Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.459
Filtrar
1.
Physiol Plant ; 176(4): e14431, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39041649

RESUMEN

Considering the prevalence of ever-changing conditions in the natural world, investigation of photosynthetic responses in C4 plants under fluctuating light is needed. Here, we studied the effect of dynamic illumination on photosynthesis in totally 10 C3, C3-C4 intermediate, C4-like and C4 dicots and monocots at CO2 concentrations of 400 and 800 µmol mol-1. C4 and C4-like plants had faster photosynthetic induction and light-induced stomatal dynamics than C3 plants at 400 µmol mol-1, but not at 800 µmol mol-1 CO2, at which the CO2 supply rarely limits photosynthesis. C4 and C4-like plants had a higher water use efficiency than C3 plants at both CO2 concentrations. There were positive correlations between photosynthetic induction and light-induced stomatal response, together with CO2 compensation point, which was a parameter of the CO2-concentrating mechanism of C4 photosynthesis. These results clearly show that C4 photosynthesis in both monocots and dicots adapts to fluctuating light conditions more efficiently than C3 photosynthesis. The rapid photosynthetic induction response in C4 plants can be attributed to the rapid stomatal dynamics, the CO2-concentrating mechanism or both.


Asunto(s)
Dióxido de Carbono , Luz , Fotosíntesis , Estomas de Plantas , Fotosíntesis/fisiología , Dióxido de Carbono/metabolismo , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/metabolismo , Agua/metabolismo
2.
Planta ; 260(1): 29, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38879859

RESUMEN

MAIN CONCLUSION: The review discusses growth and drought-response mechanisms in minor millets under three themes: drought escape, drought avoidance and drought tolerance. Drought is one of the most prominent abiotic stresses impacting plant growth, performance, and productivity. In the context of climate change, the prevalence and severity of drought is expected to increase in many agricultural regions worldwide. Millets (coarse grains) are a group of small-seeded grasses cultivated in arid and semi-arid regions throughout the world and are an important source of food and feed for humans and livestock. Although minor millets, i.e., foxtail millet, finger millet, proso millet, barnyard millet, kodo millet and little millet are generally hardier and more drought-resistant than cereals and major millets (sorghum and pearl millet), understanding their responses, processes and strategies in response to drought is more limited. Here, we review drought resistance strategies in minor millets under three themes: drought escape (e.g., short crop cycle, short vegetative period, developmental plasticity and remobilization of assimilates), drought avoidance (e.g., root traits for better water absorption and leaf traits to control water loss), and drought tolerance (e.g., osmotic adjustment, maintenance of photosynthetic ability and antioxidant potential). Data from 'omics' studies are summarized to provide an overview of the molecular mechanisms important in drought tolerance. In addition, the final section highlights knowledge gaps and challenges to improving minor millets. This review is intended to enhance major cereals and millet per se in light of climate-related increases in aridity.


Asunto(s)
Sequías , Mijos/fisiología , Estrés Fisiológico , Fotosíntesis/fisiología , Cambio Climático , Agua/metabolismo , Agua/fisiología , Adaptación Fisiológica , Productos Agrícolas/fisiología , Productos Agrícolas/crecimiento & desarrollo , Resistencia a la Sequía
3.
New Phytol ; 243(3): 894-908, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853424

RESUMEN

The 'assimilates inhibition hypothesis' posits that accumulation of nonstructural carbohydrates (NSCs) in leaves reduces leaf net photosynthetic rate, thus internally regulating photosynthesis. Experimental work provides equivocal support mostly under controlled conditions without identifying a particular NSC as involved in the regulation. We combined 3-yr in situ leaf gas exchange observations (natural dynamics) in the upper crown of mature Betula pendula simultaneously with measurements of concentrations of sucrose, hexoses (glucose and fructose), and starch, and similar measurements during several one-day shoot girdling (perturbation dynamics). Leaf water potential and water and nitrogen content were measured to account for their possible contribution to photosynthesis regulation. Leaf photosynthetic capacity (A/Ci) was temporally negatively correlated with NSC accumulation under both natural and perturbation states. For developed leaves, leaf hexose concentration explained A/Ci variation better than environmental variables (temperature history and daylength); the opposite was observed for developing leaves. The weaker correlations between NSCs and A/Ci in developing leaves may reflect their strong internal sink strength for carbohydrates. By contrast, the strong decline in photosynthetic capacity with NSCs accumulation in mature leaves, observed most clearly with hexose, and even more tightly with its constituents, provides support for the role of assimilates in regulating photosynthesis under natural conditions.


