neurotrophic factor) and DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, 32 kDa) with schizophrenia. The purpose of this study was to determine whether these two genes are involved in the pathogenesis of schizophrenia in the Malay population. Two single nucleotide polymorphisms Val66Met of BDNF, -2036C>G and g.1238delG of DARPP-32 were genotyped in the Malay population in 200 patients with schizophrenia and 256 healthy controls. Analysis of allele and genotype frequencies in these two groups revealed no significant association of BDNF or DARPP-32 polymorphisms with schizophrenia in Malays. This is the first such association study in the Malay population.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Esquizofrenia/genética , Adulto , Alelos , Pueblo Asiatico/genética , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Malasia , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Factores de Riesgo
3.
Neurotoxicol Teratol ; 33(6): 680-5, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21914471

RESUMEN

Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Cafeína/farmacología , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Desarrollo Embrionario/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Receptores Purinérgicos P1/genética , Pez Cebra/embriología , Animales , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Tacto/efectos de los fármacos , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Neurochem Res ; 33(11): 2257-62, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18415674

RESUMEN

Step-down inhibitory avoidance (IA) is usually acquired in one single trial, which makes it ideal for studying processes initiated by training, uncontaminated by prior or further trials, rehearsals, or retrievals. Biochemical events in the hippocampus related to long-term memory (LTM) formation have been extensively studied in rats using a one trial step-down IA task. DARPP-32 (dopamine and cAMP regulated phosphoprotein of Mr 32 kDa) is a cytosolic protein that is selectively enriched in medium spiny neurons in the neostriatum. It has been shown that activation of DARPP-32 and the resultant inhibition of PP-1 activity is critical for the expression of two opposing forms of brain synaptic plasticity, striatal LTD and LTP. Both forms of plasticity are also critically linked to the activation of DA receptors. It has been shown with studies in DARPP-32 KO mice an important role of this protein in mediating the effects of DA on long term changes in neuronal excitability and to our knowledge, no studies have examined the effect of IA task on DARPP-32 expression. In order to demonstrate changes in the protein expression profile we analyzed DARPP-32 levels in the striatum, prefrontal cortex (PFC), hippocampus and entorhinal cortex of Wistar rats after step-down IA learning. Our results showed that IA induced changes on DARPP-32 expression in striatum and hippocampus. DARPP-32 expression changes corroborate with changes in expression and phosphorylation of CREB, NMDA, AMPA after IA that has been reported. These changes suggest that DARPP-32 might play a central role in the IA, as previously described as an integrator of the dopaminergic signal.


Asunto(s)
Reacción de Prevención , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Animales , Western Blotting , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Electroforesis en Gel de Poliacrilamida , Potenciación a Largo Plazo , Masculino , Plasticidad Neuronal , Fosforilación , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA