Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.593
Filtrar
1.
J Biomed Opt ; 30(Suppl 1): S13702, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39034960

RESUMEN

Significance: Near-infrared autofluorescence (NIRAF) utilizes the natural autofluorescence of parathyroid glands (PGs) to improve their identification during thyroid surgeries, reducing the risk of inadvertent removal and subsequent complications such as hypoparathyroidism. This study evaluates NIRAF's effectiveness in real-world surgical settings, highlighting its potential to enhance surgical outcomes and patient safety. Aim: We evaluate the effectiveness of NIRAF in detecting PGs during thyroidectomy and central neck dissection and investigate autofluorescence characteristics in both fresh and paraffin-embedded tissues. Approach: We included 101 patients diagnosed with papillary thyroid cancer who underwent surgeries in 2022 and 2023. We assessed NIRAF's ability to locate PGs, confirmed via parathyroid hormone assays, and involved both junior and senior surgeons. We measured the accuracy, speed, and agreement levels of each method and analyzed autofluorescence persistence and variation over 10 years, alongside the expression of calcium-sensing receptor (CaSR) and vitamin D. Results: NIRAF demonstrated a sensitivity of 89.5% and a negative predictive value of 89.1%. However, its specificity and positive predictive value (PPV) were 61.2% and 62.3%, respectively, which are considered lower. The kappa statistic indicated moderate to substantial agreement (kappa = 0.478; P < 0.001 ). Senior surgeons achieved high specificity (86.2%) and PPV (85.3%), with substantial agreement (kappa = 0.847; P < 0.001 ). In contrast, junior surgeons displayed the lowest kappa statistic among the groups, indicating minimal agreement (kappa = 0.381; P < 0.001 ). Common errors in NIRAF included interference from brown fat and eschar. In addition, paraffin-embedded samples retained stable autofluorescence over 10 years, showing no significant correlation with CaSR and vitamin D levels. Conclusions: NIRAF is useful for PG identification in thyroid and neck surgeries, enhancing efficiency and reducing inadvertent PG removals. The stability of autofluorescence in paraffin samples suggests its long-term viability, with false positives providing insights for further improvements in NIRAF technology.


Asunto(s)
Imagen Óptica , Glándulas Paratiroides , Espectroscopía Infrarroja Corta , Tiroidectomía , Humanos , Glándulas Paratiroides/cirugía , Glándulas Paratiroides/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Imagen Óptica/métodos , Adulto , Espectroscopía Infrarroja Corta/métodos , Adhesión en Parafina/métodos , Anciano , Cáncer Papilar Tiroideo/cirugía , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/análisis
2.
Genome Res ; 34(6): 837-850, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38977309

RESUMEN

Studies on human parathyroids are generally limited to hyperfunctioning glands owing to the difficulty in obtaining normal human tissue. We therefore obtained non-human primate (NHP) parathyroids to provide a suitable alternative for sequencing that would bear a close semblance to human organs. Single-cell RNA expression analysis of parathyroids from four healthy adult M. mulatta reveals a continuous trajectory of epithelial cell states. Pseudotime analysis based on transcriptomic signatures suggests a progression from GCM2 hi progenitors to mature parathyroid hormone (PTH)-expressing epithelial cells with increasing core mitochondrial transcript abundance along pseudotime. We sequenced, as a comparator, four histologically characterized hyperfunctioning human parathyroids with varying oxyphil and chief cell abundance and leveraged advanced computational techniques to highlight similarities and differences from non-human primate parathyroid expression dynamics. Predicted cell-cell communication analysis reveals abundant endothelial cell interactions in the parathyroid cell microenvironment in both human and NHP parathyroid glands. We show abundant RARRES2 transcripts in both human adenoma and normal primate parathyroid cells and use coimmunostaining to reveal high levels of RARRES2 protein (also known as chemerin) in PTH-expressing cells, which could indicate that RARRES2 plays an unrecognized role in parathyroid endocrine function. The data obtained are the first single-cell RNA transcriptome to characterize nondiseased parathyroid cell signatures and to show a transcriptomic progression of cell states within normal parathyroid glands, which can be used to better understand parathyroid cell biology.


Asunto(s)
Macaca mulatta , Glándulas Paratiroides , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Glándulas Paratiroides/metabolismo , Animales , Transcriptoma , Quimiocinas/metabolismo , Quimiocinas/genética , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/genética , Comunicación Celular , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Transcripción Genética
3.
Lab Chip ; 24(13): 3243-3251, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38836406

RESUMEN

The parathyroid gland is an endocrine organ that plays a crucial role in regulating calcium levels in blood serum through the secretion of parathyroid hormone (PTH). Hypoparathyroidism is a chronic disease that can occur due to parathyroid defects, but due to the difficulty of creating animal models of this disease or obtaining human normal parathyroid cells, the evaluation of parathyroid functionality for drug development is limited. Although parathyroid-like cells that secrete PTH have recently been reported, their functionality may be overestimated using traditional culture methods that lack in vivo similarities, particularly vascularization. To overcome these limitations, we obtained parathyroid organoids from tonsil-derived mesenchymal stem cells (TMSCs) and fabricated a parathyroid-on-a-chip, capable of simulating PTH secretion based on calcium concentration. This chip exhibited differences in PTH secretion according to calcium concentration and secreted PTH within the range of normal serum levels. In addition, branches of organoids, which are difficult to observe in animal models, were observed in this chip. This could serve as a guideline for successful engraftment in implantation therapies in the future.


Asunto(s)
Calcio , Dispositivos Laboratorio en un Chip , Células Madre Mesenquimatosas , Glándulas Paratiroides , Hormona Paratiroidea , Hormona Paratiroidea/metabolismo , Calcio/metabolismo , Humanos , Glándulas Paratiroides/metabolismo , Glándulas Paratiroides/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Organoides/metabolismo , Organoides/citología , Células Cultivadas
4.
Sci Rep ; 14(1): 12971, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839854

RESUMEN

Thyroid surgery often results in ischemia-reperfusion injury (IRI) to the parathyroid glands, yet the mechanisms underlying this and how to ameliorate IRI remain incompletely explored. Our study identifies a polyphenolic herbal extract-gallic acid (GA)-with antioxidative properties against IRI. Through flow cytometry and CCK8 assays, we investigate the protective effects of GA pretreatment on a parathyroid IRI model and decode its potential mechanisms via RNA-seq and bioinformatics analysis. Results reveal increased apoptosis, pronounced G1 phase arrest, and significantly reduced cell proliferation in the hypoxia/reoxygenation group compared to the hypoxia group, which GA pretreatment mitigates. RNA-seq and bioinformatics analysis indicate GA's modulation of various signaling pathways, including IL-17, AMPK, MAPK, transient receptor potential channels, cAMP, and Rap1. In summary, GA pretreatment demonstrates potential in protecting parathyroid cells from IRI by influencing various genes and signaling pathways. These findings offer a promising therapeutic strategy for hypoparathyroidism treatment.


Asunto(s)
Apoptosis , Ácido Gálico , Glándulas Paratiroides , Daño por Reperfusión , Transducción de Señal , Transducción de Señal/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/patología , Ácido Gálico/farmacología , Ácido Gálico/análogos & derivados , Animales , Apoptosis/efectos de los fármacos , Glándulas Paratiroides/metabolismo , Glándulas Paratiroides/efectos de los fármacos , Glándulas Paratiroides/patología , Proliferación Celular/efectos de los fármacos , Humanos , Ratones
5.
Crit Rev Immunol ; 44(6): 27-36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848291

RESUMEN

BACKGROUND: Thyroidectomy causes impaired blood supply to the parathyroid glands, which leads to hypoparathyroidism. Tanshinone IIA (Tan IIA) is helpful in blood activation and cardiovascular protection. Therefore, the efficacy of Tan IIA in improving hypoparathyroidism was explored in this study. METHODS: New Zealand white rabbits were utilized to establish a unilateral parathyroid gland ischemia injury model. The model was created by selectively ligating the main blood supply vessel of one parathyroid gland, and the rabbits were then divided into three groups receiving 1, 5, and 10 mg/kg of Tan IIA. Serum calcium and parathyroid hormone (PTH) levels were measured using specialized assay kits. Immunohistochemistry was used to assess the microvessel density (MVD) in parathyroid glands. Western blotting (WB) was used to analyze protein expression related to the PI3K/AKT signaling pathway and the pathway-associated HIF-1α and VEGF. Moreover, MMP-2 and MMP-9 involved in angiogenesis were detected by WB. RESULTS: Tan IIA treatment effectively restored serum calcium and PTH levels in a dose-dependent manner. Notably, MVD in the parathyroid glands increased significantly, especially at higher doses. The Tan IIA treatment also elevated the p-PI3K/PI3K and p-AKT/AKT ratios, indicating that the PI3K/AKT pathway was reactivated. Moreover, Tan IIA significantly restored the decreased expression levels of VEGF and HIF-1α caused by parathyroid surgery. Additionally, Tan IIA increased MMP-2 and MMP-9 levels. CONCLUSION: Tan IIA activates the PI3K/AKT pathway, promotes angiogenesis by modulating VEGF, HIF-1α, MMP-2, and MMP-9, thereby further enhancing MVD within the parathyroid glands. This study demonstrates that Tan IIA improved post-thyroidectomy hypoparathyroidism.


Asunto(s)
Abietanos , Modelos Animales de Enfermedad , Hipoparatiroidismo , Glándulas Paratiroides , Tiroidectomía , Animales , Hipoparatiroidismo/tratamiento farmacológico , Hipoparatiroidismo/etiología , Hipoparatiroidismo/metabolismo , Abietanos/farmacología , Abietanos/uso terapéutico , Tiroidectomía/efectos adversos , Conejos , Glándulas Paratiroides/metabolismo , Glándulas Paratiroides/efectos de los fármacos , Glándulas Paratiroides/cirugía , Transducción de Señal/efectos de los fármacos , Humanos , Calcio/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/sangre
6.
Curr Opin Nephrol Hypertens ; 33(4): 375-382, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701324

RESUMEN

PURPOSE OF REVIEW: Parathyroid hormone (PTH) is the major peptide hormone regulator of blood calcium homeostasis. Abnormal PTH levels can be observed in patients with various congenital and acquired disorders, including chronic kidney disease (CKD). This review will focus on rare human diseases caused by PTH mutations that have provided insights into the regulation of PTH synthesis and secretion as well as the diagnostic utility of different PTH assays. RECENT FINDINGS: Over the past years, numerous diseases affecting calcium and phosphate homeostasis have been defined at the molecular level that are responsible for reduced or increased serum PTH levels. The underlying genetic mutations impair parathyroid gland development, involve the PTH gene itself, or alter function of the calcium-sensing receptor (CaSR) or its downstream signaling partners that contribute to regulation of PTH synthesis or secretion. Mutations in the pre sequence of the mature PTH peptide can, for instance, impair hormone synthesis or intracellular processing, while amino acid substitutions affecting the secreted PTH(1-84) impair PTH receptor (PTH1R) activation, or cause defective cleavage of the pro-sequence and thus secretion of a pro- PTH with much reduced biological activity. Mutations affecting the secreted hormone can alter detection by different PTH assays, thus requiring detailed knowledge of the utilized diagnostic test. SUMMARY: Rare diseases affecting PTH synthesis and secretion have offered helpful insights into parathyroid biology and the diagnostic utility of commonly used PTH assays, which may have implications for the interpretation of PTH measurements in more common disorders such as CKD.


Asunto(s)
Mutación , Hormona Paratiroidea , Humanos , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/sangre , Hormona Paratiroidea/genética , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Glándulas Paratiroides/metabolismo , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Animales , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Calcio/metabolismo , Predisposición Genética a la Enfermedad , Valor Predictivo de las Pruebas , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/genética
7.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673977

RESUMEN

Transient receptor potential canonical sub-family channel 3 (TRPC3) is considered to play a critical role in calcium homeostasis. However, there are no established findings in this respect with regard to TRPC6. Although the parathyroid gland is a crucial organ in calcium household regulation, little is known about the protein distribution of TRPC channels-especially TRPC3 and TRPC6-in this organ. Our aim was therefore to investigate the protein expression profile of TRPC3 and TRPC6 in healthy and diseased human parathyroid glands. Surgery samples from patients with healthy parathyroid glands and from patients suffering from primary hyperparathyroidism (pHPT) were investigated by immunohistochemistry using knockout-validated antibodies against TRPC3 and TRPC6. A software-based analysis similar to an H-score was performed. For the first time, to our knowledge, TRPC3 and TRPC6 protein expression is described here in the parathyroid glands. It is found in both chief and oxyphilic cells. Furthermore, the TRPC3 staining score in diseased tissue (pHPT) was statistically significantly lower than that in healthy tissue. In conclusion, TRPC3 and TRPC6 proteins are expressed in the human parathyroid gland. Furthermore, there is strong evidence indicating that TRPC3 plays a role in pHPT and subsequently in parathyroid hormone secretion regulation. These findings ultimately require further research in order to not only confirm our results but also to further investigate the relevance of these channels and, in particular, that of TRPC3 in the aforementioned physiological functions and pathophysiological conditions.


Asunto(s)
Regulación hacia Abajo , Hiperparatiroidismo Primario , Glándulas Paratiroides , Canales Catiónicos TRPC , Canal Catiónico TRPC6 , Humanos , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPC/genética , Hiperparatiroidismo Primario/metabolismo , Hiperparatiroidismo Primario/genética , Hiperparatiroidismo Primario/patología , Glándulas Paratiroides/metabolismo , Glándulas Paratiroides/patología , Femenino , Masculino , Canal Catiónico TRPC6/metabolismo , Canal Catiónico TRPC6/genética , Persona de Mediana Edad , Anciano , Adulto , Inmunohistoquímica , Hormona Paratiroidea/metabolismo
8.
EBioMedicine ; 102: 105053, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471398

RESUMEN

BACKGROUND: To date, because of the difficulty in obtaining normal parathyroid gland samples in human or in animal models, our understanding of this last-discovered organ remains limited. METHODS: In the present study, we performed a single-cell transcriptome analysis of six normal parathyroid and eight parathyroid adenoma samples using 10 × Genomics platform. FINDINGS: We have provided a detailed expression atlas of parathyroid endocrine cells. Interestingly, we found an exceptional high expression levels of CD4 and CD226 in parathyroid endocrine cells, which were even higher than those in lymphocytes. This unusual expression of lymphocyte markers in parathyroid endocrine cells was associated with the depletion of CD4 T cells in normal parathyroid glands. Moreover, CD4 and CD226 expression in endocrine cells was significantly decreased in parathyroid adenomas, which was associated with a significant increase in Treg counts. Finally, along the developmental trajectory, we discovered the loss of POMC, ART5, and CES1 expression as the earliest signature of parathyroid hyperplasia. INTERPRETATION: We propose that the loss of CD4 and CD226 expression in parathyroid endocrine cells, coupled with an elevated number of Treg cells, could be linked to the pathogenesis of parathyroid adenoma. Our data also offer valuable information for understanding the noncanonical function of CD4 molecule. FUNDING: This work was supported by the National Key R&D Program of China (2022YFA0806100), National Natural Science Foundation of China (82130025, 82270922, 31970636, 32211530422), Shandong Provincial Natural Science Foundation of China (ZR2020ZD14), Innovation Team of Jinan (2021GXRC048) and the Outstanding University Driven by Talents Program and Academic Promotion Program of Shandong First Medical University (2019LJ007).


Asunto(s)
Glándulas Paratiroides , Neoplasias de las Paratiroides , Humanos , Glándulas Paratiroides/metabolismo , Glándulas Paratiroides/patología , Neoplasias de las Paratiroides/genética , Neoplasias de las Paratiroides/complicaciones , Neoplasias de las Paratiroides/patología , Regulación hacia Abajo , Carcinogénesis/patología , Transformación Celular Neoplásica/metabolismo , Hiperplasia/patología , Linfocitos/metabolismo
9.
Nat Commun ; 15(1): 2106, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453887

RESUMEN

In all terrestrial vertebrates, the parathyroid glands are critical regulators of calcium homeostasis and the sole source of parathyroid hormone (PTH). Hyperparathyroidism and hypoparathyroidism are clinically important disorders affecting multiple organs. However, our knowledge regarding regulatory mechanisms governing the parathyroids has remained limited. Here, we present the comprehensive maps of the chromatin landscape of the human parathyroid glands, identifying active regulatory elements and chromatin interactions. These data allow us to define regulatory circuits and previously unidentified genes that play crucial roles in parathyroid biology. We experimentally validate candidate parathyroid-specific enhancers and demonstrate their integration with GWAS SNPs for parathyroid-related diseases and traits. For instance, we observe reduced activity of a parathyroid-specific enhancer of the Calcium Sensing Receptor gene, which contains a risk allele associated with higher PTH levels compared to the wildtype allele. Our datasets provide a valuable resource for unraveling the mechanisms governing parathyroid gland regulation in health and disease.


Asunto(s)
Calcio , Glándulas Paratiroides , Animales , Humanos , Calcio/metabolismo , Glándulas Paratiroides/metabolismo , Hormona Paratiroidea/genética , Hormona Paratiroidea/metabolismo , Cromatina/genética , Epigénesis Genética
10.
J Surg Res ; 293: 618-624, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37837817

RESUMEN

INTRODUCTION: Current imaging techniques have several limitations in detecting parathyroid glands. We have investigated the calcium-sensing receptor (CaSR) as a potential target for specifically labeling parathyroid glands for radiologic detection. For accurate imaging it is vital that a large differential expression exists between the target tissue and adjacent structures. We sought to investigate the relative abundance of the CaSR in normal and abnormal parathyroid tissue, as well as normal and abnormal thyroid. METHODS: Existing clinical specimens were selected that represented a wide variety of pathologically and clinically confirmed malignant and benign thyroid and parathyroid specimens. Sections were stained for the CaSR using immunohistochemistry and scored for intensity and abundance of expression. (H score = intensity scored from 0 to 3 multiplied by the % of cells at each intensity. Range 0-300). RESULTS: All parathyroid specimens expressed the CaSR to a high degree. Normal parathyroid had the highest H score (271, s.d. 25.4). Abnormal parathyroid specimens were slightly lower but still much higher than normal thyroid (H score 38.3, s.d. 23.3). Medullary thyroid cancer also expressed the CaSR significantly higher than normal thyroid (H score 182, s.d. 69.1, P < 0.001) but below parathyroid levels. Hürthle cell carcinoma expressed the CaSR to a lesser degree but higher than normal thyroid (H score 101, s.d. 46.4, P = 0.0037). CONCLUSIONS: The CaSR is differentially expressed on parathyroid tissue making it a feasible target for parathyroid imaging. False positives might be anticipated with medullary and Hürthle cell cancers.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias de la Tiroides , Humanos , Carcinoma Neuroendocrino/patología , Glándulas Paratiroides/diagnóstico por imagen , Glándulas Paratiroides/metabolismo , Receptores Sensibles al Calcio/análisis , Receptores Sensibles al Calcio/metabolismo , Neoplasias de la Tiroides/patología
11.
Kidney Int ; 105(3): 562-581, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142040

RESUMEN

The parathyroid gland is one of the main organs that regulate calcium and phosphorus metabolism. It is mainly composed of chief cells and oxyphil cells. Oxyphil cell counts are low in the parathyroid glands of healthy adults but are dramatically increased in patients with uremia and secondary hyperparathyroidism (SHPT). Increased oxyphil cell counts are related to drug treatment resistance, but the origin of oxyphil cells and the mechanism of proliferation remain unknown. Herein, three types of parathyroid nodules (chief cell nodules, oxyphil cell nodules and mixed nodules, respectively) excised from parathyroid glands of uremic SHPT patients were used for single-cell RNA sequencing (scRNA-seq), other molecular biology studies, and transplantation into nude mice. Through scRNA-seq of parathyroid mixed nodules from three patients with uremic SHPT, we established the first transcriptomic map of the human parathyroid and found a chief-to-oxyphil cell transdifferentiation characterized by gradual mitochondrial enrichment associated with the uremic milieu. Notably, the mitochondrial enrichment and cellular proliferation of chief cell and oxyphil cell nodules decreased significantly after leaving the uremic milieu via transplantation into nude mice. Remarkably, the phenotype of oxyphil cell nodules improved significantly in the nude mice as characterized by decreased mitochondrial content and the proportion of oxyphil cells to chief cells. Thus, our study provides a comprehensive single-cell transcriptome atlas of the human parathyroid and elucidates the origin of parathyroid oxyphil cells and their underlying transdifferentiating mechanism. These findings enhance our understanding of parathyroid disease and may open new treatment perspectives for patients with chronic kidney disease.


Asunto(s)
Hiperparatiroidismo Secundario , Glándulas Paratiroides , Adulto , Animales , Ratones , Humanos , Glándulas Paratiroides/metabolismo , Células Oxífilas , Ratones Desnudos , Transdiferenciación Celular , Hiperparatiroidismo Secundario/genética , Hiperparatiroidismo Secundario/terapia , Análisis de Secuencia de ARN
12.
Stem Cells Dev ; 32(21-22): 670-680, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37639359

RESUMEN

The parathyroid gland plays an essential role in mineral and bone metabolism. Cultivation of physiological human parathyroid cells has yet to be established and the method by which parathyroid cells differentiate from pluripotent stem cells remains uncertain. Therefore, it has been hard to clarify the mechanisms underlying the onset of parathyroid disorders, such as hyperparathyroidism. In this study, we developed a new method of parathyroid cell differentiation from human induced pluripotent stem (iPS) cells. Parathyroid cell differentiation occurred in accordance with embryologic development. Differentiated cells, which expressed the parathyroid hormone, adopted unique cell aggregation similar to the parathyroid gland. In addition, these differentiated cells were identified as calcium-sensing receptor (CaSR)/epithelial cell adhesion molecule (EpCAM) double-positive cells. Interestingly, stimulation with transforming growth factor-α (TGF-α), which is considered a causative molecule of parathyroid hyperplasia, increased the CaSR/EpCAM double-positive cells, but this effect was suppressed by erlotinib, which is an epidermal growth factor receptor (EGFR) inhibitor. These results suggest that TGF-α/EGFR signaling promotes parathyroid cell differentiation from iPS cells in a similar manner to parathyroid hyperplasia.


Asunto(s)
Células Madre Pluripotentes Inducidas , Glándulas Paratiroides , Humanos , Glándulas Paratiroides/metabolismo , Glándulas Paratiroides/patología , Células Madre Pluripotentes Inducidas/metabolismo , Hiperplasia/metabolismo , Hiperplasia/patología , Factor de Crecimiento Transformador alfa/farmacología , Factor de Crecimiento Transformador alfa/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Molécula de Adhesión Celular Epitelial/farmacología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Diferenciación Celular , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo
13.
FASEB J ; 37(8): e23094, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37462513

RESUMEN

Little is known about the effect of the recently developed calcimimetic evocalcet (Evo) on parathyroid calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) expression. We examined the effects of Evo and cinacalcet (Cina) on CaSR and VDR expression in 5/6 nephrectomized Sprague-Dawley rats fed a high-phosphorus diet for 4 weeks to develop secondary hyperparathyroidism (SHPT). These uremic rats were divided into 4 groups-baseline control (Nx4W) and groups with additional treatment with either the Vehicle, Evo, or Cina for 2 weeks; normal rats were used as normal controls (NC). Blood parameters and parathyroid tissue were analyzed. CaSR and VDR expression levels were determined using immunohistochemistry. The degree of kidney injury and hyperphosphatemia was similar in the uremic groups (Nx4W, Vehicle, Cina, and Evo). Serum parathyroid hormone levels were significantly higher in the Nx4W and Vehicle groups than in the NC group. This increase was significantly suppressed in the Cina and Evo groups compared with that in the Vehicle group. Serum calcium levels were significantly and equally lower in the Cina and Evo groups relative to those in the Vehicle group. CaSR expression was significantly lower in the Nx4W and Vehicle groups than in the NC group. This downregulation was of an equally lesser magnitude in the Cina and Evo groups. A similar trend was observed for VDR expression. These results indicate that Evo and Cina treatment can increase parathyroid CaSR and VDR expression in uremic rats with SHPT, which could provide better control of mineral and bone disorder markers.


Asunto(s)
Hiperparatiroidismo Secundario , Receptores de Calcitriol , Ratas , Animales , Receptores de Calcitriol/metabolismo , Receptores Sensibles al Calcio/metabolismo , Ratas Sprague-Dawley , Glándulas Paratiroides/metabolismo , Hiperparatiroidismo Secundario/tratamiento farmacológico , Hiperparatiroidismo Secundario/complicaciones , Hiperparatiroidismo Secundario/metabolismo , Hormona Paratiroidea/metabolismo , Cinacalcet/farmacología , Cinacalcet/metabolismo
14.
Front Endocrinol (Lausanne) ; 14: 1223312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492197

RESUMEN

Introduction: We successfully developed a broad spectrum of patient-derived endocrine organoids (PDO) from benign and malignant neoplasms of thyroid, parathyroid, and adrenal glands. In this study, we employed functionally intact parathyroid PDOs from benign parathyroid tissues to study primary hyperparathyroidism (PHPT), a common endocrine metabolic disease. As proof of concept, we examined the utility of parathyroid PDOs for bioenergetic and metabolic screening and assessed whether parathyroid PDO metabolism recapitulated matched PHPT tissues. Methods: Our study methods included a fine-needle aspiration (FNA)-based technique to establish parathyroid PDOs from human PHPT tissues (n=6) in semi-solid culture conditions for organoid formation, growth, and proliferation. Mass spectrometry metabolomic analysis of PHPT tissues and patient-matched PDOs, and live cell bioenergetic profiling of parathyroid PDOs with extracellular flux analyses, were performed. Functional analysis cryopreserved and re-cultured parathyroid PDOs for parathyroid hormone (PTH) secretion was performed using ELISA hormone assays. Results and discussion: Our findings support both the feasibility of parathyroid PDOs for metabolic and bioenergetic profiling and reinforce metabolic recapitulation of PHPT tissues by patient-matched parathyroid PDOs. Cryopreserved parathyroid PDOs exhibited preserved, rapid, and sustained secretory function after thawing. In conclusion, successful utilization of parathyroid PDOs for metabolic profiling further affirms the feasibility of promising endocrine organoid platforms for future metabolic studies and broader multiplatform and translational applications for therapeutic advancements of parathyroid and other endocrine applications.


Asunto(s)
Glándulas Paratiroides , Glándula Tiroides , Humanos , Glándulas Paratiroides/metabolismo , Biopsia con Aguja Fina/métodos , Organoides
15.
Front Endocrinol (Lausanne) ; 14: 1178166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324252

RESUMEN

Background: 25-hydroxyvitamin D (25(OH)D) and potentially also 1,25-dihydroxyvitamin D (1,25(OH)2D) inhibits the synthesis of parathyroid hormone (PTH) in the chief cells of the parathyroid gland. Clinical studies showing a negative correlation between (25(OH)D and PTH are in good agreement with these findings in basic science studies. However, PTH was measured in these studies with the currently clinically used 2nd or 3rd generation intact PTH (iPTH) assay systems. iPTH assays cannot distinguish between oxidized forms of PTH and non-oxidized PTH. Oxidized forms of PTH are the by far most abundant form of PTH in the circulation of patients with impaired kidney function. Oxidation of PTH causes a loss of function of PTH. Given that the clinical studies done so far were performed with an PTH assay systems that mainly detect oxidized forms of PTH, the real relationship between bioactive non-oxidized PTH and 25(OH)D as well as 1,25(OH)2D is still unknown. Methods: To address this topic, we compared for the first time the relationship between 25(OH)D as well as 1,25(OH)2D and iPTH, oxPTH as well as fully bioactive n-oxPTH in 531 stable kidney transplant recipients in the central clinical laboratories of the Charité. Samples were assessed either directly (iPTH) or after oxPTH (n-oxPTH) was removed using a column that used anti-human oxPTH monoclonal antibodies, a monoclonal rat/mouse parathyroid hormone antibody (MAB) was immobilized onto a column with 500 liters of plasma samples. Spearman correlation analysis and Multivariate linear regression were used to evaluate the correlations between the variables. Results: There was an inverse correlation between 25(OH)D and all forms of PTH, including oxPTH (iPTH: r=-0.197, p<0.0001; oxPTH: r=-0.203, p<0.0001; n-oxPTH: r=-0.146, p=0.001). No significant correlation was observed between 1,25(OH)2D and all forms of PTH. Multiple linear regression analysis considering age, PTH (iPTH, oxPTH and n-oxPTH), serum calcium, serum phosphor, serum creatinine, fibroblast growth factor 23 (FGF23), osteoprotegerin (OPG), albumin, and sclerostin as confounding factors confirmed these findings. Subgroup analysis showed that our results are not affected by sex and age. Conclusion: In our study, all forms of PTH are inversely correlated with 25-hydroxyvitamin D (25(OH)D). This finding would be in line with an inhibition of the synthesis of all forms of PTH (bioactive n-oxPTH and oxidized forms of PTH with minor or no bioactivity) in the chief cells of the parathyroid glad.


