Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791514

RESUMEN

Supplementation with fish oil rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) effectively reduces acute and chronic alcohol-induced hepatic steatosis. We aimed to find molecular mechanisms underlying the effects of n-3 PUFAs in alcohol-induced hepatic steatosis. Because free fatty acid receptor 4 (FFA4, also known as GPR120) has been found as a receptor for n-3 PUFAs in an ethanol-induced liver steatosis model, we investigated whether n-3 PUFAs protect against liver steatosis via FFA4 using AH7614, an FFA4 antagonist, and Ffa4 knockout (KO) mice. N-3 PUFAs and compound A (CpdA), a selective FFA4 agonist, reduced the ethanol-induced increase in lipid accumulation in hepatocytes, triglyceride content, and serum ALT levels, which were not observed in Ffa4 KO mice. N-3 PUFAs and CpdA also reduced the ethanol-induced increase in lipogenic sterol regulatory element-binding protein-1c expression in an FFA4-dependent manner. In Kupffer cells, treatment with n-3 PUFA and CpdA reversed the ethanol-induced increase in tumor necrosis factor-α, cyclooxygenase-2, and NLR family pyrin domain-containing 3 expression levels in an FFA4-dependent manner. In summary, n-3 PUFAs protect against ethanol-induced hepatic steatosis via the anti-inflammatory actions of FFA4 on Kupffer cells. Our findings suggest FFA4 as a therapeutic target for alcoholic hepatic steatosis.


Asunto(s)
Etanol , Ácidos Grasos Omega-3 , Hígado Graso Alcohólico , Macrófagos del Hígado , Ratones Noqueados , Receptores Acoplados a Proteínas G , Animales , Ácidos Grasos Omega-3/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ratones , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/efectos de los fármacos , Hígado Graso Alcohólico/metabolismo , Hígado Graso Alcohólico/prevención & control , Hígado Graso Alcohólico/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Sustancias Protectoras/farmacología , Triglicéridos/metabolismo
2.
Biochem Pharmacol ; 213: 115613, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37209859

RESUMEN

Fatty liver is the earliest response to excessive ethanol consumption, which increases the susceptibility of the liver to develop advanced stage of liver disease. Our previous studies have revealed that chronic alcohol administration alters metabolic hormone levels and their functions. Of current interest to our laboratory is glucagon-like peptide 1 (GLP-1), a widely studied hormone known to reduce insulin resistance and hepatic fat accumulation in patients with metabolic-associated fatty liver disease. In this study, we examined the beneficial effects of exendin-4 (a GLP-1 receptor agonist) in an experimental rat model of ALD. Male Wistar rats were pair-fed the Lieber-DeCarli control or ethanol diet. After 4 weeks of this feeding regimen, a subset of rats in each group were intraperitoneally injected every other day with either saline or exendin-4 at a dose of 3 nmol/kg/day (total 13 doses) while still being fed their respective diet. At the end of the treatment, rats were fasted for 6 h and glucose tolerance test was conducted. The following day, the rats were euthanized, and the blood and tissue samples collected for subsequent analysis. We found that exendin-4 treatment had no significant effect on body weight gain among the experimental groups. Exendin-4-treated ethanol rats exhibited improved alcohol-induced alterations in liver/body weight and adipose/body weight ratio, serum ALT, NEFA, insulin, adiponectin and hepatic triglyceride levels. Reduction in indices of hepatic steatosis in exendin-4 treated ethanol-fed rats was attributed to improved insulin signaling and fat metabolism. These results strongly suggest that exendin-4 mitigates alcohol-associated hepatic steatosis by regulating fat metabolism.


Asunto(s)
Hígado Graso Alcohólico , Enfermedad del Hígado Graso no Alcohólico , Ratas , Masculino , Animales , Exenatida/farmacología , Exenatida/uso terapéutico , Ratas Wistar , Hígado Graso Alcohólico/tratamiento farmacológico , Hígado Graso Alcohólico/prevención & control , Hígado Graso Alcohólico/metabolismo , Insulina/metabolismo , Péptido 1 Similar al Glucagón/agonistas , Etanol/toxicidad , Obesidad/metabolismo
3.
Free Radic Biol Med ; 193(Pt 2): 808-819, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36336231

RESUMEN

BACKGROUND: Alcoholic liver disease (ALD) is a leading cause of chronic liver disease worldwide with limited therapeutic options. The role of fibronectin type III domain-containing protein 3B (FNDC3B), an important regulator of metabolism, in ALD, and the underlying mechanism as well as its potential implication in ALD therapeutic strategies remain unknown. METHODS: Hepatocyte-specific FNDC3B knockdown or control C57BL/6 N mice received a Lieber-DeCarli diet for four weeks, followed by oral gavage (chronic-binge). Primary mouse hepatocytes and cell lines were used for in vitro studies. Liver injury, hepatic steatosis, and lipid peroxidation were assessed. RESULTS: In cultured cells and mouse livers, alcohol exposure increased FNDC3B expression. Hepatocyte-specific FNDC3B deletion aggravated alcohol-induced liver steatosis via AMP-activated protein kinase (AMPK) inhibition. In vitro, FNDC3B expression was negatively regulated by miR-192-5p. Furthermore, FNDC3B deletion significantly exacerbated ethanol-mediated lipid peroxidation. The RNA sequence assay revealed a connection between FNDC3B and ferroptosis, which was verified by the administration of the ferroptosis inhibitor ferrostatin-1 (Fer-1). Additionally, FNDC3B inhibition-mediated AMPK inactivation downregulated transferrin expression, which was associated with marked iron overload and ferroptosis. CONCLUSIONS: This study elucidated the critical role of FNDC3B in preventing hepatic steatosis and ferroptosis in response to chronic alcohol consumption. Our findings indicate that FNDC3B is a potential therapeutic target for ALD.


Asunto(s)
Hígado Graso Alcohólico , Hígado Graso , Ferroptosis , Hepatopatías Alcohólicas , Animales , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Etanol/metabolismo , Hígado Graso/genética , Hígado Graso Alcohólico/genética , Hígado Graso Alcohólico/prevención & control , Hígado Graso Alcohólico/metabolismo , Ferroptosis/genética , Hígado/metabolismo , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/prevención & control , Ratones Endogámicos C57BL , Transducción de Señal
4.
Life Sci ; 310: 121064, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36220368

RESUMEN

AIMS: This work investigated the effects of creatine supplementation on different pathways related to the pathogenesis of non-alcoholic fatty liver disease and alcoholic liver disease. MAIN METHODS: To induce alcoholic liver disease, male Swiss mice were divided into three groups: control, ethanol and ethanol supplemented with creatine. To induce non-alcoholic fatty liver disease, mice were divided into three groups: control, high-fat diet and high-fat diet supplemented with creatine. Each group consisted of eight animals. In both cases, creatine monohydrate was added to the diets (1 %; weight/vol). KEY FINDINGS: Creatine supplementation prevented high-fat diet-induced non-alcoholic fatty liver disease progression, demonstrated by attenuated liver fat accumulation and liver damage. On the other hand, when combined with ethanol, creatine supplementation up-regulated key genes related to ethanol metabolism, oxidative stress, inflammation and lipid synthesis, and exacerbated ethanol-induced liver steatosis and damage, demonstrated by increased liver fat accumulation and histopathological score, as well as elevated oxidative damage markers and inflammatory mediators. SIGNIFICANCE: Our results clearly demonstrated creatine supplementation exerts different outcomes in relation to non-alcoholic fatty liver disease and alcoholic liver disease, namely it protects against high-fat diet-induced non-alcoholic fatty liver disease but exacerbates ethanol-induced alcoholic liver disease. The exacerbating effects of the creatine and ethanol combination appear to be related to oxidative stress and inflammation-mediated up-regulation of ethanol metabolism.


Asunto(s)
Hígado Graso Alcohólico , Hepatopatías Alcohólicas , Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Creatina/farmacología , Hígado Graso Alcohólico/etiología , Hígado Graso Alcohólico/prevención & control , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Hepatopatías Alcohólicas/patología , Etanol/toxicidad , Etanol/metabolismo , Estrés Oxidativo , Inflamación/patología
5.
J Agric Food Chem ; 70(36): 11236-11244, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36063077

RESUMEN

Alcoholic beverages are widely consumed all over the world, but continuous ethanol exposure leads to hepatic steatosis that, without proper treatment, will later develop into severe liver disorders. In this study, we investigated the potential protective effect of tangeretin, a flavonoid derived from citrus peel, against alcoholic fatty liver. The in vivo effects of tangeretin were analyzed by oral intake in a chronic-binge alcohol feeding C57BL/6j mouse model, while the underlying mechanism was explored by in vitro studies performed on ethanol-treated hepatic AML-12 cells. Ethanol feeding increased the serum alanine aminotransferase and aspartate aminotransferase levels, the liver weight, and the serum and liver triacylglycerol contents, whereas 20 and 40 mg/kg tangeretin treatment promoted a dose-dependent suppression of these effects. Interestingly, tangeretin prevented increases in the liver oxidative stress level and protected the hepatocyte mitochondria from ethanol-induced morphologic abnormalities. A mechanistic study showed that 20 µM tangeretin treatment activated mitophagy through an AMP-activated protein kinase (AMPK)-uncoordinated 51-like kinase 1 (Ulk1) pathway, thereby restoring mitochondria respiratory function and suppressing steatosis. By contrast, blocking the AMPK-Ulk1 pathway with compound C reversed the hepatoprotective effect of tangeretin. Overall, tangeretin activated mitophagy and protected against ethanol-induced hepatic steatosis through an AMPK-Ulk1-dependent mechanism.


Asunto(s)
Hígado Graso Alcohólico , Hígado Graso , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Etanol/efectos adversos , Etanol/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/tratamiento farmacológico , Hígado Graso/genética , Hígado Graso Alcohólico/tratamiento farmacológico , Hígado Graso Alcohólico/genética , Hígado Graso Alcohólico/prevención & control , Flavonas , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitofagia
6.
Food Res Int ; 157: 111259, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761571

RESUMEN

This present study was designed to test the protective role of two Lactobacillus plantarum strains, E680 and ZY08, against alcoholic liver disease (ALD) in C57BL/6 mice. The ALD mouse model was established by exposing the mice to a Lieber-DeCarli ethanol liquid diet. The two probiotic strains (109 cfu/day) were administered by oral gavage, respectively. Our data showed that L. plantarum ZY08, but not E680, intervention significantly mitigated alcohol-related hepatic steatosis, liver injury, intestinal barrier, and it alleviated plasma endotoxin (LPS) levels, and affected hepatic genes relating to lipid metabolism. Furthermore, Lactobacillus plantarum ZY08 effectively restored intestinal flora homeostasis via recovering flora abundance, including Blautia, Oscillibacter, Lachnoclostridium and Intestimonas, and consequently elevated intestinalshort-chain fatty acid (SCFA) content. More importantly, removing intestinal microorganisms through ABX gavage markedly abolished the beneficial aspects of Lactobacillus plantarum ZY08, indicating that the regulative role of Lactobacillus plantarum ZY08 contributed to its protective role against ALD. Overall, Lactobacillus plantarum ZY08 is a potential candidate for mitigating alcohol-induced hepatic steatosis and liver injury.


Asunto(s)
Hígado Graso Alcohólico , Microbioma Gastrointestinal , Lactobacillus plantarum , Hepatopatías Alcohólicas , Animales , Hígado Graso Alcohólico/prevención & control , Homeostasis , Hepatopatías Alcohólicas/prevención & control , Ratones , Ratones Endogámicos C57BL
7.
Phytomedicine ; 101: 154113, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35490493

RESUMEN

BACKGROUND: With the development of economy and increased workload, chronic a high-fat/alcohol diet intake may lead to alcoholic fatty liver disease (AFLD), which is considered as a crucial health problem worldwide. E Se tea is produced of the leaves and leaf buds of Malus toringoides (Rehd.) Hughes in Tibet and has human health benefits with anti-hyperglycemia, hypertension, and hyperlipidemia effects. PURPOSE: The objective of this work was to investigate the protective effect of aqueous-ethanol and hot-water extracts of E Se tea against chronic high-fat/alcohol diet induced AFLD rats. METHODS: Firstly, to determine the chemical profiling of E Se tea extracts, UHPLC-ESI-HRMS analysis was conducted. Secondly, Sprague-Dawley male rats were used to establish the AFLD animal model by feeding with high-fat/alcohol diet. The animals were treated with E Se tea extracts for 12 weeks. Serum parameters were determined, histologic sections were prepared, and activities of enzymes related to inflammatory response and lipid metabolism imbalance were analyzed. The underlying mechanisms of E Se tea extracts alleviating AFLD were analyzed by immunofluorescence staining and Western blotting analysis. Lastly, key targets of 11-MT against AFLD were verified through molecular docking. RESULTS: In this study, seven main compounds were confirmed or tentatively identified in E Se tea extracts by UHPLC-ESI-HRMS. The results revealed that both the extracts could reverse histopathological steatotic alternation of the liver and reduced the activity of liver damage markers (ALT, AST). E Se tea extracts mitigated oxidative stress by inhibiting CYP2E1 protein and lipid peroxidation parameters (MDA), but enhancing the endogenous antioxidants (CAT, GSH, SOD). Moreover, E Se tea extracts ameliorated inflammation by restraining the activation of NF-κB, consequently releasing the expression of proinflammatory cytokines (TNF-α, IL-6, IL-1ß, COX-2 and iNOS). Subsequently, E Se tea extracts reduced hepatocyte apoptosis by increasing capase-9, caspase-3 and Bax protein expression but decreasing Bcl-2 protein expression. Furthermore, E Se tea extracts improved metabolism imbalance by stimulating AMPK/SREBP1/FAS and PPAR-α/CPT1 signaling pathway by regulating lipid metabolism parameters (TC, TG, HDL-C, LHD-C). Furthermore, molecular docking results indicated that 7 chemical constituents of E Se tea extracts had strong docking affinity with 4 key target proteins (AMPK, PPAR-α, NF-кB and Caspase-9). CONCLUSION: E Se tea ameliorated AFLD through ameliorating inflammatory response, apoptosis, and lipid metabolism imbalance.


Asunto(s)
Hígado Graso Alcohólico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Etanol/farmacología , Hígado Graso Alcohólico/tratamiento farmacológico , Hígado Graso Alcohólico/prevención & control , Hígado , Masculino , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Estrés Oxidativo , PPAR alfa/metabolismo , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley ,
8.
J Med Food ; 25(4): 456-463, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35438556

RESUMEN

We examined the efficacy of fermented Curcuma longa L. (FT) on the development of alcoholic fatty liver in mice and investigated the underlying mechanism. The protective potential of FT against ethanol-induced fatty liver was determined using C57BL/6 male mice allocated into four groups (8 mice/group). Control groups received either distilled water or 5 g/kg body weight (b.w.) per day ethanol for 8 days. Treatment groups were administered either 300 mg/kg b.w. per day of milk thistle or FT before receiving ethanol. FT contained a higher amount of caffeic acid and tetrahydrocurcumin than C. longa. FT pretreatment significantly suppressed the elevated hepatic lipid droplets associated with ethanol ingestion. In comparison with ethanol-treated control, FT pretreated mice showed inhibited cytochrome P4502E1 (CYP2E1), sterol regulatory element-binding protein-1 (SREBP-1c), and acetyl-CoA carboxylase production but elevated AMP-activated protein kinase, peroxisome proliferator-activated receptor-alpha (PPAR-α), and carnitine palmitoyltransferase 1 (CPT-1) levels. Taken together, FT is a promising hepatoprotectant for preventing of alcoholic fatty liver through modulating fatty acid synthesis and oxidation.


Asunto(s)
Hígado Graso Alcohólico , Enfermedad del Hígado Graso no Alcohólico , Animales , Curcuma , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Etanol/metabolismo , Hígado Graso Alcohólico/tratamiento farmacológico , Hígado Graso Alcohólico/metabolismo , Hígado Graso Alcohólico/prevención & control , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
9.
Food Res Int ; 155: 111095, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400467

RESUMEN

The pathological characteristics of alcohol-associated liver damage (ALD) mainly include liver lipid accumulation, which subsequently leads to alcohol-associated steatohepatitis, fibrosis and cirrhosis. Dietary factors such as alcohol and fat may contribute to the development of ALD. A chronic alcohol-fed mouse model was used to investigate the effect of fatty acids in Jinhua ham on ALD. The fatty acids in Jinhua ham could prevent the occurrence of ALD from chronic alcohol consumption. In addition, the fatty acids in Jinhua ham with liver protective activity were long-chain saturated fatty acids (LCSFAs), including palmitic acid and stearic acid. In contrast, long-chain polyunsaturated fatty acids aggravated the pathogenesis of ALD. Furthermore, the mechanism underlying the prevention of ALD by fatty acids in Jinhua ham was ascribed to increasing relative abundances of Akkermansia muciniphila and Lactobacillus in the gut, which were beneficial to regulating intestinal homeostasis, ameliorating intestinal barrier dysfunction and reducing alcohol-associated hepatitis and oxidative stress damage. This study demonstrated that dietary supplementation with saturated fatty acids could prevent or mitigate ALD by regulating the gut microbiota (GM) and improving the intestinal barrier, while provided a more affordable dietary intervention strategy for the prevention of ALD.


Asunto(s)
Hígado Graso Alcohólico , Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Animales , Etanol/efectos adversos , Ácidos Grasos/farmacología , Hígado Graso Alcohólico/prevención & control , Hepatopatías Alcohólicas/prevención & control , Ratones , Ratones Endogámicos C57BL , Ácidos Esteáricos/farmacología
10.
Molecules ; 26(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34834064

RESUMEN

Alcohol is metabolized in liver. Chronic alcohol abuse results in alcohol-induced fatty liver and liver injury. Red quinoa (Chenopodium formosanum) was a traditional staple food for Taiwanese aborigines. Red quinoa bran (RQB) included strong anti-oxidative and anti-inflammatory polyphenolic compounds, but it was usually regarded as the agricultural waste. Therefore, this study is to investigate the effect of water and ethanol extraction products of RQB on the prevention of liquid alcoholic diet-induced acute liver injury in mice. The mice were given whole grain powder of red quinoa (RQ-P), RQB ethanol extract (RQB-E), RQB water extract (RQB-W), and rutin orally for 6 weeks, respectively. The results indicated that RQB-E, RQB-W, and rutin decreased alcoholic diet-induced activities of aspartate aminotransferase and alanine aminotransferase, and the levels of serum triglyceride, total cholesterol, and hepatic triglyceride. Hematoxylin and eosin staining of liver tissues showed that RQB-E and RQB-W reduced lipid droplet accumulation and liver injury. However, ethanol extraction process can gain high rutin and antioxidative agents contents from red quinoa, that showed strong effects in preventing alcoholic fatty liver disease and liver injury via increasing superoxide dismutase/catalase antioxidative system and repressing the expressions of fatty acid synthesis enzyme acetyl-CoA carboxylase.


Asunto(s)
Antioxidantes/uso terapéutico , Chenopodium quinoa , Hígado Graso Alcohólico/prevención & control , Extractos Vegetales/uso terapéutico , Rutina/uso terapéutico , Animales , Antioxidantes/química , Chenopodium quinoa/química , Etanol/efectos adversos , Ácidos Grasos/metabolismo , Hígado Graso Alcohólico/etiología , Hígado Graso Alcohólico/metabolismo , Lipogénesis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Rutina/química
11.
Biochem Pharmacol ; 192: 114678, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34265279

RESUMEN

Fibroblast growth factor 21 (FGF21) is mainly regulated by peroxisome proliferator-activated receptor α (PPARα) in liver. The PPARα-FGF21 axis protects against alcohol-related liver disease (ALD). FGF21 exerts its effect via FGF receptor 1 (FGFR1). However, liver specific FGFR1 abrogation had no effect on ALD. Adipose tissues highly express FGFR1. When adipocyte specific FGFR1 knockout (fgfr1adipoQ-cre) mice and corresponding normal control (fgfr1fl/fl) mice were fed with Lieber-DeCarli ethanol liquid diet for 3 weeks, liver triglyceride (TG) accumulation was increased in the fgfr1fl/fl mice to a greater extent than in the fgfr1adipoQ-cre mice. When PPARα agonist WY-14,643 was added in the liquid ethanol diet at 10 mg/L, the ethanol-induced liver TG accumulation was blunted in the fgfr1fl/fl mice but not in the fgfr1adipoQ-cre mice. There was no significant difference in WY-14,643-induced fatty acid oxidation, ethanol metabolism, and oxidative stress between the fgfr1fl/fl and fgfr1adipoQ-cre mice. Interestingly, adipose atrophy was induced by WY-14,643 in the fgfr1adipoQ-cre mice but not in the fgfr1fl/fl mice. Serum free fatty acid was also decreased by WY-14,643 in the fgfr1adipoQ-cre mice but not in the fgfr1fl/fl mice. These results suggest that WY-14,643 inhibits alcoholic fatty liver and regulates adipose tissue mass and fat mobilization from adipose tissues to liver in an adipocyte FGFR1-dependent manner.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Etanol/toxicidad , Hígado Graso Alcohólico/prevención & control , PPAR alfa/agonistas , Pirimidinas/uso terapéutico , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/deficiencia , Tejido Adiposo/metabolismo , Animales , Atrofia/inducido químicamente , Atrofia/metabolismo , Etanol/administración & dosificación , Hígado Graso Alcohólico/metabolismo , Femenino , Ratones , Ratones Noqueados , PPAR alfa/metabolismo , Proliferadores de Peroxisomas/uso terapéutico , Proliferadores de Peroxisomas/toxicidad , Pirimidinas/toxicidad , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
12.
Cell Death Dis ; 12(7): 710, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267188

RESUMEN

Alcohol-related liver disease (ALD), a condition caused by alcohol overconsumption, occurs in three stages of liver injury including steatosis, hepatitis, and cirrhosis. DEP domain-containing protein 5 (DEPDC5), a component of GAP activities towards Rags 1 (GATOR1) complex, is a repressor of amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. In the current study, we found that aberrant activation of mTORC1 was likely attributed to the reduction of DEPDC5 in the livers of ethanol-fed mice or ALD patients. To further define the in vivo role of DEPDC5 in ALD development, we generated Depdc5 hepatocyte-specific knockout mouse model (Depdc5-LKO) in which mTORC1 pathway was constitutively activated through loss of the inhibitory effect of GATOR1. Hepatic Depdc5 ablation leads to mild hepatomegaly and liver injury and protects against diet-induced liver steatosis. In contrast, ethanol-fed Depdc5-LKO mice developed severe hepatic steatosis and inflammation. Pharmacological intervention with Torin 1 suppressed mTORC1 activity and remarkably ameliorated ethanol-induced hepatic steatosis and inflammation in both control and Depdc5-LKO mice. The pathological effect of sustained mTORC1 activity in ALD may be attributed to the suppression of peroxisome proliferator activated receptor α (PPARα), the master regulator of fatty acid oxidation in hepatocytes, because fenofibrate (PPARα agonist) treatment reverses ethanol-induced liver steatosis and inflammation in Depdc5-LKO mice. These findings provide novel insights into the in vivo role of hepatic DEPDC5 in the development of ALD.


Asunto(s)
Hígado Graso Alcohólico/metabolismo , Proteínas Activadoras de GTPasa/deficiencia , Hígado/metabolismo , PPAR alfa/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Hígado Graso Alcohólico/genética , Hígado Graso Alcohólico/patología , Hígado Graso Alcohólico/prevención & control , Femenino , Proteínas Activadoras de GTPasa/genética , Mediadores de Inflamación , Hígado/efectos de los fármacos , Hígado/ultraestructura , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Naftiridinas/farmacología , Oxidación-Reducción , Estrés Oxidativo , PPAR alfa/genética , Transducción de Señal
13.
Kaohsiung J Med Sci ; 37(8): 718-729, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33973356

RESUMEN

Alcoholic fatty liver disease (AFLD) is the most common liver disease and can progress to fatal liver cirrhosis and carcinoma, affecting millions of patients worldwide. The functions of astragaloside on the cardiovascular system have been elucidated. However, its role in AFLD is unclear. Ethanol-treated AML-12 cells were used as a cell model of alcoholic fatty liver. Real-time quantitative reverse transcription-PCR and Western blotting detected genes and proteins expressions. Reactive oxygen species (ROS), triglyceride, total cholesterol, low-density lipoprotein, albumin, ferritin, bilirubin, superoxide dismutase, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were examined using commercial kits. Lipid accumulation was assessed by Oil red O staining. MTT and flow cytometry measured cell viability and apoptosis. JC-1 was used to analyze mitochondrial membrane potential. A rat model of AFLD was established by treating rats with ethanol. Astragaloside suppressed ethanol-induced lipid accumulation, oxidative stress, and the production of AST and ALT in AML-12 cells. Ethanol induced TNF-α and reduced IL-10 expression, which were reversed by astragaloside. Ethanol promoted Bax expression and cytochrome C release and inhibited Bcl-2 and ATP expression. Astragaloside hampered these apoptosis effects in AML-12 cells. Impaired mitochondrial membrane potential was recovered by astragaloside. However, all these astragaloside-mediated beneficial effects were abolished by the ROS inducer pyocyanin. Ethanol-induced activation of NF-κB signaling was suppressed by astragaloside in vitro and in vivo, suggesting that astragaloside inhibited oxidative stress by suppressing the activation of NF-κB signaling, thus improving liver function and alleviating AFLD in rats. Our study elucidates the pharmacological mechanism of astragaloside and provides potential therapeutic strategies for AFLD.


Asunto(s)
Hígado Graso Alcohólico/prevención & control , Estrés Oxidativo/efectos de los fármacos , Saponinas/farmacología , Triterpenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Hígado Graso Alcohólico/metabolismo , Inflamación/metabolismo , Inflamación/prevención & control , Metabolismo de los Lípidos/efectos de los fármacos , Pruebas de Función Hepática , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Biomed Pharmacother ; 134: 111121, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33341668

RESUMEN

Exessive drinking is commonly associated with a wide spectrum of liver injuries. The term alcoholic liver disease (ALD) is generally used to refer to this spectrum of hepatic abnormalities, and the term hepatic steatosis denotes early lesions. Puerariae Lobatae Radix (PLR) is a common traditional Chinese medicine and has been widely used as an efficient treatment for alcohol-induced damage. Flavonoids are the principal components of PLR that could potentially be responsible for the activation of alcohol metabolism and lipid-lowering effects. However, little is known about the mechanisms underlying their activity against alcoholic injury. In this study, PLR flavonoids (PLF) were obtained by microwave extraction. A 2% ethanol solution was used to establish a model of alcoholic fatty liver disease by exposure of zebrafish larvae for 32 h, and then the zebrafish were administered PLF and puerarin. The results showed that PLF and puerarin significantly decreased lipid accumulation and the levels of total cholesterol and triglycerides in zebrafish larvae. Moreover, PLF and puerarin downregulated the expression of genes related to alcohol and lipid metabolism (CYP2y3, CYP3a65, ADH8a, ADH8b, HMGCRB, and FASN), endoplasmic reticulum stress, and DNA damage (CHOP, EDEM1, GADD45αa, and ATF6) and reduced levels of inflammatory factors (IL-1ß, TNF-α) in zebrafish larvae. PLF and puerarin increased the phosphorylation of AMP-activated protein kinase-α (AMPKα) and decreased the total protein level of ACC1. The findings suggested that PLF and puerarin alleviated alcohol-induced hepatic steatosis in zebrafish larvae by regulating alcohol and lipid metabolism, which was closely related to the regulation of the AMPKα-ACC signaling pathway. In conclusion, the study provided a possible therapeutic drug for ALD treatment.


Asunto(s)
Etanol/metabolismo , Hígado Graso Alcohólico/prevención & control , Flavonoides/farmacología , Isoflavonas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Pueraria , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hígado Graso Alcohólico/metabolismo , Hígado Graso Alcohólico/patología , Flavonoides/aislamiento & purificación , Regulación Enzimológica de la Expresión Génica , Mediadores de Inflamación/metabolismo , Isoflavonas/aislamiento & purificación , Hígado/metabolismo , Hígado/patología , Pueraria/química , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Food Funct ; 12(1): 362-372, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33325949

RESUMEN

Excessive alcohol drinking and a high-fat diet (HFD) promote steatohepatitis in the comorbidity of NAFLD and AFLD. Taxifolin (TAX) is a rich dihydroxyflavone compound found in onions, milk thistle and Douglas fir. We aimed to explore the intervention mechanism of TAX on chronic steatohepatitis induced by HFD feeding plus acute ethanol binge. We established an in vivo model by HFD feeding plus a single dose of ethanol binge, and established an in vitro model by oleic acid or palmitic acid on HepG2 cells to induce lipid accumulation. TAX regulated lipid synthesis by inhibiting the expression of SREBP1 and upregulating the PPARγ level. In addition, TAX inhibited the expression of P2X7R, IL-1ß, and caspase-1. Moreover, TAX reduced the expression of caspase-1 activation; thereby inhibiting the recruitment of macrophages and neutrophils. TAX also improved the inflammatory response caused by caspase-1 activation in steatotic hepatocytes. TAX exhibited an inhibitory effect on lipid accumulation and caspase-1-related pyroptosis. Collectively, TAX has therapeutic potential as an intervention of steatohepatitis induced by alcohol combined with HFD and for preventing non-alcoholic fatty liver degeneration targeting caspase-1-dependent pyroptosis.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Etanol/efectos adversos , Hígado Graso Alcohólico/prevención & control , Piroptosis/efectos de los fármacos , Quercetina/análogos & derivados , Animales , Antiinflamatorios no Esteroideos/farmacología , Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Células Cultivadas , Depresores del Sistema Nervioso Central/efectos adversos , Modelos Animales de Enfermedad , Hígado Graso Alcohólico/etiología , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Quercetina/farmacología
16.
Hepatology ; 73(3): 952-967, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32418220

RESUMEN

BACKGROUND AND AIMS: Chronic alcohol consumption is accompanied by intestinal inflammation. However, little is known about how alterations to the intestinal immune system and sphingolipids contribute to the pathogenesis of alcohol-associated liver disease (ALD). APPROACH AND RESULTS: We used wild-type mice, retinoid-related orphan receptor gamma t (RORγt)-deficient mice, sphingosine kinase-deficient mice, and local gut anti-inflammatory, 5-aminosalicyclic acid-treated mice in a chronic-binge ethanol feeding model. Targeted lipidomics assessed the sphingolipids in gut and liver samples. Gut immune cell populations, the amounts of sphingolipids, and the level of liver injury were examined. Alcohol intake induces a pro-inflammatory shift in immune cell populations in the gut, including an increase in Th17 cells. Using RORγt-deficient mice, we found that Th17 cells are required for alcohol-associated gut inflammation and the development of ALD. Treatment with 5-aminosalicyclic acid decreases alcohol-induced liver injury and reverses gut inflammation by the suppression of CD4+ /RORγt+ /interleukin-17A+ cells. Increased Th17 cells were due to up-regulation of sphingosine kinase 1 activity and RORγt activation. We found that S1P/S1PR1 signaling is required for the development of Th17 cell-mediated ALD. Importantly, in vivo intervention blocking of S1P/S1PR1 signaling markedly attenuated alcohol-induced liver inflammation, steatosis, and damage. CONCLUSIONS: Gut inflammation is a functional alteration of immune cells in ALD. Reducing gut Th17 cells leads to reduced liver damage. S1P signaling was crucial in the pathogenesis of ALD in a Th17 cell-dependent manner. Furthermore, our findings suggest that compounds that reduce gut inflammation locally may represent a unique targeted approach in the treatment of ALD.


Asunto(s)
Etanol/efectos adversos , Hígado Graso Alcohólico/prevención & control , Lisofosfolípidos/farmacología , Esfingosina/análogos & derivados , Células Th17/fisiología , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Modelos Animales de Enfermedad , Hígado Graso Alcohólico/etiología , Femenino , Intestinos/citología , Intestinos/efectos de los fármacos , Intestinos/inmunología , Masculino , Mesalamina/farmacología , Mesalamina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esfingosina/farmacología , Células Th17/efectos de los fármacos
17.
Ann Palliat Med ; 9(3): 1045-1054, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32389004

RESUMEN

BACKGROUND: This study aims to explore blueberry polyphenols and its roles in nonalcoholic fatty liver disease (NAFLD) by relieving hepatic steatosis, and to understand alcoholic fatty liver disease (AFLD). Cell autophagy has been proved to promote lipid metabolism and is involved in the pathogenesis of AFLD; however, whether blueberry polyphenol affects autophagy is unknown. Therefore, our study analyzes the functions of blueberry polyphenol on AFLD and if its mechanisms are engaged with hepatocytes autophagy. METHODS: We built the AFLD mice model via alcohol abduction, and the TG lipid droplets content detected the hepatic steatosis through ORO and HE stains. For blood lipid levels measurements, serum CHOL and TG concentrations were tests. For mechanism analysis, the lipogenic genes of SREBP1, FAS, and ACCα, and the lipodieretic genes of ATGL and Sirt1 were evaluated by qRT-PCR, as well as the autophagy proteins of p62; WB measured LC3-I and LC3-II. RESULTS: We found that chronic alcohol intake successfully induced AFLD occurrence with increased TG lipid droplets content in liver and serum CHOL and TG levels that accompanied by increased lipogenic and reduced lipodieretic mRNA levels, as well as enhancive p62 protein and decreased LC3-II/LC3-I proportion. However, after blueberry polyphenol intake, there were opposite outcomes happened. Moreover, blueberry polyphenol alone did not affect the lipid metabolism but promoted the hepatocytes autophagy at 200 mg/kg concentration. CONCLUSIONS: In summary, we are unparalleled that illustrated blueberry polyphenols can prevent AFLD development by promoting autophagy to accelerate lipid metabolism than to lighten hepatic steatosis.


Asunto(s)
Arándanos Azules (Planta) , Hígado Graso Alcohólico , Animales , Autofagia , Hígado Graso Alcohólico/metabolismo , Hígado Graso Alcohólico/prevención & control , Hepatocitos , Lipólisis , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Polifenoles/farmacología , Polifenoles/uso terapéutico
18.
Alcohol Clin Exp Res ; 44(5): 1046-1060, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32267550

RESUMEN

BACKGROUND: Excess alcohol (ethanol, EtOH) consumption is a significant cause of chronic liver disease, accounting for nearly half of the cirrhosis-associated deaths in the United States. EtOH-induced liver toxicity is linked to EtOH metabolism and its associated increase in proinflammatory cytokines, oxidative stress, and the subsequent activation of Kupffer cells. Dihydromyricetin (DHM), a bioflavonoid isolated from Hovenia dulcis, can reduce EtOH intoxication and potentially protect against chemical-induced liver injuries. But there remains a paucity of information regarding the effects of DHM on EtOH metabolism and liver protection. As such, the current study tests the hypothesis that DHM supplementation enhances EtOH metabolism and reduces EtOH-mediated lipid dysregulation, thus promoting hepatocellular health. METHODS: The hepatoprotective effect of DHM (5 and 10 mg/kg; intraperitoneal injection) was evaluated using male C57BL/6J mice and a forced drinking ad libitum EtOH feeding model and HepG2/VL-17A hepatoblastoma cell models. EtOH-mediated lipid accumulation and DHM effects against lipid deposits were determined via H&E stains, triglyceride measurements, and intracellular lipid dyes. Protein expression of phosphorylated/total proteins and serum and hepatic cytokines was determined via Western blot and protein array. Total NAD+ /NADH Assay of liver homogenates was used to detect NAD + levels. RESULTS: DHM reduced liver steatosis, liver triglycerides, and liver injury markers in mice chronically fed EtOH. DHM treatment resulted in increased activation of AMPK and downstream targets, carnitine palmitoyltransferase (CPT)-1a, and acetyl CoA carboxylase (ACC)-1. DHM induced expression of EtOH-metabolizing enzymes and reduced EtOH and acetaldehyde concentrations, effects that may be partly explained by changes in NAD+ . Furthermore, DHM reduced the expression of proinflammatory cytokines and chemokines in sera and cell models. CONCLUSION: In total, these findings support the utility of DHM as a dietary supplement to reduce EtOH-induced liver injury via changes in lipid metabolism, enhancement of EtOH metabolism, and suppressing inflammation responses to promote liver health.