Asunto(s)
Betula , Hexosas , Fotosíntesis , Hojas de la Planta , Estaciones del Año , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Betula/fisiología , Betula/metabolismo , Hexosas/metabolismo , Secuestro de Carbono , Agua/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Almidón/metabolismo
4.
STAR Protoc ; 5(2): 103124, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38870017

RESUMEN

Global warming will change the photosynthesis and transpiration of plants greatly and ultimately affect water use efficiency (WUE). Here, we present a protocol to investigate the response of maize WUE to the coupling effect of CO2 and temperature at ear stage using a specialized designed gradient. We describe steps for plant culture, parameter measurements, model fitting, and statistical analysis. This protocol holds potential for studying the response of WUE and CO2 adaptation across various plant species. For complete details on the use and execution of this protocol, please refer to Sun et al.1.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Temperatura , Zea mays , Zea mays/fisiología , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Agua/metabolismo , Transpiración de Plantas/fisiología
5.
Physiol Plant ; 176(4): e14417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945684

RESUMEN

Chlorophyll (Chl) plays a crucial role in photosynthesis, functioning as a photosensitizer. As an integral component of this process, energy absorbed by this pigment is partly emitted as red fluorescence. This signal can be readily imaged by fluorescence microscopy and provides a visualization of photosynthetic activity. However, due to limited resolution, signals cannot be assigned to specific subcellular/organellar membrane structures. By correlating fluorescence micrographs with transmission electron microscopy, researchers can identify sub-cellular compartments and membranes, enabling the monitoring of Chl distribution within thylakoid membrane substructures in cyanobacteria, algae, and higher plant single cells. Here, we describe a simple and effective protocol for correlative light-electron microscopy (CLEM) based on the autofluorescence of Chl and demonstrate its application to selected photosynthetic model organisms. Our findings illustrate the potential of this technique to identify areas of high Chl concentration and photochemical activity, such as grana regions in vascular plants, by mapping stacked thylakoids.


Asunto(s)
Clorofila , Tilacoides , Tilacoides/metabolismo , Tilacoides/ultraestructura , Clorofila/metabolismo , Fotosíntesis/fisiología , Microscopía Fluorescente/métodos , Microscopía Electrónica de Transmisión/métodos
6.
Physiol Plant ; 176(4): e14410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945685

RESUMEN

Maximal sunlight intensity varies diurnally due to the earth's rotation. Whether this slow diurnal pattern influences the photoprotective capacity of plants throughout the day is unknown. We investigated diurnal variation in NPQ, along with NPQ capacity, induction, and relaxation kinetics after transitions to high light, in tomato plants grown under diurnal parabolic (DP) or constant (DC) light intensity regimes. DP light intensity peaked at midday (470 µmol m-2 s-1) while DC stayed constant at 300 µmol m-2 s-1 at a similar 12-hour photoperiod and daily light integral. NPQs were higher in the morning and afternoon at lower light intensities in DP compared to DC, except shortly after dawn. NPQ capacity increased from midday to the end of the day, with higher values in DP than in DC. At high light ΦPSII did not vary throughout the day, while ΦNPQ varied consistently with NPQ capacity. Reduced ΦNO suggested less susceptibility to photodamage at the end of the day. NPQ induction was faster at midday than at the start of the day and in DC than in DP, with overshoot occurring in the morning and midday but not at the end of the day. NPQ relaxation was faster in DP than in DC. The xanthophyll de-epoxidation state and reduced demand for photochemistry could not explain the observed diurnal variations in photoprotective capacity. In conclusion, this study showed diurnal variation in regulated photoprotective capacity at moderate growth light intensity, which was not explained by instantaneous light intensity or increasing photoinhibition over the day and was influenced by acclimation to constant light intensity.


Asunto(s)
Ritmo Circadiano , Luz , Solanum lycopersicum , Solanum lycopersicum/efectos de la radiación , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Fotosíntesis/efectos de la radiación , Fotosíntesis/fisiología , Fotoperiodo , Xantófilas/metabolismo , Luz Solar , Clorofila/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Cinética , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo
7.
Physiol Plant ; 176(3): e14383, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859677

RESUMEN

The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.


Asunto(s)
Aclimatación , Fotosíntesis , Complejo de Proteína del Fotosistema II , Rayos Ultravioleta , Vitis , Fotosíntesis/efectos de la radiación , Fotosíntesis/fisiología , Aclimatación/efectos de la radiación , Aclimatación/fisiología , Vitis/efectos de la radiación , Vitis/fisiología , Vitis/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Flavonoles/metabolismo
8.
Plant Physiol Biochem ; 212: 108801, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850729

RESUMEN

Elevational variation in plant growing environment drives diversification of photosynthetic capacity, however, the mechanism behind this reaction is poorly understood. We measured leaf gas exchange, chlorophyll fluorescence, anatomical characteristics, and biochemical traits of Salvia przewalskii at elevations ranging from 2400 m to 3400 m above sea level (a.s.l) on the eastern Qinghai-Tibetan Plateau, China. We found that photosynthetic capacity showed an initial increase and then a decrease with rising elevation, and the best state observed at 2800 m a.s.l. Environmental factors indirectly regulated photosynthetic capacity by affecting stomatal conductance (gs), mesophyll conductance (gm), maximum velocity of carboxylation (Vc max), and maximum capacity for photosynthetic electron transport (Jmax). The average temperature (T) and total precipitation (P) during the growing season had the highest contribution to the variation of photosynthetic capacity of S. przewalskii in subalpine areas, which were 25% and 24%, respectively. Photosynthetic capacity was mainly affected by diffusional limitations (71%-89%), and mesophyll limitation (lm) played a leading role. The variation of gm was attributed to the effects of environmental factors on the volume fraction of intercellular air space (fias), the thickness of cell wall (Tcw), the surface of mesophyll cells and chloroplasts exposed to intercellular airspace (Sm, Sc), and plasma membrane intrinsic protein (PIPs, PIP1, PIP2), independent of carbonic anhydrase (CA). Optimization of leaf tissue structure and adaptive physiological responses enabled plants to efficiently cope with variable climate conditions of high-elevation areas, and the while maintaining high levels of carbon assimilation.


Asunto(s)
Altitud , Fotosíntesis , Salvia , Fotosíntesis/fisiología , Salvia/metabolismo , Salvia/fisiología , China , Tibet , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Clorofila/metabolismo , Estomas de Plantas/fisiología
9.
Tree Physiol ; 44(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38864558

RESUMEN

Carbon dioxide sequestration from the atmosphere is commonly assessed using the eddy covariance method. Its net flux signal can be decomposed into gross primary production and ecosystem respiration components, but these have seldom been tested against independent methods. In addition, eddy covariance lacks the ability to partition carbon sequestration among individual trees or species within mixed forests. Therefore, we compared gross primary production from eddy covariance versus an independent method based on sap flow and water-use efficiency, as measured by the tissue heat balance method and δ13C of phloem contents, respectively. The latter measurements were conducted on individual trees throughout a growing season in a mixed broadleaf forest dominated by three tree species, namely English oak, narrow-leaved ash and common hornbeam (Quercus robur L., Fraxinus angustifolia Vahl, and Carpinus betulus L., respectively). In this context, we applied an alternative ecophysiological method aimed at verifying the accuracy of a state-of-the-art eddy covariance system while also offering a solution to the partitioning problem. We observed strong agreement in the ecosystem gross primary production estimates (R2 = 0.56; P < 0.0001), with correlation being especially high and nearly on the 1:1 line in the period before the end of July (R2 = 0.85; P < 0.0001). After this period, the estimates of gross primary production began to diverge. Possible reasons for the divergence are discussed, focusing especially on phenology and the limitation of the isotopic data. English oak showed the highest per-tree daily photosynthetic rates among tree species, but the smaller, more abundant common hornbeam contributed most to the stand-level summation, especially early in the spring. These findings provide a rigorous test of the methods and the species-level photosynthesis offers avenues for enhancing forest management aimed at carbon sequestration.


Asunto(s)
Bosques , Fotosíntesis , Árboles , Fotosíntesis/fisiología , Árboles/fisiología , Quercus/fisiología , Quercus/metabolismo , Secuestro de Carbono , Fraxinus/fisiología , Fraxinus/metabolismo
10.
Photosynth Res ; 161(1-2): 51-64, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865029

RESUMEN

Photostasis is the light-dependent maintenance of energy balance associated with cellular homeostasis in photoautotrophs. We review evidence that illustrates how photosynthetic adaptation in polar photoautrophs such as aquatic green algae, cyanobacteria, boreal conifers as well as terrestrial angiosperms exhibit an astonishing plasticity in structure and function of the photosynthetic apparatus. This plasticity contributes to the maintenance of photostasis, which is essential for the long-term survival in the seemingly inhospitable Antarctic and Arctic habitats. However, evidence indicates that polar photoautrophic species exhibit different functional solutions for the maintenance of photostasis. We suggest that this reflects, in part, the genetic diversity symbolized by inherent genetic redundancy characteristic of polar photoautotrophs which enhances their survival in a thermodynamically challenging environment.


Asunto(s)
Adaptación Fisiológica , Fotosíntesis , Fotosíntesis/fisiología , Regiones Árticas , Regiones Antárticas , Cianobacterias/fisiología , Cianobacterias/genética , Chlorophyta/fisiología , Chlorophyta/genética , Ecosistema , Luz , Magnoliopsida/fisiología , Magnoliopsida/genética , Tracheophyta/fisiología , Tracheophyta/genética
11.
Bioresour Technol ; 406: 131029, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925401

RESUMEN

Hydrogen production through the metabolic bypass of microalgae photosynthesis is an environmentally friendly method. This review examines the genetic differences in hydrogen production between prokaryotic and eukaryotic microalgae. Additionally, the pathways for enhancing microalgae-based photosynthetic hydrogen generation are summarized. The main strategies for enhancing microalgal hydrogen production involve inhibiting the oxygen-generating process of photosynthesis and promoting the oxygen tolerance of hydrogenase. Future research is needed to explore the regulation of physiological metabolism through quorum sensing in microalgae to enhance photosynthetic hydrogen production. Moreover, effective evaluation of carbon emissions and sequestration across the entire photosynthetic hydrogen production process is crucial for determining the sustainability of microalgae-based production approaches through comprehensive lifecycle assessment. This review elucidates the prospects and challenges associated with photosynthetic hydrogen production by microalgae.


Asunto(s)
Hidrógeno , Microalgas , Fotosíntesis , Hidrógeno/metabolismo , Microalgas/metabolismo , Fotosíntesis/fisiología , Células Procariotas/metabolismo , Células Eucariotas/metabolismo
12.
Plant Biol (Stuttg) ; 26(5): 855-867, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886872

RESUMEN

In Mediterranean regions, severe summers are becoming more common, leading to restrictions to vine productivity and yield quality, requiring sustainable practices to support this sector. We assessed the behaviour of three red grapevine varieties from the Douro Region to examine their tolerance to summer climate stress from the perspective that the less common varieties may have potential for increased use in a climate change scenario. Leaf and fruit biochemical profile, antioxidant activity and fruit colorimetric parameters were assessed at different phenological stages in Aragonez (AR), Tinto Cão (TC) and Touriga Nacional (TN) grape varieties. All three varieties exhibit significant variability in phenological timing, influenced by genetic and environmental factors. Photosynthetic pigment strategies differed among varieties. Chlorophyll content in AR was high to cope with high radiation, while TN displaying a balanced approach, and TC had lower pigment levels, with higher levels of phenolics, antioxidants, and soluble sugars, particularly during stress. The variations in berry biochemical profile highlight the distinct characteristics of the varieties. TC and TN show potential for coping with climate change, having elevated total acidity, while AR has larger and heavier berries with distinct coloration. These findings reinforce the need to study the behaviour of different varieties in each Terroir, to understand their diverse strategies to deal with summer climate stress. This will help in selecting the most suitable variety for these conditions under vineyard management in the Douro Region.


Asunto(s)
Antioxidantes , Clorofila , Frutas , Vitis , Vitis/crecimiento & desarrollo , Vitis/fisiología , Vitis/metabolismo , Clorofila/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Antioxidantes/metabolismo , Región Mediterránea , Cambio Climático , Estaciones del Año , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Clima , Fotosíntesis/fisiología
13.
Physiol Plant ; 176(3): e14367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837234

RESUMEN

Inoculation of arbuscular mycorrhizal fungi (AMF) or biochar (BC) application can improve photosynthesis and promote plant growth under saline-alkali stress. However, little is known about the effects of the two combined on growth and physiological characteristics of switchgrass under saline-alkali stress. This study examined the effects of four treatments: (1) no AMF inoculation and no biochar addition (control), (2) biochar (BC) alone, (3) AMF (Rhizophagus irregularis, Ri) alone, and (4) the combination of both (BC+Ri) on the plant biomass, antioxidant enzymes, chlorophyll, and photosynthetic parameters of switchgrass under saline-alkali stress. The results showed that the above-ground, belowground and total biomass of switchgrass in the BC+Ri treatment group was significantly higher (+136.7%, 120.2% and 132.4%, respectively) than in other treatments compared with Control. BC+Ri treatment significantly increased plant leaves' relative chlorophyll content, antioxidant enzyme activity, and photosynthesis parameters. It is worth noting that the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency and other photosynthetic-related indexes of the BC+Ri treatment group were the highest (38% to 54% higher than other treatments). The fitting results of light response and CO2 response curves showed that the light saturation point, light compensation point, maximum carboxylation rate and maximum electron transfer rate of switchgrass in the Ri+BC treatment group were the highest. In conclusion, biochar combined with Ri has potential beneficial effects on promoting switchgrass growth under saline-alkali stress and improving the activity of antioxidant enzymes and photosynthetic characteristics of plants.


Asunto(s)
Carbón Orgánico , Clorofila , Micorrizas , Panicum , Fotosíntesis , Carbón Orgánico/farmacología , Panicum/fisiología , Panicum/efectos de los fármacos , Panicum/crecimiento & desarrollo , Fotosíntesis/fisiología , Clorofila/metabolismo , Micorrizas/fisiología , Glomeromycota/fisiología , Álcalis , Biomasa , Hojas de la Planta/fisiología , Antioxidantes/metabolismo
14.
Plant Signal Behav ; 19(1): 2359258, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38828703

RESUMEN

Tea plantations in Karst regions suffer from the serious effects of frequent temporary karst droughts, leading to a decline in tea production and quality in the region. The close relationship between growth and electrical parameters of plants, including physiological capacitance, resistance and impedance, can be used to accurately monitor their plant water status online, quickly, accurately, timely and nondestructively. In this study, three tea tree cultivars of Zhonghuang No.2 (ZH), Wuniuzao (WNZ), and Longjing 43 (LJ) with different levels of drought resistance were selected as experimental materials, and experiments were carried out under controlled conditions according to control (soil water content of 40-45%, D0), (keeping D0 no watering to 5 days, D5), (keeping D0 no watering to 10 days, D10), (the first day after D10 is rehydrated to D0 is regarded as R1) and (the fifth day after D10 rehydration to D0 is regarded as R5), to determine intracellular water metabolism and nutrient translocation characteristics based on intrinsic electrical parameters. The photosynthetic characteristics and chlorophyll fluorescence parameters were also determined to investigate the response of water metabolism to simulated karst drought in the three tea tree cultivars. The results indicated that the water metabolism patterns responded to environmental water changes with a medium water-holding capacity, medium water transport rate, and low water-use efficiency, and the nutrient patterns in those tea tree varieties demonstrated with a high nutrient flux per unit area, low nutrient transfer rate, and high nutrient transport capacity. After rehydration, only the electrical characteristics of WNZ returned to the D0 levels, but the net photosynthetic rate of all varieties returned to or even exceeded the D0 levels. The chlorophyll fluorescence parameters could not be used to characterize the recoverability of metabolism in tea trees. The electrical characteristics quickly reflected the response of the water metabolism in plants to environmental changes, and the fusion of electrical characteristics and photosynthetic characteristics was able to more quickly, accurately, and comprehensively reflect the response of water metabolism to temporary karst drought.


Asunto(s)
Camellia sinensis , Sequías , Fotosíntesis , Agua , Fotosíntesis/fisiología , Camellia sinensis/fisiología , Camellia sinensis/metabolismo , Agua/metabolismo , Clorofila/metabolismo
15.
BMC Plant Biol ; 24(1): 513, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849759

RESUMEN

BACKGROUND: The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS: In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS: Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.


Asunto(s)
Luz , Phaseolus , Phaseolus/fisiología , Phaseolus/metabolismo , Phaseolus/enzimología , Fosforilación , Tilacoides/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Frío , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Vía de Pentosa Fosfato/fisiología , Activación Enzimática , Fotosíntesis/fisiología , Estrés Fisiológico , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Physiol Plant ; 176(3): e14379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38853306

RESUMEN

Drought stress threatens the productivity of numerous crops, including chilli pepper (Capsicum annuum). DnaJ proteins are known to play a protective role against a wide range of abiotic stresses. This study investigates the regulatory mechanism of the chloroplast-targeted chaperone protein AdDjSKI, derived from wild peanut (Arachis diogoi), in enhancing drought tolerance in chilli peppers. Overexpressing AdDjSKI in chilli plants increased chlorophyll content, reflected in the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with untransformed control (UC) plants. This enhancement coincided with the upregulated expression of PSII-related genes. Our subsequent investigations revealed that transgenic chilli pepper plants expressing AdDjSKI showed reduced accumulation of superoxide and hydrogen peroxide and, consequently, lower malondialdehyde levels and decreased relative electrolyte leakage percentage compared with UC plants. The mitigation of ROS-mediated oxidative damage was facilitated by heightened activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, coinciding with the upregulation of the expression of associated antioxidant genes. Additionally, our observations revealed that the ectopic expression of the AdDjSKI protein in chilli pepper plants resulted in diminished ABA sensitivity, consequently promoting seed germination in comparison with UC plants under different concentrations of ABA. All of these collectively contributed to enhancing drought tolerance in transgenic chilli plants with improved root systems when compared with UC plants. Overall, our study highlights AdDjSKI as a promising biotechnological solution for enhancing drought tolerance in chilli peppers, addressing the growing global demand for this economically valuable crop.


Asunto(s)
Ácido Abscísico , Capsicum , Sequías , Fotosíntesis , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno , Capsicum/fisiología , Capsicum/genética , Capsicum/metabolismo , Fotosíntesis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arachis/genética , Arachis/fisiología , Arachis/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Antioxidantes/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Resistencia a la Sequía
17.
Physiol Plant ; 176(3): e14395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38922932

RESUMEN

Bryophytes desiccate rapidly when relative humidity decreases. The capacity to withstand dehydration depends on several ecological and physiological factors. Volatile organic compounds (VOCs) may have a role in enhancing tolerance to desiccating bryophytes. However, the functions of VOCs in bryophytes have received little attention so far. We aimed to investigate the impact of a dehydration-rehydration treatment on primary carbon metabolism and volatile terpenes (VTs) in three bryophytes with contrasting ecological traits: Vessicularia dubyana, Porella platyphylla and Pleurochaete squarrosa. First, we confirmed the desiccation sensitivity gradient of the species. Under fully hydrated conditions, the photosynthetic rate (A) was inversely associated with stress tolerance, with a lower rate in more tolerant species. The partial recovery of A in P. platyphylla and P. squarrosa after rehydration confirmed the desiccation tolerance of these two species. On the other hand, A did not recover after rehydration in V. dubyana. Regarding VT, each species exhibited a distinct VT profile under optimum hydration, with the highest VT pool found in the more desiccation-sensitive species (V. dubyana). However, the observed species-specific VT pattern could be associated with the ecological habitat of each species. P. squarrosa, a moss of dry habitats, may synthesize mainly non-volatile secondary metabolites as stress-defensive compounds. On the other hand, V. dubyana, commonly found submerged, may need to invest photosynthetically assimilated carbon to synthesize a higher amount of VTs to cope with transient water stress occurrence. Further research on the functions of VTs in bryophytes is needed to deepen our understanding of their ecological significance.


Asunto(s)
Briófitas , Deshidratación , Monoterpenos , Fotosíntesis , Compuestos Orgánicos Volátiles , Fotosíntesis/fisiología , Briófitas/fisiología , Briófitas/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Monoterpenos/metabolismo , Desecación , Agua/metabolismo , Ecosistema
18.
Physiol Plant ; 176(3): e14391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894595

RESUMEN

Monitoring changes in chlorophyll a (ChlFa) fluorescence during dehydration can provide insights into plant photosynthetic responses to climate change challenges, which are predicted to increase drought frequency. However, the limited knowledge of how ChlFa parameters respond to water deficit hinders the exploration of the photochemical mechanism of the photosynthetic process and the simulation of photosynthetic fluorescence models. Furthermore, how to track such responses of ChlFa parameters, especially at large scales, remains a challenge. In this study, we attempted to use spectral information reflected from leaves to follow the dynamic response patterns of ChlFa parameters of seven species under prolonged dehydration. The results showed that the investigated ChlFa parameters exhibited significant changes as dehydration progressed, with considerable variability among the different species as well as under different water conditions. This study also demonstrated that the integration of both spectral and water content information can provide an effective method for tracking ChlFa parameters during dehydration, explaining over 90% of the total variance in the measured ChlFa parameters. Collectively, these results should serve as a valuable reference for predicting the response of ChlFa parameters to dehydration and offer a potential method for estimating ChlFa parameters under drought conditions.


Asunto(s)
Clorofila A , Clorofila , Deshidratación , Hojas de la Planta , Agua , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Clorofila A/metabolismo , Agua/metabolismo , Fluorescencia , Clorofila/metabolismo , Sequías , Fotosíntesis/fisiología
19.
Tree Physiol ; 44(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38905287

RESUMEN

The temperature sensitivities of photosynthesis and respiration remain a key uncertainty in predicting how forests will respond to climate warming. We grew seedlings of four temperate tree species, including Betula platyphylla, Fraxinus mandshurica, Juglans mandshurica and Tilia amurensis, at three temperature regimes (ambient, +2 °C, and +4 °C in daytime air temperature). We investigated net photosynthesis (Anet25), maximum rate of RuBP-carboxylation (Vcmax25) and RuBP-regeneration (Jmax25), stomatal conductance (gs25), mesophyll conductance (gm25), and leaf respiration (Rleaf) in dark (Rdark25) and in light (Rlight25) at 25 °C in all species. Additionally, we examined the temperature sensitivities of Anet, Vcmax, Jmax, Rdark and Rlight in F. mandshurica. Our findings showed that the warming-induced decreases in Anet25, Vcmax25 and Jmax25 were more prevalent in the late-successional species T. amurensis. Warming had negative impacts on gs25 in all species. Overall, Anet25 was positively correlated with Vcmax25 and Jmax25 across all growth temperatures. However, a positive correlation between Anet25 and gs25 was observed only under warming conditions, and gs25 was negatively associated with vapor pressure deficit. This implies that the vapor pressure deficit-induced decrease in gs25 was responsible for the decline in Anet25 at higher temperatures. The optimum temperature of Anet in F. mandshurica increased by 0.59 °C per 1.0 °C rise in growth temperature. While +2 °C elevated the thermal optima of Jmax, it did not affect the other temperature sensitivity parameters of Vcmax and Jmax. Rdark25 was not affected by warming in any species, and Rlight25 was stimulated in T. amurensis. The temperature response curves of Rdark and Rlight in F. mandshurica were not altered by warming, implying a lack of thermal acclimation. The ratios of Rdark25 and Rlight25 to Anet25 and Vcmax25 in T. amurensis increased with warming. These results suggest that Anet and Rleaf did not acclimate to warming synchronously in these temperate tree species.


Asunto(s)
Betula , Fraxinus , Fotosíntesis , Hojas de la Planta , Tilia , Árboles , Fotosíntesis/fisiología , Árboles/fisiología , Árboles/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Fraxinus/fisiología , Fraxinus/metabolismo , Tilia/fisiología , Tilia/metabolismo , Betula/fisiología , Betula/crecimiento & desarrollo , Betula/efectos de la radiación , Betula/metabolismo , Juglans/fisiología , Juglans/crecimiento & desarrollo , Carbono/metabolismo , Temperatura , Respiración de la Célula , Cambio Climático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...