Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Adv ; 37(2): 284-305, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30576718

RESUMEN

Overflow metabolism is a common phenomenon observed at higher glycolytic flux in many bacteria, yeast (known as Crabtree effect), and mammalian cells including cancer cells (known as Warburg effect). This phenomenon has recently been characterized as the trade-offs between protein costs and enzyme efficiencies based on coarse-graining approaches. Moreover, it has been recognized that the glycolytic flux increases as the source of energy generation changes from energetically efficient respiration to inefficient respiro-fermentative or fermentative metabolism causing overflow metabolism. It is highly desired to clarify the metabolic regulation mechanisms behind such phenomena. Metabolic fluxes are located on top of the hierarchical regulation systems, and represent the outcome of the integrated response of all levels of cellular regulation systems. In the present article, we discuss about the different levels of regulation systems for the modulation of fluxes depending on the growth rate, growth condition such as oxygen limitation that alters the metabolism towards fermentation, and genetic perturbation affecting the source of energy generation from respiration to respiro-fermentative metabolism in relation to overflow metabolism. The intracellular metabolite of the upper glycolysis such as fructose 1,6-bisphosphate (FBP) plays an important role not only for flux sensing, but also for the regulation of the respiratory activity either directly or indirectly (via transcription factors) at higher growth rate. The glycolytic flux regulation is backed up (enhanced) by unphosphorylated EIIA and HPr of the phosphotransferase system (PTS) components, together with the sugar-phosphate stress regulation, where the transcriptional regulation is further modulated by post-transcriptional regulation via the degradation of mRNA (stability of mRNA) in Escherichia coli. Moreover, the channeling may also play some role in modulating the glycolytic cascade reactions.


Asunto(s)
Metabolismo Energético/genética , Fructosadifosfatos/metabolismo , Glucólisis/genética , Transcripción Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Fructosadifosfatos/genética , Glucosa/genética , Glucosa/metabolismo , Oxígeno/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Estabilidad del ARN/genética
2.
J Biol Chem ; 293(33): 12843-12854, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29907566

RESUMEN

Evidence for the Crabtree effect was first reported by H. Crabtree in 1929 and is defined as the glucose-induced decrease of cellular respiratory flux. This effect was observed in tumor cells and was not detected in most non-tumor cells. A number of hypotheses on the mechanism underlying the Crabtree effect have been formulated. However, to this day, no consensual mechanism for this effect has been described. In a previous study on isolated mitochondria, we have proposed that fructose-1,6-bisphosphate (F1,6bP), which inhibits the respiratory chain, induces the Crabtree effect. Using whole cells from the yeast Saccharomyces cerevisiae as a model, we show here not only that F1,6bP plays a key role in the process but that glucose-6-phosphate (G6P), a hexose that has an effect opposite to that of F1,6bP on the regulation of the respiratory flux, does as well. Thus, these findings reveal that the Crabtree effect strongly depends on the ratio between these two glycolysis-derived hexose phosphates. Last, in silico modeling of the Crabtree effect illustrated the requirement of an inhibition of the respiratory flux by a coordinated variation of glucose-6-phosphate and fructose-1,6-bisphosphate to fit the respiratory rate decrease observed upon glucose addition to cells. In summary, we conclude that two glycolysis-derived hexose phosphates, G6P and F1,6bP, play a key role in the induction of the Crabtree effect.


Asunto(s)
Fructosadifosfatos/metabolismo , Glucosa/metabolismo , Glucólisis/fisiología , Saccharomyces cerevisiae/metabolismo , Fructosadifosfatos/genética , Glucosa/genética , Consumo de Oxígeno/fisiología , Saccharomyces cerevisiae/genética
3.
Metab Eng ; 42: 168-174, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28624535

RESUMEN

Fructose 1,6-diphosphate (FDP) is a widely used medicine and is also a precursor of two important three-carbon phosphates - glyceraldehyde 3-phosphate (GA3P) and dihydroxyacetone phosphate (DHAP) for the biosynthesis of numerous fine chemicals. An in vitro synthetic cofactor-free enzymatic pathway comprised of four hyperthermophilic enzymes was designed to produce FDP from starch and pyrophosphate. All of four hyperthermophilic enzymes (i.e., alpha-glucan phosphorylase from Thermotaga maritima, phosphoglucomutase from Thermococcus kodakarensis, glucose 6-phosphate isomerase from Thermus thermophilus, and pyrophosphate phosphofructokinase from T. maritima) were overexpressed in E. coli BL21(DE3) and purified by simple heat precipitation. The optimal pH and temperature of one-pot biosynthesis were 7.2 and 70°C, respectively. The optimal enzyme ratios of αGP, PGM, PGI and PFK were 2:2:1:2 in terms of units. Via step-wise addition of new substrates, up to 125 ± 4.6mM FDP was synthesized after 7-h reaction. This de novo ATP-free enzymatic pathway comprised of all hyperthermophilic enzymes could drastically decrease the manufacturing costs of FDP and its derivatives GA3P and DHAP, better than those catalyzed by ATP-regeneration cascade biocatalysis, the use of mesophilic enzymes, whole cell lysates, and microbial cell factories.


Asunto(s)
Escherichia coli , Fructosadifosfatos/biosíntesis , Ingeniería Metabólica , Proteínas Arqueales/biosíntesis , Proteínas Arqueales/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fructosadifosfatos/genética , Thermococcus/enzimología , Thermococcus/genética , Thermotoga maritima/enzimología , Thermotoga maritima/genética , Thermus thermophilus
4.
J Biol Chem ; 288(46): 33312-22, 2013 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-24100037

RESUMEN

Pulses of insulin released from pancreatic ß-cells maintain blood glucose in a narrow range, although the source of these pulses is unclear. We and others have proposed that positive feedback mediated by the glycolytic enzyme phosphofructokinase-1 (PFK1) enables ß-cells to generate metabolic oscillations via autocatalytic activation by its product fructose 1,6-bisphosphate (FBP). Although much indirect evidence has accumulated in favor of this hypothesis, a direct measurement of oscillating glycolytic intermediates has been lacking. To probe glycolysis directly, we engineered a family of inter- and intramolecular FRET biosensors based on the glycolytic enzyme pyruvate kinase M2 (PKAR; pyruvate kinase activity reporter), which multimerizes and is activated upon binding FBP. When introduced into Min6 ß-cells, PKAR FRET efficiency increased rapidly in response to glucose. Importantly, however, metabolites entering downstream of PFK1 (glyceraldehyde, pyruvate, and ketoisocaproate) failed to activate PKAR, consistent with sensor activation by FBP; the dependence of PKAR on FBP was further confirmed using purified sensor in vitro. Using a novel imaging modality for monitoring mitochondrial flavin fluorescence in mouse islets, we show that slow oscillations in mitochondrial redox potential stimulated by 10 mm glucose are in phase with glycolytic efflux through PKM2, measured simultaneously from neighboring islet ß-cells expressing PKAR. These results indicate that PKM2 activity in ß-cells is oscillatory and are consistent with pulsatile PFK1 being the mediator of slow glycolytic oscillations.


Asunto(s)
Relojes Biológicos/fisiología , Transferencia Resonante de Energía de Fluorescencia/métodos , Glucólisis/fisiología , Células Secretoras de Insulina/enzimología , Fosfofructoquinasa-1/metabolismo , Piruvato Quinasa/metabolismo , Animales , Línea Celular , Fructosadifosfatos/genética , Fructosadifosfatos/metabolismo , Humanos , Células Secretoras de Insulina/citología , Masculino , Ratones , Oxidación-Reducción , Fosfofructoquinasa-1/genética , Piruvato Quinasa/genética
5.
J Biol Chem ; 288(15): 10640-51, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23457334

RESUMEN

Reciprocal regulation of metabolism and signaling allows cells to modulate their activity in accordance with their metabolic resources. Thus, amino acids could activate signal transduction pathways that control cell metabolism. To test this hypothesis, we analyzed the effect of amino acids on fructose-2,6-bisphosphate (Fru-2,6-P2) metabolism. We demonstrate that amino acids increase Fru-2,6-P2 concentration in HeLa and in MCF7 human cells. In conjunction with this, 6-phosphofructo-2-kinase activity, glucose uptake, and lactate concentration were increased. These data correlate with the specific phosphorylation of heart 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB2) isoenzyme at Ser-483. This activation was mediated by the PI3K and p38 signaling pathways. Furthermore, Akt inactivation blocked PFKFB2 phosphorylation and Fru-2,6-P2 production, thereby suggesting that the above signaling pathways converge at Akt kinase. In accordance with these results, kinase assays showed that amino acid-activated Akt phosphorylated PFKFB2 at Ser-483 and that knockdown experiments confirmed that the increase in Fru-2,6-P2 concentration induced by amino acids was due to PFKFB2. In addition, similar effects on Fru-2,6-P2 metabolism were observed in freshly isolated rat cardiomyocytes treated with amino acids, which indicates that these effects are not restricted to human cancer cells. In these cardiomyocytes, the glucose consumption and the production of lactate and ATP suggest an increase of glycolytic flux. Taken together, these results demonstrate that amino acids stimulate Fru-2,6-P2 synthesis by Akt-dependent PFKFB2 phosphorylation and activation and show how signaling and metabolism are inextricably linked.


Asunto(s)
Aminoácidos/metabolismo , Glucólisis/fisiología , Miocitos Cardíacos/enzimología , Fosfofructoquinasa-2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Aminoácidos/genética , Animales , Activación Enzimática/fisiología , Fructosadifosfatos/genética , Fructosadifosfatos/metabolismo , Glucosa/genética , Glucosa/metabolismo , Células HEK293 , Células HeLa , Humanos , Ácido Láctico/metabolismo , Masculino , Miocitos Cardíacos/citología , Fosfofructoquinasa-2/genética , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ratas Sprague-Dawley , Serina/genética , Serina/metabolismo
6.
J Biotechnol ; 163(2): 217-24, 2013 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22898177

RESUMEN

Corynebacterium glutamicum, the best established industrial producer organism for lysine was genetically modified to allow the production of lysine on grass and corn silages. The resulting strain C. glutamicum lysC(fbr)dld(Psod)pyc(Psod)malE(Psod)fbp(Psod)gapX(Psod) was based on earlier work (Neuner and Heinzle, 2011). That mutant carries a point mutation in the aspartokinase (lysC) regulatory subunit gene as well as overexpression of D-lactate dehydrogenase (dld), pyruvate carboxylase (pyc) and malic enzyme (malE) using the strong Psod promoter. Here, we additionally overexpressed fructose 1,6-bisphosphatase (fbp) and glyceraldehyde 3-phosphate dehydrogenase (gapX) using the same promoter. The resulting strain grew readily on grass and corn silages with a specific growth rate of 0.35 h⁻¹ and lysine carbon yields of approximately 90 C-mmol (C-mol)⁻¹. Lysine yields were hardly affected by oxygen limitation whereas linear growth was observed under oxygen limiting conditions. Overall, this strain seems very robust with respect to the composition of silage utilizing all quantified low molecular weight substrates, e.g. lactate, glucose, fructose, maltose, quinate, fumarate, glutamate, leucine, isoleucine and alanine.


Asunto(s)
Reactores Biológicos/microbiología , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ingeniería Genética/métodos , Lisina/biosíntesis , Ensilaje , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cultivo Celular por Lotes , Corynebacterium glutamicum/enzimología , Fermentación/fisiología , Fructosadifosfatos/genética , Fructosadifosfatos/metabolismo , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/genética , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/metabolismo , Lisina/análisis , Lisina/genética , Oxígeno/metabolismo , Reproducibilidad de los Resultados
7.
Plant Cell Physiol ; 53(6): 1017-32, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22492233

RESUMEN

Rhizoctonia solani Kuhn causes sheath blight disease in rice, and genetic resistance against it is the most desirable characteristic. Current improvement efforts are based on analysis of polygenic quantitative trait loci (QTLs), but interpretation is limited by the lack of information on the changes in metabolic pathways. Our previous studies linked activation of the glycolytic pathway to enhanced generation of lignin in the phenylpropanoid pathway. The current studies investigated the regulation of glycolysis by examining the time course of changes in enzymatic activities and metabolite contents. The results showed that the activities of all glycolytic enzymes as well as fructose-6-phosphate (F-6-P), fructose-1,6-bisphosphate (F-1,6-P(2)), dihydroxyacetone phosphate (DHAP), glyceraldehyde-3-phosphate (GAP), 3-phosphoglycerate (3-PG), phosphoenolpyruvate (PEP) and pyruvate contents increased. These results combined with our previous findings that the expression of phosphoglucomutase (PGM), triosephosphate isomerase (TPI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase and pyruvate kinase (PK) increased after infection suggested that the additional establishment of glycolysis in the cytosol compartment occurred after infection. Further evidence for this was our recent findings that the increase in expression of the 6-phosphofructokinase (PFK) plastid isozyme Os06g05860 was accompanied by an increase in expression of three cytosolic PFK isozymes, i.e. Os01g09570, Os01g53680 and Os04g39420, as well as pyrophosphate-dependent phosphofrucokinase (PFP) isozymes Os08g25720 (α-subunit) and Os06g13810 (ß-subunit) in infected rice plants of the resistant line. The results also showed that the reactions catalysed by PFK/PFP, aldolase, GAPDH + phosphoglycerate kinase (PGK) and PK in leaf sheaths of R. solani-infected rice plants were non-equilibrium reactions in vivo. This study showed that PGM, phosphoglucose isomerase (PGI), TPI and phosphoglycerate mutase (PGmu) + enolase could be regulated through coarse control whereas, PFK/PFP, aldolase, GAPDH + PGK and PK could be regulated through coarse and fine controls simultaneously.


Asunto(s)
Glucólisis , Interacciones Huésped-Patógeno , Oryza/enzimología , Rhizoctonia/patogenicidad , Citosol/enzimología , Citosol/metabolismo , Dihidroxiacetona Fosfato/genética , Dihidroxiacetona Fosfato/metabolismo , Resistencia a la Enfermedad , Activación Enzimática , Fructosadifosfatos/genética , Fructosadifosfatos/metabolismo , Fructosafosfatos/genética , Fructosafosfatos/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Gliceraldehído 3-Fosfato/genética , Gliceraldehído 3-Fosfato/metabolismo , Peróxido de Hidrógeno/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Oryza/genética , Oryza/inmunología , Oryza/microbiología , Fosfoenolpiruvato/metabolismo , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-1/metabolismo , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Pirúvico/metabolismo , Sitios de Carácter Cuantitativo , Rhizoctonia/inmunología , Factores de Tiempo
8.
J Biol Chem ; 286(46): 40219-31, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21949126

RESUMEN

The search for antituberculosis drugs active against persistent bacilli has led to our interest in metallodependent class II fructose-1,6-bisphosphate aldolase (FBA-tb), a key enzyme of gluconeogenesis absent from mammalian cells. Knock-out experiments at the fba-tb locus indicated that this gene is required for the growth of Mycobacterium tuberculosis on gluconeogenetic substrates and in glucose-containing medium. Surface labeling and enzymatic activity measurements revealed that this enzyme was exported to the cell surface of M. tuberculosis and produced under various axenic growth conditions including oxygen depletion and hence by non-replicating bacilli. Importantly, FBA-tb was also produced in vivo in the lungs of infected guinea pigs and mice. FBA-tb bound human plasmin(ogen) and protected FBA-tb-bound plasmin from regulation by α(2)-antiplasmin, suggestive of an involvement of this enzyme in host/pathogen interactions. The crystal structures of FBA-tb in the native form and in complex with a hydroxamate substrate analog were determined to 2.35- and 1.9-Å resolution, respectively. Whereas inhibitor attachment had no effect on the plasminogen binding activity of FBA-tb, it competed with the natural substrate of the enzyme, fructose 1,6-bisphosphate, and substantiated a previously unknown reaction mechanism associated with metallodependent aldolases involving recruitment of the catalytic zinc ion by the substrate upon active site binding. Altogether, our results highlight the potential of FBA-tb as a novel therapeutic target against both replicating and non-replicating bacilli.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Gluconeogénesis , Mycobacterium tuberculosis/enzimología , Tuberculosis Pulmonar/enzimología , Animales , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Fibrinolisina/genética , Fibrinolisina/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Fructosadifosfatos/química , Fructosadifosfatos/genética , Fructosadifosfatos/metabolismo , Técnicas de Silenciamiento del Gen , Cobayas , Interacciones Huésped-Patógeno/genética , Humanos , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Unión Proteica , Tuberculosis Pulmonar/genética , alfa 2-Antiplasmina/genética , alfa 2-Antiplasmina/metabolismo
9.
Plant Physiol Biochem ; 49(9): 946-57, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21782461

RESUMEN

From the five genes which code for cytosolic fructose 1,6-bisphosphate aldolases in Arabidopsis thaliana L., the cDNA clone of cAld2 (At2g36460), was heterologously expressed in E. coli and incubated under various oxidizing and reducing conditions. Covalent binding of a GSH moiety to the enzyme was shown by incorporation of biotinylated GSH (BioGEE) and by immunodetection with monoclonal anti-GSH serum. Nitrosylation after incubation with GSNO or SNP was demonstrated using the biotin-switch assay. Mass-spectrometry analysis showed glutathionylation and/or nitrosylation at two different cysteine residues: GSH was found to be attached to C68 and C173, while the nitroso-group was incorporated only into C173. Non-reducing SDS-PAGE conducted with purified wild-type and various Cys-mutant proteins revealed the presence of disulfide bridges in the oxidized enzyme, as described for rabbit muscle aldolase. Incubation of the purified enzyme with GSSG (up to 25 mM) led to partial and reversible inactivation of enzyme activity; NADPH, in the presence of the components of the cytosolic NADP-dependent thioredoxin system, could reactivate the aldolase as did DTT. Total and irreversible inactivation occurred with low concentrations (0.1 mM) of nitrosoglutathione (GSNO). Inactivation was prevented by co-incubation of cAld2 with fructose-1,6-bisphosphate (FBP). Nuclear localization of cAld2 and interaction with thioredoxins was shown by transient expression of fusion constructs with fluorescent proteins in isolated protoplasts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Núcleo Celular/enzimología , Citosol/enzimología , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosadifosfatos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Sustitución de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Escherichia coli/enzimología , Escherichia coli/genética , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/genética , Fructosadifosfatos/genética , Mutación Missense , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
J Biol Chem ; 286(26): 23150-9, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21550976

RESUMEN

Herein we measure the effect of four adaptive non-synonymous mutations to the glycerol kinase (glpK) gene on catalytic function and regulation, to identify changes that correlate to increased fitness in glycerol media. The mutations significantly reduce affinity for the allosteric inhibitor fructose-1,6-bisphosphate (FBP) and formation of the tetramer, which are structurally related, in a manner that correlates inversely with imparted fitness during growth on glycerol, which strongly suggests that these enzymatic parameters drive growth improvement. Counterintuitively, the glpK mutations also increase glycerol-induced auto-catabolite repression that reduces glpK transcription in a manner that correlates to fitness. This suggests that increased specific GlpK activity is attenuated by negative feedback on glpK expression via catabolite repression, possibly to prevent methylglyoxal toxicity. We additionally report that glpK mutations were fixed in 47 of 50 independent glycerol-adapted lineages. By far the most frequently mutated locus (nucleotide 218) was mutated in 20 lineages, strongly suggesting this position has an elevated mutation rate. This study demonstrates that fitness correlations can be used to interrogate adaptive processes at the protein level and to identify the regulatory constraints underlying selection and improved growth.


Asunto(s)
Escherichia coli K12/enzimología , Proteínas de Escherichia coli/metabolismo , Fructosadifosfatos/metabolismo , Glicerol Quinasa/metabolismo , Glicerol/metabolismo , Regulación Alostérica/fisiología , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Fructosadifosfatos/genética , Glicerol Quinasa/genética , Mutación
11.
J Biol Chem ; 286(23): 20267-74, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21515692

RESUMEN

Stationary-phase Saccharomyces cerevisiae cells transferred from spent rich media into water live for weeks, whereas the same cells die within hours if transferred into water with 2% glucose in a process called sugar-induced cell death (SICD). Our hypothesis is that SICD is due to a dysregulated Crabtree effect, which is the phenomenon whereby glucose transiently inhibits respiration and ATP synthesis. We found that stationary-phase cells in glucose/water consume 21 times more O(2) per cell than exponential-phase cells in rich media, and such excessive O(2) consumption causes reactive oxygen species to accumulate. We also found that inorganic phosphate and succinate protect against SICD but by different mechanisms. Phosphate protects by triggering the synthesis of Fru-1,6-P(2), which inhibits respiration in isolated mitochondria. Succinate protects in wild-type cells but fails to protect in dic1Δ cells. DIC1 codes for a mitochondrial inner membrane protein that exchanges cytosolic succinate for matrix phosphate. We propose that succinate depletes matrix phosphate, which in turn inhibits respiration and ATP synthesis. In sum, restoring the Crabtree effect, whether with phosphate or succinate, protects cells from SICD.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Glucosa/metabolismo , Consumo de Oxígeno/fisiología , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Adenosina Trifosfato/genética , Fructosadifosfatos/genética , Fructosadifosfatos/metabolismo , Saccharomyces cerevisiae/genética
12.
J Biol Chem ; 286(22): 19247-58, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21464136

RESUMEN

Macrophages activated through Toll receptor triggering increase the expression of the A(2A) and A(2B) adenosine receptors. In this study, we show that adenosine receptor activation enhances LPS-induced pfkfb3 expression, resulting in an increase of the key glycolytic allosteric regulator fructose 2,6-bisphosphate and the glycolytic flux. Using shRNA and differential expression of A(2A) and A(2B) receptors, we demonstrate that the A(2A) receptor mediates, in part, the induction of pfkfb3 by LPS, whereas the A(2B) receptor, with lower adenosine affinity, cooperates when high adenosine levels are present. pfkfb3 promoter sequence deletion analysis, site-directed mutagenesis, and inhibition by shRNAs demonstrated that HIF1α is a key transcription factor driving pfkfb3 expression following macrophage activation by LPS, whereas synergic induction of pfkfb3 expression observed with the A(2) receptor agonists seems to depend on Sp1 activity. Furthermore, levels of phospho-AMP kinase also increase, arguing for increased PFKFB3 activity by phosphorylation in long term LPS-activated macrophages. Taken together, our results show that, in macrophages, endogenously generated adenosine cooperates with bacterial components to increase PFKFB3 isozyme activity, resulting in greater fructose 2,6-bisphosphate accumulation. This process enhances the glycolytic flux and favors ATP generation helping to develop and maintain the long term defensive and reparative functions of the macrophages.


Asunto(s)
Adenosina/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos Peritoneales/enzimología , Fosfofructoquinasa-2/biosíntesis , Receptor Toll-Like 4/agonistas , Adenosina/genética , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Fructosadifosfatos/genética , Fructosadifosfatos/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Glucólisis/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoenzimas/biosíntesis , Isoenzimas/genética , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/fisiología , Macrófagos Peritoneales/citología , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Fosfofructoquinasa-2/genética , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2B , Eliminación de Secuencia , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
13.
J Biol Chem ; 284(36): 24223-32, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19473963

RESUMEN

The regulation of metabolism and growth must be tightly coupled to guarantee the efficient use of energy and anabolic substrates throughout the cell cycle. Fructose 2,6-bisphosphate (Fru-2,6-BP) is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1), a rate-limiting enzyme and essential control point in glycolysis. The concentration of Fru-2,6-BP in mammalian cells is set by four 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4), which interconvert fructose 6-phosphate and Fru-2,6-BP. The relative functions of the PFKFB3 and PFKFB4 enzymes are of particular interest because they are activated in human cancers and increased by mitogens and low oxygen. We examined the cellular localization of PFKFB3 and PFKFB4 and unexpectedly found that whereas PFKFB4 localized to the cytoplasm (i.e. the site of glycolysis), PFKFB3 localized to the nucleus. We then overexpressed PFKFB3 and observed no change in glucose metabolism but rather a marked increase in cell proliferation. These effects on proliferation were completely abrogated by mutating either the active site or nuclear localization residues of PFKFB3, demonstrating a requirement for nuclear delivery of Fru-2,6-BP. Using protein array analyses, we then found that ectopic expression of PFKFB3 increased the expression of several key cell cycle proteins, including cyclin-dependent kinase (Cdk)-1, Cdc25C, and cyclin D3 and decreased the expression of the cell cycle inhibitor p27, a universal inhibitor of Cdk-1 and the cell cycle. We also observed that the addition of Fru-2,6-BP to HeLa cell lysates increased the phosphorylation of the Cdk-specific Thr-187 site of p27. Taken together, these observations demonstrate an unexpected role for PFKFB3 in nuclear signaling and indicate that Fru-2,6-BP may couple the activation of glucose metabolism with cell proliferation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Núcleo Celular/enzimología , Proliferación Celular , Ciclinas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Fosfofructoquinasa-2/metabolismo , Fosfatasas cdc25/metabolismo , Regulación Alostérica , Proteína Quinasa CDC2/genética , Núcleo Celular/genética , Ciclina D3 , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Ciclinas/genética , Citoplasma/enzimología , Citoplasma/genética , Fructosadifosfatos/genética , Fructosadifosfatos/metabolismo , Fructosafosfatos/genética , Fructosafosfatos/metabolismo , Glucosa/genética , Glucosa/metabolismo , Glucólisis , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Fosfofructoquinasa-2/genética , Fosfatasas cdc25/genética
14.
J Biol Chem ; 284(6): 3784-92, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19073594

RESUMEN

Gluconeogenesis is an important metabolic pathway, which produces glucose from noncarbohydrate precursors such as organic acids, fatty acids, amino acids, or glycerol. Fructose-1,6-bisphosphatase, a key enzyme of gluconeogenesis, is found in all organisms, and five different classes of these enzymes have been identified. Here we demonstrate that Escherichia coli has two class II fructose-1,6-bisphosphatases, GlpX and YggF, which show different catalytic properties. We present the first crystal structure of a class II fructose-1,6-bisphosphatase (GlpX) determined in a free state and in the complex with a substrate (fructose 1,6-bisphosphate) or inhibitor (phosphate). The crystal structure of the ligand-free GlpX revealed a compact, globular shape with two alpha/beta-sandwich domains. The core fold of GlpX is structurally similar to that of Li+-sensitive phosphatases implying that they have a common evolutionary origin and catalytic mechanism. The structure of the GlpX complex with fructose 1,6-bisphosphate revealed that the active site is located between two domains and accommodates several conserved residues coordinating two metal ions and the substrate. The third metal ion is bound to phosphate 6 of the substrate. Inorganic phosphate strongly inhibited activity of both GlpX and YggF, and the crystal structure of the GlpX complex with phosphate demonstrated that the inhibitor molecule binds to the active site. Alanine replacement mutagenesis of GlpX identified 12 conserved residues important for activity and suggested that Thr(90) is the primary catalytic residue. Our data provide insight into the molecular mechanisms of the substrate specificity and catalysis of GlpX and other class II fructose-1,6-bisphosphatases.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Evolución Molecular , Fructosa-Bifosfatasa/química , Fructosadifosfatos/química , Sustitución de Aminoácidos , Catálisis , Cristalografía por Rayos X/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fructosa-Bifosfatasa/antagonistas & inhibidores , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Fructosadifosfatos/genética , Fructosadifosfatos/metabolismo , Gluconeogénesis/fisiología , Litio/química , Litio/metabolismo , Mutagénesis , Mutación Missense , Fosfatos/química , Fosfatos/metabolismo , Estructura Terciaria de Proteína/fisiología , Especificidad por Sustrato/fisiología
15.
Microbiology (Reading) ; 151(Pt 3): 707-716, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15758217

RESUMEN

The metabolic dynamics of the Escherichia coli K-12 strain TG1 to feast and famine were studied in glucose-limited steady-state cultures by up- and downshifts of the dilution rate, respectively. An uncoupling of anabolic and catabolic rates was observed upon dilution rate upshifts, apparent through immediately increased glucose uptake rates which were not accompanied by an immediate increase of the growth rate but instead resulted in the temporary excretion of methylglyoxal, D- and L-lactate, pyruvate and, after a delay, acetate. The energetic state of the cell during the transient was followed by measuring the adenylate energy charge, which increased within 2 min after the upshift and declined thereafter until a new steady-state level was reached. In the downshift experiment, the adenylate energy charge behaved inversely; no by-products were formed, indicating a tight coupling of anabolism and catabolism. Both dilution rate shifts were accompanied by an instantaneous increase of cAMP, presaging the subsequent changes in metabolic pathway utilization. Intracellular key metabolites of the Embden-Meyerhof-Parnas (EMP) pathway were measured to evaluate the metabolic perturbation during the upshift. Fructose 1,6-diphosphate (FDP) and dihydroxyacetone phosphate (DHAP) increased rapidly after the upshift, while glyceraldehyde 3-phosphate decreased. It is concluded that this imbalance at the branch-point of FDP induces the methylglyoxal (MG) pathway, a low-energy-yielding bypass of the lower EMP pathway, through the increasing level of DHAP. MG pathway activation after the upshift was simulated by restricting anabolic rates using a stoichiometry-based metabolic model. The metabolic model predicted that low-energy-yielding catabolic pathways are utilized preferentially in the transient after the upshift. Upon severe dilution rate upshifts, an oscillatory behaviour occurred, apparent through long-term oscillations of respiratory activity, which started when the cytotoxic compound MG reached a threshold concentration of 1.5 mg l(-1) in the medium.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucosa/metabolismo , Piruvaldehído/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medios de Cultivo , Dihidroxiacetona Fosfato/genética , Dihidroxiacetona Fosfato/metabolismo , Metabolismo Energético , Fructosadifosfatos/genética , Fructosadifosfatos/metabolismo , Gliceraldehído 3-Fosfato/genética , Gliceraldehído 3-Fosfato/metabolismo
16.
Arch Biochem Biophys ; 397(1): 28-39, 2002 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11747307

RESUMEN

The mechanism by which pyruvate kinase (PK) is allosterically activated by fructose-1,6-bisphosphate (FBP) is poorly understood. To identify residues key to allostery of yeast PK, a point mutation strategy was used. T403E and R459Q mutations in the FBP binding site caused reduced FBP affinity. Introducing positive charges at the 403, 458, and 406 positions in the FBP binding site had little consequence. The mutation Q299N in the A [bond] A subunit interface caused the enzyme response to ADP to be sensitive to FBP. The T311M A [bond] A interface mutant has a decreased affinity for PEP and FBP, and is dependent on FBP for activity. The R369A mutation in the C [bond] C interface only moderately influenced allostery. Creating an E392A mutation in the C [bond] C subunit interface eliminated all cooperativity and allosteric regulation. None of the seven A [bond] C domain interface mutations altered allostery. A model that includes a central role for E392 in allosteric regulation of yeast PK is proposed.


Asunto(s)
Piruvato Quinasa/química , Piruvato Quinasa/genética , Adenosina Difosfato/metabolismo , Sitio Alostérico , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Fructosadifosfatos/química , Fructosadifosfatos/genética , Cinética , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Mutación Puntual , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia
17.
Microbiology (Reading) ; 147(Pt 2): 403-410, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11158357

RESUMEN

The mechanisms by which the weak acid preservative benzoic acid inhibits the growth of Saccharomyces cerevisiae have been investigated. A reduction in the pyruvate kinase level, which decreases glycolytic flux, did not increase the sensitivity of yeast to benzoic acid. However, a decrease in 6-phosphofructo-1-kinase (PF1K), which does not affect glycolytic flux, did increase sensitivity to benzoic acid. Also, resistance was increased by elevating PF1K levels. Hence, resistance to benzoic acid was not dependent upon optimum glycolytic flux, but upon an adequate PF1K activity. Benzoic acid was shown to depress fructose 2,6-bisphosphate levels in YKC14, a mutant with low PF1K levels. This effect was partially suppressed by overexpressing constitutively active 6-phosphofructo-2-kinase (Pfk26(Asp644)) or by inactivating fructose-2,6-bisphosphatase (in a Deltafbp26 mutant). The inactivation of PF2K (in a Deltapfk26 Deltapfk27 mutant) increased benzoic acid sensitivity. Therefore, the antimicrobial effects of benzoic acid can be relieved, at least in part, by the genetic manipulation of PF1K or fructose 2,6-bisphosphate levels.


Asunto(s)
Antifúngicos/farmacología , Ácido Benzoico/farmacología , Fructosadifosfatos/metabolismo , Fosfofructoquinasa-1/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Fructosadifosfatos/genética , Glucólisis , Fosfofructoquinasa-1/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
18.
Biochemistry ; 37(33): 11441-50, 1998 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-9708979

RESUMEN

A disordered loop (loop 52-72, residues 52-72) in crystal structures of fructose-1,6-bisphosphatase (FBPase) has been implicated in regulatory and catalytic phenomena by studies in directed mutation. A crystal structure of FBPase in a complex with three zinc cations and the products fructose 6-phosphate (F6P) and phosphate (Pi) reveals loop 52-72 for the first time in a well-defined conformation with strong electron density. Loop 52-57 interacts primarily with the active site of its own subunit. Asp68 of the loop hydrogen bonds with Arg276 and a zinc cation located at the putative potassium activation site. Leu56 and Tyr57 of the loop pack against hydrophobic residues from two separate subunits of FBPase. A mechanism of allosteric regulation of catalysis is presented, in which AMP, by binding to its allosteric pocket, displaces loop 52-72 from the active site. Furthermore, the current structure suggests that both the alpha- and beta-anomers of F6P can be substrates in the reverse reaction catalyzed by FBPase. Mechanisms of catalysis are proposed for the reverse reaction in which Asp121 serves as a catalytic base for the alpha-anomer and Glu280 serves as a catalytic base for the beta-anomer.


Asunto(s)
Fructosadifosfatos/química , Fructosadifosfatos/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Cationes Bivalentes/metabolismo , Cristalografía por Rayos X , Activación Enzimática , Fructosadifosfatos/genética , Ligandos , Modelos Químicos , Modelos Moleculares , Estructura Terciaria de Proteína , Porcinos , Zinc/metabolismo
19.
Proc Natl Acad Sci U S A ; 90(17): 8224-8, 1993 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-8396265

RESUMEN

6-Phosphofructo-2-kinase (EC 2.7.1.105)/fructose-2,6-bis-phosphatase (EC 3.1.3.46) catalyzes the synthesis and degradation of fructose 2,6-bisphosphate, a ubiquitous stimulator of glycolysis. The liver (L-type) and muscle (M-type) mRNAs for this bifunctional enzyme arise from distinct promoters of the same gene. We have now characterized in rat hepatoma FTO2B cells another mRNA, which is transcribed from a third promoter of that gene. This F-type mRNA is present in fetal rat liver and muscle, in rat placenta, and in several established rat cell lines. The F promoter contains no TATA box but contains several binding sites for Sp1 and for members of the ets oncogene family. Transfection of FTO2B cells with constructs containing the intact or mutagenized F promoter showed that its activity depends mainly on one of these sites. This site bound a heteromeric FTO2B cell protein indistinguishable from the ets-related GA binding protein alpha/ankyrin-repeats GA binding protein beta transcription factor.


Asunto(s)
Fructosadifosfatos/biosíntesis , Neoplasias Hepáticas Experimentales/enzimología , Oncogenes , Fosfotransferasas/biosíntesis , Regiones Promotoras Genéticas , Proteínas Tirosina Quinasas/metabolismo , ARN Mensajero/biosíntesis , Proteínas Oncogénicas de Retroviridae/metabolismo , Animales , Secuencia de Bases , Línea Celular , Exones , Femenino , Fructosadifosfatos/genética , Isoenzimas/biosíntesis , Isoenzimas/genética , Hígado/enzimología , Datos de Secuencia Molecular , Músculos/enzimología , Oligodesoxirribonucleótidos , Fosfofructoquinasa-2 , Fosfotransferasas/genética , Placenta/enzimología , Reacción en Cadena de la Polimerasa/métodos , Embarazo , ARN Mensajero/metabolismo , Ratas , Mapeo Restrictivo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...