Asunto(s)
Etanol/efectos adversos , Etanol/metabolismo , Flavonoles/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Hepatopatías Alcohólicas/prevención & control , Hígado/metabolismo , Adenilato Quinasa/metabolismo , Animales , Suplementos Dietéticos , Activación Enzimática/efectos de los fármacos , Hígado Graso Alcohólico/prevención & control , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Triglicéridos/metabolismo
19.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G428-G438, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31928222

RESUMEN

Enhanced free fatty acid (FFA) flux from adipose tissue (AT) to liver plays an important role in the development of nonalcoholic steatohepatitis (NASH) and alcohol-associated liver disease (AALD). We determined the effectiveness of nanoformulated superoxide dismutase 1 (Nano) in attenuating liver injury in a mouse model exhibiting a combination of NASH and AALD. Male C57BL6/J mice were fed a chow diet (CD) or a high-fat diet (HF) for 10 wk followed by pair feeding of the Lieber-DeCarli control (control) or ethanol (ET) diet for 4 wk. Nano was administered once every other day for the last 2 wk of ET feeding. Mice were divided into 1) CD + control diet (CD + Cont), 2) high-fat diet (HF) + control diet (HF + Cont), 3) HF + Cont + Nano, 4) HF + ET diet (HF + ET), and 5) HF + ET + Nano. The total fat mass, visceral AT mass (VAT), and VAT perilipin 1 content were significantly lower only in HF + ET-fed mice but not in HF + ET + Nano-treated mice compared with controls. The HF + ET-fed mice showed an upregulation of VAT CYP2E1 protein, and Nano abrogated this effect. We noted a significant rise in plasma FFAs, ALT, and monocyte chemoattractant protein-1 in HF + ET-fed mice, which was blunted in HF + ET + Nano-treated mice. HF + ET-induced increases in hepatic steatosis and inflammatory markers were attenuated upon Nano treatment. Nano reduced hepatic CYP2E1 and enhanced catalase levels in HF + ET-fed mice with a concomitant increase in SOD1 protein and activity in liver. Nano was effective in attenuating AT and liver injury in mice exhibiting a combination of NASH and AALD, partly via reduced CYP2E1-mediated ET metabolism in these organs.NEW & NOTEWORTHY Increased free fatty acid flux from adipose tissue (AT) to liver accompanied by oxidative stress promotes nonalcoholic steatohepatitis (NASH) and alcohol-associated liver injury (AALD). Obesity increases the severity of AALD. Using a two-hit model involving a high-fat diet and chronic ethanol feeding to mice, and treating them with nanoformulated superoxide dismutase (nanoSOD), we have shown that nanoSOD improves AT lipid storage, reduces CYP2E1 in AT and liver, and attenuates the combined NASH/AALD in mice.


Asunto(s)
Citocromo P-450 CYP2E1/metabolismo , Hígado Graso Alcohólico/prevención & control , Grasa Intraabdominal/efectos de los fármacos , Hígado/efectos de los fármacos , Nanopartículas , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Superóxido Dismutasa-1/administración & dosificación , Adiposidad/efectos de los fármacos , Animales , Catalasa/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Composición de Medicamentos , Hígado Graso Alcohólico/enzimología , Hígado Graso Alcohólico/genética , Hígado Graso Alcohólico/patología , Regulación de la Expresión Génica , Grasa Intraabdominal/enzimología , Grasa Intraabdominal/patología , Lipólisis/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Nanomedicina , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Perilipina-1/genética , Perilipina-1/metabolismo , Transducción de Señal , Superóxido Dismutasa-1/química
20.
J Proteome Res ; 18(11): 3821-3830, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31612718

RESUMEN

Alcoholic steatosis is one of the most prevalent forms of liver disease, and appropriate insight and application of anti-steatosis drugs must be considered. Geniposide, the major active constituent of the Gardenia jasminoides (Ellis) fruit, has been commonly used as a traditional herbal medicine for the treatment of liver diseases. However, its hepatoprotective effect on alcoholic steatosis has not been reported. Moreover, geniposide overdose-induced hepatotoxicity was demonstrated. Hence, its therapeutic effects and overdose-induced hepatotoxicity in rat models along with corresponding targets, especially the targets of transcription factors (TFs), were systematically investigated in this study by using a concatenated tandem array of consensus TF response elements. The results indicate that geniposide can attenuate alcoholic steatosis and liver injury by enhancing the transcriptional activities of peroxisome proliferator-activated receptor-α and hepatocyte nuclear factors 1α and 4α, while geniposide overdose perturbs other TFs. In addition, therapeutic doses and overdoses of geniposide have differentiated target TFs. This study is the first to provide a systematic insight into the difference of critical transcription factors between the actions of therapeutic doses and overdoses of geniposide, as well as much-needed attention to the important topic of alcoholic liver disease therapy.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado Graso Alcohólico/metabolismo , Iridoides/administración & dosificación , Proteómica/métodos , Factores de Transcripción/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Sobredosis de Droga/complicaciones , Hígado Graso Alcohólico/prevención & control , Frutas/química , Gardenia/química , Iridoides/efectos adversos , Masculino , PPAR alfa/metabolismo , Fitoterapia/efectos adversos , Fitoterapia/métodos , Proteoma/metabolismo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...