Asunto(s)
Trasplante de Riñón , Hormona Paratiroidea , Animales , Ratones , Ratas , Calcifediol , Glándulas Paratiroides/metabolismo
16.
Clin Sci (Lond) ; 137(12): 947-962, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37337945

RESUMEN

Parathyroid hormone (PTH) is secreted by the parathyroid glands (PTGs) and is an important hormone regulating mineral metabolism. Previous studies reported that high sodium diet will cause the increase in serum PTH, but the specific mechanism is unknown. Consequently, the present study aims to investigate the effects and mechanisms of high sodium on PTH synthesis and secretion from PTGs. We developed a tissue culture model using normal rat PTGs, discovered that sodium elicited and promoted concentration-dependent and time-dependent PTH secretion. Changes in sodium-associated transporters from PTGs incubated with high sodium were thoroughly examined. Increased expression of sodium-phosphate cotransporter Slc20a1 (also known as PiT-1) was observed. Further tests revealed that PiT-1 activated the NF-κB signaling pathway, resulting in increased IKKß phosphorylation, IKBα degradation, and increased p65 phosphorylation followed by nuclear entry, which led to increased PTH transcription. Meanwhile, IKKß phosphorylated SNAP23, promoting exocytosis and eventually led to increased PTH secretion. In conclusion, our findings indicate that PiT-1 plays an important role in the increased secretion and synthesis of PTH directly induced by high sodium under physiological conditions, and may provide a potential therapeutic target for secondary hyperparathyroidism (SHPT).


Asunto(s)
Hiperparatiroidismo Secundario , Glándulas Paratiroides , Ratas , Animales , Glándulas Paratiroides/metabolismo , Hormona Paratiroidea , Quinasa I-kappa B/metabolismo , Hiperparatiroidismo Secundario/etiología , Hiperparatiroidismo Secundario/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Calcio/metabolismo
17.
Endocrine ; 81(3): 391-408, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328666

RESUMEN

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection affects several important organs including endocrine glands. Experimental studies demonstrated that the virus exploits the ACE2, a transmembrane glycoprotein on the cell surface as a receptor for cellular entry. This entry process is exclusively facilitated by other intracellular protein molecules such as TMPRSS2, furin, NRP1, and NRP2. Recent findings documented the involvement of the SARS-CoV-2 in inducing various parathyroid disorders including hypoparathyroidism and hypocalcemia, which received significant attention. This review extensively describes rapidly evolving knowledge on the potential part of SARS-CoV-2 in emerging various parathyroid disorders due to SARS-CoV-2 infection particularly parathyroid malfunction in COVID-19 cases, and post-COVID-19 conditions. Further, it presents the expression level of various molecules such as ACE2, TMPRSS2, furin, NRP1, and NRP2 in the parathyroid cells that facilitate the SARS-CoV-2 entry into the cell, and discusses the possible mechanism of parathyroid gland infection. Besides, it explores parathyroid malfunction in COVID-19 vaccine-administered cases. It also explains the possible long-COVID-19 effect on parathyroid and post-COVID-19 management of parathyroid. A complete understanding of the mechanisms of SARS-CoV-2-triggered pathogenesis in parathyroid dysfunctions may curtail treatment options and aid in the management of SARS-CoV-2-infected cases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Furina/metabolismo , Vacunas contra la COVID-19 , Glándulas Paratiroides/metabolismo , Enzima Convertidora de Angiotensina 2 , Síndrome Post Agudo de COVID-19 , Peptidil-Dipeptidasa A
18.
Front Endocrinol (Lausanne) ; 14: 1129930, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065733

RESUMEN

Introduction: The bone matrix protein osteocalcin (OC), secreted by osteoblasts, displays endocrine effects. We tested the hypothesis that OC modulates parathyroid tumor cell function. Methods: Primary cell cultures derived from parathyroid adenomas (PAds) and HEK293 cells transiently transfected with the putative OC receptor GPRC6A or the calcium sensing receptor (CASR) were used as experimental models to investigate γ-carboxylated OC (GlaOC) or uncarboxylated OC (GluOC) modulation of intracellular signaling. Results: In primary cell cultures derived from PAds, incubation with GlaOC or GluOC modulated intracellular signaling, inhibiting pERK/ERK and increasing active ß-catenin levels. GlaOC increased the expression of PTH, CCND1 and CASR, and reduced CDKN1B/p27 and TP73. GluOC stimulated transcription of PTH, and inhibited MEN1 expression. Moreover, GlaOC and GluOC reduced staurosporin-induced caspase 3/7 activity. The putative OC receptor GPRC6A was detected in normal and tumor parathyroids at membrane or cytoplasmic level in cells scattered throughout the parenchyma. In PAds, the membrane expression levels of GPRC6A and its closest homolog CASR positively correlated; GPRC6A protein levels positively correlated with circulating ionized and total calcium, and PTH levels of the patients harboring the analyzed PAds. Using HEK293A transiently transfected with either GPRC6A or CASR, and PAds-derived cells silenced for CASR, we showed that GlaOC and GluOC modulated pERK/ERK and active ß-catenin mainly through CASR activation. Conclusion: Parathyroid gland emerges as a novel target of the bone secreted hormone osteocalcin, which may modulate tumor parathyroid CASR sensitivity and parathyroid cell apoptosis.


