Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Proteins Proteom ; 1869(1): 140538, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916301

RESUMEN

Ribosome biogenesis in eukaryotes requires the participation of several transactivation factors that are involved in the modification, assembly, transport and quality control of the ribosomal subunits. One of these factors is the Large subunit GTPase 1 (Lsg1), a protein that acts as the release factor for the export adaptor named Nonsense-mediated mRNA decay 3 protein (Nmd3) and facilitates the incorporation of the last structural protein uL16 into the 60S subunit. Here, we characterised the recombinant yeast Lsg1 and studied its catalysis and binding properties for guanine nucleotides. We described the interaction of Lsg1 with guanine nucleotides alone and in the presence of the complex Nmd3•60S using fluorescence spectroscopy. Lsg1 has a greater affinity for GTP than for GDP suggesting that in the cell cytoplasm it exists mainly bound to the former. In the presence of 60S subunits loaded with Nmd3, the affinity of Lsg1 for both nucleotides increases but to a larger extent towards GTP. From this observation together with the excess of GTP present in the cytoplasm of exponentially growing cells over that of GDP, we can infer that the pre-ribosomal particle composed by Nmd3•60S acts as a GTP Stabilising Factor for Lsg1. Additionally, Lsg1 undergoes different conformational changes depending on its binding partner or the guanine nucleotides it interacts with. Steady-state kinetic analysis of free Lsg1 indicated slow GTP hydrolysis with values of kcat 1 min-1 and Km of 34 µM.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Guanosina Difosfato/química , Guanosina Trifosfato/química , Cinética , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/enzimología , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Termodinámica
2.
J Biol Chem ; 289(11): 7799-811, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24464615

RESUMEN

Septins are filament-forming GTP-binding proteins involved in important cellular events, such as cytokinesis, barrier formation, and membrane remodeling. Here, we present two crystal structures of the GTPase domain of a Schistosoma mansoni septin (SmSEPT10), one bound to GDP and the other to GTP. The structures have been solved at an unprecedented resolution for septins (1.93 and 2.1 Å, respectively), which has allowed for unambiguous structural assignment of regions previously poorly defined. Consequently, we provide a reliable model for functional interpretation and a solid foundation for future structural studies. Upon comparing the two complexes, we observe for the first time the phenomenon of a strand slippage in septins. Such slippage generates a front-back communication mechanism between the G and NC interfaces. These data provide a novel mechanistic framework for the influence of nucleotide binding to the GTPase domain, opening new possibilities for the study of the dynamics of septin filaments.


Asunto(s)
Schistosoma mansoni/química , Septinas/química , Animales , Sitios de Unión , Calorimetría , Catálisis , Membrana Celular/metabolismo , Cristalografía por Rayos X , Escherichia coli/metabolismo , GTP Fosfohidrolasas/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Hidrólisis , Magnesio/química , Espectroscopía de Resonancia Magnética , Nucleótidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Termodinámica , Agua/química
3.
Protein Sci ; 16(8): 1543-56, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17656575

RESUMEN

FtsZ has two domains, the amino GTPase domain with a Rossmann fold, and the carboxyl domain that resembles the chorismate mutase fold. Bioinformatics analyses suggest that the interdomain interaction is stronger than the interaction of the protofilament longitudinal interfaces. Crystal B factor analysis of FtsZ and detected conformational changes suggest a connection between these domains. The unfolding/folding characteristics of each domain of FtsZ were tested by introducing tryptophans into the flexible region of the amino (F135W) and the carboxyl (F275W and I294W) domains. As a control, the mutation F40W was introduced in a more rigid part of the amino domain. These mutants showed a native-like structure with denaturation and renaturation curves similar to wild type. However, the I294W mutant showed a strong loss of functionality, both in vivo and in vitro when compared to the other mutants. The functionality was recovered with the double mutant I294W/F275A, which showed full in vivo complementation with a slight increment of in vitro GTPase activity with respect to the single mutant. The formation of a stabilizing aromatic interaction involving a stacking between the tryptophan introduced at position 294 and phenylalanine 275 could account for these results. Folding/unfolding of these mutants induced by guanidinium chloride was compatible with a mechanism in which both domains within the protein show the same stability during FtsZ denaturation and renaturation, probably because of strong interface interactions.