Asunto(s)
Glándulas Paratiroides , Neoplasias de las Paratiroides , Humanos , Glándulas Paratiroides/metabolismo , Neoplasias de las Paratiroides/patología , Osteocalcina/metabolismo , beta Catenina/metabolismo , Células HEK293 , Receptores Sensibles al Calcio/metabolismo
19.
Clin Exp Nephrol ; 27(5): 395-401, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36977891

RESUMEN

Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) each play a central role in the pathogenesis of chronic kidney disease-mineral and bone disorder (CKD-MBD). Both hormones increase as kidney function declines, presumably as a response to maintain normal phosphate balance, but when patients reach kidney failure, PTH and FGF23 fail to exert their phosphaturic effects, leading to hyperphosphatemia and further elevations in PTH and FGF23. In patients with kidney failure, the major target organ for PTH is the bone, but elevated PTH is also associated with mortality presumably through skeletal and nonskeletal mechanisms. Indeed, accumulated evidence suggests improved survival with PTH-lowering therapies, and a more recent study comparing parathyroidectomy and calcimimetic treatment further suggests a notion of "the lower, the better" for PTH control. Emerging data suggest that the link between SHPT and mortality could in part be explained by the action of PTH to induce adipose tissue browning and wasting. In the absence of a functioning kidney, the classical target organ for FGF23 is the parathyroid gland, but FGF23 loses its hormonal effect to suppress PTH secretion owing to the depressed expression of parathyroid Klotho. In this setting, experimental data suggest that FGF23 exerts adverse nontarget effects, but it remains to be confirmed whether FGF23 directly contributes to multiple organ injury in patients with kidney failure and whether targeting FGF23 can improve patient outcomes. Further efforts should be made to determine whether intensive control of SHPT improves clinical outcomes and whether nephrologists should aim at controlling FGF23 levels just as with PTH levels.


Asunto(s)
Hormona Paratiroidea , Insuficiencia Renal , Humanos , Huesos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Glándulas Paratiroides/metabolismo , Hormona Paratiroidea/metabolismo
20.
Mol Cell Biochem ; 478(10): 2351-2359, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36703095

RESUMEN

Primary hyperparathyroidism is a common endocrine disorder. Interestingly, the majority (75%) of parathyroid tumors are localized to the inferior parathyroid glands. To date, the reason for this natural bias has not been investigated. We assessed the global gene expression profile of superior and inferior glands obtained from forensic autopsies. The genes with significant differential expression between superior and inferior parathyroids were further assessed by RT-PCR in 19 pairs. As an iterative approach, additional genes with an established role in parathyroid disorders, i.e., CASR, MAFB, PAX9, TBCE, TBX1, VDR, MEN1, CCND1, and CDC73 were also evaluated by RT-PCR in all 19 pairs of superior and inferior parathyroid glands. Seven homeobox genes, namely HOXA4, HOXA5, HOXBAS3, HOXB4, HOXB6, HOXB9, IRX1, and one encoding for ALDH1A2 showed a lower expression in the inferior parathyroid glands than in the superior. Conversely, SLC6A1 showed a higher expression in the inferior glands. Of the nine genes with significant differential mRNA expression among superior and inferior glands HOXB9, HOXB4 and IRX1 could be detected by western blotting/mass spectrometry. The study is the first to show the differential expression of nine genes HOXA4, HOXA5, HOXBAS3, HOXB4, HOXB6, HOXB9, IRX1, ALDH1A2, and SLC6A1 in inferior versus the superior parathyroid glands. This could have potential implications for the preferential localization of parathyroid tumors to the inferior parathyroid glands as observed in patients with primary hyperparathyroidism.


Asunto(s)
Hiperparatiroidismo Primario , Neoplasias de las Paratiroides , Humanos , Glándulas Paratiroides/química , Glándulas Paratiroides/metabolismo , Glándulas Paratiroides/patología , Neoplasias de las Paratiroides/genética , Neoplasias de las Paratiroides/metabolismo , Neoplasias de las Paratiroides/patología , Hiperparatiroidismo Primario/metabolismo , Hiperparatiroidismo Primario/patología , Western Blotting , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...