Asunto(s)
Proteínas de Escherichia coli/química , Triptófano/química , Secuencia de Aminoácidos , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanidina/farmacología , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Triptófano/genética
4.
J Struct Biol ; 154(3): 260-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16545962

RESUMEN

Rab GTPases constitute the largest family of small monomeric GTPases, including over 60 members in humans. These GTPases share conserved residues related to nucleotide binding and hydrolysis, and main sequence divergences lie in the carboxyl termini. They cycle between inactive (GDP-bound) and active (GTP-bound) forms and the active site regions, termed Switch I and II, undergo the larger conformational changes between the two states. The Rab11 subfamily members, comprising Rab11a, Rab11b, and Rab25, act in recycling of proteins from the endosomes to the plasma membrane, in transport of molecules from the trans-Golgi network to the plasma membrane and in phagocytosis. In this work, we describe Rab11b-GDP and Rab11b-GppNHp crystal structures solved to 1.55 and 1.95 angstroms resolution, respectively. Although Rab11b shares 90% amino acid identity to Rab11a, its crystal structure shows critical differences relative to previously reported Rab11a structures. Inactive Rab11a formed dimers with unusually ordered Switch regions and missing the magnesium ion at the nucleotide binding site. In this work, inactive Rab11b crystallized as a monomer showing a flexible Switch I and a magnesium ion which is coordinated by four water molecules, the phosphate beta of GDP (beta-P) and the invariant S25. S20 from the P-loop and S42 from the Switch I are associated to GTP hydrolysis rate. In the active structures, S20 interacts with the gamma-P oxygen in Rab11b-GppNHp but does not in Rab11a-GppNHp and the Q70 side chain is found in different positions. In the Rab11a-GTPgammaS structure, S40 is closer to S25 and S42 does not interact with the gamma-P oxygen. These differences indicate that the Rab11 isoforms may possess different GTP hydrolysis rates. In addition, the Switch II of inactive Rab11b presents a 3(10)-helix (residues 69-73) that disappears upon activation. This 3(10)-helix is not found in the Rab11a-GDP structure, which possesses a longer alpha2 helix, spanning from residue 73 to 82 alpha-helix 5.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas de Unión al GTP rab/química , Adenosina Difosfato/química , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Vectores Genéticos , Aparato de Golgi/metabolismo , Guanosina Difosfato/química , Guanosina Trifosfato/química , Humanos , Hidrólisis , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas , Estructura Secundaria de Proteína
5.
Arch Biochem Biophys ; 395(2): 146-57, 2001 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-11697851

RESUMEN

Modification of transducin (T) with iodoacetic acid (IAA) inhibited its light-dependent guanine nucleotide-binding activity. Approximately 1 mol of [(3)H]IAA was incorporated per mole of T. Cys(347), located on the alpha-subunit of T (T(alpha)), was identified as the major labeled residue in the [(3)H]IAA-modified holoenzyme. In contrast, Cys(135) and Cys(347) were modified with [(3)H]IAA in the isolated T(alpha). IAA-modified T was able to bind tightly to photoexcited rhodopsin (R*), but GTP did not promote the dissociation of the complex between alkylated T and R*. In addition, R* protected against the inhibition of T by IAA. A comparable inactivation of T and analogous interactions between T and R* were observed when 2-nitro 5-thiocyanobenzoic acid (NTCBA) was used as the modifying reagent (J. O. Ortiz and J. Bubis, 2001, Effects of differential sulfhydryl group-specific labeling on the rhodopsin and guanine nucleotide binding activities of transducin, Arch. Biochem. Biophys. 387, 233-242). However, while carboxymethylated T was capable of liberating GDP in the presence of R*, NTCBA-modified T was unable to release the guanine nucleotide diphosphate upon incubation with the photoactivated receptor. Thus, IAA-labeling stabilized a T:R* complex intermediate carrying the empty nucleotide pocket conformation of T. On the other hand, NTCBA-modified T seemed to be "locked" in the GDP-bound state of T, even in the presence of R*.


Asunto(s)
Ácido Yodoacético/química , Transducina/química , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Cisteína/química , Cisteína/farmacología , Guanina/química , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Luz , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Nucleótidos/metabolismo , Péptidos/química , Unión Proteica , Conformación Proteica , Retina/metabolismo , Rodopsina/química , Rodopsina/farmacología , Tiocianatos/farmacología , Factores de Tiempo , Tripsina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA