Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.540
Filtrar
1.
BMC Genomics ; 25(1): 852, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261785

RESUMEN

BACKGROUND: Low levels of the essential amino acid lysine in maize endosperm is considered to be a major problem regarding the nutritional quality of food and feed. Increasing the lysine content of maize is important to improve the quality of food and feed nutrition. Although the genetic basis of quality protein maize (QPM) has been studied, the further exploration of the quantitative trait loci (QTL) underlying lysine content variation still needs more attention. RESULTS: Eight maize inbred lines with increased lysine content were used to construct four double haploid (DH) populations for identification of QTLs related to lysine content. The lysine content in the four DH populations exhibited continuous and normal distribution. A total of 12 QTLs were identified in a range of 4.42-12.66% in term of individual phenotypic variation explained (PVE) which suggested the quantitative control of lysine content in maize. Five main genes involved in maize lysine biosynthesis pathways in the QTL regions were identified in this study. CONCLUSIONS: The information presented will allow the exploration of candidate genes regulating lysine biosynthesis pathways and be useful for marker-assisted selection and gene pyramiding in high-lysine maize breeding programs.


Asunto(s)
Lisina , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Zea mays/metabolismo , Lisina/metabolismo , Fenotipo , Haploidia , Mapeo Cromosómico
2.
Nat Commun ; 15(1): 8163, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289346

RESUMEN

This study introduces a synthetic biology approach that reprograms the yeast mating-type switching mechanism for tunable cell differentiation, facilitating synthetic microbial consortia formation and cooperativity. The underlying mechanism was engineered into a genetic logic gate capable of inducing asymmetric sexual differentiation within a haploid yeast population, resulting in a consortium characterized by mating-type heterogeneity and tunable population composition. The utility of this approach in microbial consortia cooperativity was demonstrated through the sequential conversion of xylan into xylose, employing haploids of opposite mating types each expressing a different enzyme of the xylanolytic pathway. This strategy provides a versatile framework for producing and fine-tuning functionally heterogeneous yet isogenic yeast consortia, furthering the advancement of microbial consortia cooperativity and offering additional avenues for biotechnological applications.


Asunto(s)
Genes del Tipo Sexual de los Hongos , Saccharomyces cerevisiae , Biología Sintética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Genes del Tipo Sexual de los Hongos/genética , Biología Sintética/métodos , Diferenciación Celular , Haploidia , Xilosa/metabolismo , Regulación Fúngica de la Expresión Génica
3.
Sci Data ; 11(1): 1012, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294137

RESUMEN

Coptis teeta Wall. (Ranunculaceae), an endangered plant species of significant medicinal value, predominantly undergoes clonal propagation, potentially compromising the species' evolutionary potential and ultimately increase its risk of extinction. In this study, we successfully assembled two sets of haploid genomes (Hap1 and Hap2) for C. teeta, comprising nine homologous chromosome pairs, by employing Illumina and PacBio sequencing technologies. The genome annotation identified a total of 43,979 and 46,311 protein-coding genes in Hap1 and in Hap2, and most of them were functionally annotated. The high-quality reference genome will serve as an indispensable genomic resource for conservation and comprehensive exploitation of this endangered species. Between the two haploid genomes, numerous structural alterations were detected within the nine homologous chromosome pairs, potentially resulting in aberrant synapsis and irregular chromosomal segregation and thus contributing to the sustained preservation of clonal propagation in C. teeta. The findings offer new perspective for elucidating the genetic mechanism underlying the compromised sexual reproductive capacity of C. teeta, thereby facilitating its enhancement though molecular breeding and genetic improvement.


Asunto(s)
Coptis , Especies en Peligro de Extinción , Genoma de Planta , Haplotipos , Plantas Medicinales , Plantas Medicinales/genética , Coptis/genética , Haploidia
5.
Heredity (Edinb) ; 133(4): 227-237, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39090316

RESUMEN

How frequently hybridisation and gene flow occur in the contact zones of diverging taxa is important for understanding the speciation process. Stigmaeopsis sabelisi and Stigmaeopsis miscanthi high-aggression form (hereafter, S. miscanthi HG) are haplodiploid, social spider mites that infest the Chinese silver grass, Miscanthus sinensis. These two species are closely related and parapatrically distributed in Japan. In mountainous areas, S. sabelisi and S. miscanthi HG are often found in the highlands and lowlands, respectively, suggesting that they are in contact at intermediate altitudes. It is estimated that they diverged from their common ancestors distributed in subtropical regions (south of Japan) during the last glacial period, expanded their distribution into the Japanese Archipelago, and came to have such a parapatric distribution (secondary contact). As their reproductive isolation is strong but incomplete, hybridisation and genetic introgression are expected at their distributional boundaries. In this study, we investigated their spatial distribution patterns along the elevation on Mt. Amagi using male morphological differences, and investigated their hybridisation status using single-nucleotide polymorphisms by MIG-seq. We found their contact zone at altitudes of 150-430 m, suggesting that their contact zone is prevalent in the parapatric area, which is in line with a previous study. Interspecific mating was predicted based on the sex ratio in the contact zone. No obvious hybrids were found, but genetic introgression was detected although it was extremely low.


Asunto(s)
Introgresión Genética , Hibridación Genética , Polimorfismo de Nucleótido Simple , Tetranychidae , Animales , Tetranychidae/genética , Masculino , Flujo Génico , Japón , Haploidia , Aislamiento Reproductivo , Genética de Población , Especiación Genética , Diploidia , Femenino
6.
Genes Chromosomes Cancer ; 63(8): e23255, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39149945

RESUMEN

Near-haploidization, that is, loss of one copy of most chromosomes, is a relatively rare phenomenon in most tumors, but is enriched among certain soft tissue sarcomas, including undifferentiated pleomorphic sarcoma (UPS). Presumably, near-haploidization can arise through many mechanisms. This study aimed to identify gene rearrangements that could cause near-haploidization. We here present two UPS in which near-haploidization was an early event, identified through single nucleotide polymorphism (SNP) array analysis. One of the cases was studied further using whole genome and transcriptome sequencing, as well as cytogenetic and molecular cytogenetic methods. Both tumors had chromosomal rearrangements in the form of copy number shifts/structural variants affecting the SMC1A gene. These findings suggest that cohesin defects could contribute to mitotic errors resulting in massive loss of chromosomes. SMC1A encodes one of the components of the cohesin multiprotein complex, which is critical for proper alignment of the sister chromatids during S-phase and separation to opposite spindle poles. Further studies should explore the role of cohesin defects in near-haploidization in other sarcomas and to clarify its role in tumor development.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Sarcoma , Humanos , Proteínas Cromosómicas no Histona/genética , Proteínas de Ciclo Celular/genética , Sarcoma/genética , Sarcoma/patología , Haploidia , Polimorfismo de Nucleótido Simple , Masculino , Femenino , Cohesinas , Adulto , Persona de Mediana Edad
7.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39120426

RESUMEN

Whole genome duplications are implicated in genome instability and tumorigenesis. Human and yeast polyploids exhibit increased replication stress and chromosomal instability, both hallmarks of cancer. In this study, we investigate the transcriptional response of Schizosaccharomyces pombe to increased ploidy generally, and in response to treatment with the genotoxin methyl methanesulfonate (MMS). We find that treatment of MMS induces upregulation of genes involved in general response to genotoxins, in addition to cell cycle regulatory genes. Downregulated genes are enriched in transport and sexual reproductive pathways. We find that the diploid response to MMS is muted compared to the haploid response, although the enriched pathways remain largely the same. Overall, our data suggests that the global S. pombe transcriptome doubles in response to increased ploidy but undergoes modest transcriptional changes in both unperturbed and genotoxic stress conditions.


Asunto(s)
Daño del ADN , Diploidia , Regulación Fúngica de la Expresión Génica , Haploidia , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/efectos de los fármacos , Metilmetanosulfonato/farmacología , Transcriptoma , Transcripción Genética , Perfilación de la Expresión Génica , Mutágenos/toxicidad , Mutágenos/farmacología
8.
Int J Food Microbiol ; 425: 110894, 2024 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-39216361

RESUMEN

The life cycle of most non-conventional yeasts, such as Torulaspora delbrueckii (Td), is not as well-understood as that of Saccharomyces cerevisiae (Sc). Td is generally assumed to be haploid, which detracts from some biotechnological properties compared to diploid Sc strains. We analyzed the life cycle of several Td wine strains and found that they were mainly diploid during exponential growth in rich medium. However, most cells became haploid in stationary phase, as observed for Sc haploid heterothallic strains. When transferred and incubated in nutrient-deficient media, these haploid cells became polymorphic, enlarged, and transitioned to diploid or polyploid states. The increased ploidy, that mainly results from supernumerary mitosis without cytokinesis, was followed by sporulation. A similar response was observed in yeasts that remained alive during the second fermentation of base wine for sparkling wine making, or during growth in ethanol-supplemented medium. This response was not observed in the Sc yeast populations under any of the experimental conditions assayed, which suggests that it is a specific adaptation of Td to the stressful fermentation conditions. This response allows Td yeasts to remain alive and metabolically active longer during wine fermentation. Consequently, we designed procedures to increase the cell size and ploidy of haploid Td strains. Td inocula with increased ploidy showed enhanced fermentation efficiency compared to haploid inocula of the same strains.


Asunto(s)
Fermentación , Ploidias , Torulaspora , Vino , Vino/microbiología , Torulaspora/genética , Torulaspora/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Haploidia , Microbiología de Alimentos , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo
9.
Theor Appl Genet ; 137(8): 183, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002016

RESUMEN

KEY MESSAGE: The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.


Asunto(s)
Cercospora , Mapeo Cromosómico , Resistencia a la Enfermedad , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Zea mays/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Cercospora/genética , Fitomejoramiento , Fenotipo , Haploidia , Genotipo , Genes de Plantas
10.
Chromosome Res ; 32(3): 10, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034331

RESUMEN

The number of chromosomes varies tremendously across species. It is not clear whether having more or fewer chromosomes could be advantageous. The probability of non-disjunction should theoretically decrease with smaller karyotypes, but too long chromosomes should enforce spatial constraint for their segregation during the mitotic anaphase. Here, we propose a new experimental cell system to acquire novel insights into the mechanisms underlying chromosome segregation. We collected the endemic Australian ant Myrmecia croslandi, the only known species with the simplest possible karyotype of a single chromosome in the haploid males (and one pair of chromosomes in the diploid females), since males are typically haploid in hymenopteran insects. Five colonies, each with a queen and a few hundreds of workers, were collected in the Canberra district (Australia), underwent karyotype analysis to confirm the presence of a single pair of chromosomes in worker pupae, and were subsequently maintained in the laboratory in Paris (France). Starting from dissociated male embryos, we successfully conducted primary cell cultures comprised of single-chromosome cells. This could be developed into a unique model that will be of great interest for future genomic and cell biology studies related to mitosis.


Asunto(s)
Hormigas , Cromosomas de Insectos , Animales , Hormigas/genética , Masculino , Femenino , Cultivo Primario de Células , Cariotipificación , Cariotipo , Haploidia , Segregación Cromosómica
11.
Genes (Basel) ; 15(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39062634

RESUMEN

The cytoplasm of Aegilops kotschyi is known for the induction of male sterility and haploidy in wheat. Both systems originally appeared rather simple, but manipulation of the standard chromosome constitution of the nuclear genome revealed additional interactions. This study shows that while there is little or no allelic variation at the main fertility restorer locus Rfmulti on chromosome arm 1BS, additional genes may also be involved in the nuclear-mitochondrial genome interactions, affecting not only male fertility but also the growth rate, from pollen competition for fertilization and early endosperm divisions all the way to seed size and plant maturity. Some of these effects appear to be of a sporophytic nature; others are gametophytic. Induction of parthenogenesis by a rye inducer in conjunction with the Ae. kotschyi cytoplasm is well known. However, here we show that the cytoplasmic-nuclear interactions affect all aspects of double fertilization: producing maternal haploids from unfertilized eggs, diploids from fertilized eggs or synergids, embryo-less kernels, and fertilized eggs without fertilization of the double nucleus in the embryo sack. It is unclear how frequent the inducers of parthenogenesis are, as variation, if any, is obscured by suppressors present in the wheat genome. Genetic dissection of a single wheat accession revealed five distinct loci affecting the rate of maternal haploid production: four acting as suppressors and one as an enhancer. Only when the suppressing haplotypes are confirmed may it be possible to the identify genetic variation of haploidy inducers, map their position(s), and determine their nature and the mode of action.


Asunto(s)
Aegilops , Citoplasma , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Citoplasma/genética , Aegilops/genética , Cromosomas de las Plantas/genética , Haploidia , Polen/genética , Polen/crecimiento & desarrollo , Partenogénesis/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Infertilidad Vegetal/genética , Núcleo Celular/genética
12.
Plant Physiol Biochem ; 214: 108941, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029307

RESUMEN

Arsenic, a hazardous heavy metal with potent carcinogenic properties, significantly affects key rice-producing regions worldwide. In this study, we present a quantitative trait locus (QTL) mapping investigation designed to identify candidate genes responsible for conferring tolerance to arsenic toxicity in rice (Oryza sativa L.) during the seedling stage. This study identified 17 QTLs on different chromosomes, including qCHC-1 and qCHC-3 on chromosome 1 and 3 related to chlorophyll content and qRFW-12 on chromosome 12 related to root fresh weight. Gene expression analysis revealed eight candidate genes exhibited significant upregulation in the resistant lines, OsGRL1, OsDjB1, OsZIP2, OsMATE12, OsTRX29, OsMADS33, OsABCG29, and OsENODL24. These genes display sequence alignment and phylogenetic tree similarities with other species and engaging in protein-protein interactions with significant proteins. Advanced gene-editing techniques such as CRISPR-Cas9 to precisely target and modify the candidate genes responsible for arsenic tolerance will be explore. This approach may expedite the development of arsenic-resistant rice cultivars, which are essential for ensuring food security in regions affected by arsenic-contaminated soil and water.


Asunto(s)
Arsénico , Oryza , Sitios de Carácter Cuantitativo , Estrés Fisiológico , Oryza/genética , Oryza/efectos de los fármacos , Oryza/metabolismo , Arsénico/toxicidad , Sitios de Carácter Cuantitativo/genética , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de los fármacos , Haploidia , Mapeo Cromosómico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Cromosomas de las Plantas/genética
13.
Braz J Biol ; 84: e284946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985062

RESUMEN

In vitro androgenesis is a unique model for producing homozygous doubled haploid plants. The use of haploid biotechnology accelerates to obtain of doubled haploid plants, which is very important in rice breeding. The purpose of this work is to improve the production of doubled haploids in rice anther culture in vitro and selection of doubled haploid plants with valuable traits. The study the influence of nutrient media on the production of calli and plant regeneration processes in anther culture of 35 rice genotypes was revealed a significant influence of nutrient media on callus production. It was shown that the addition to culture medium phytohormones ratio with high level of cytokinin (5.0 mg/L BAP) and a low level of auxin (0.5 mg/L NAA), supplemented with amino acid composition promotes high production of green regenerated plants (68.75%) compared to albino plants (31.25%). As a result, doubled haploid lines of the glutinous variety Violetta were selected, which characterized by a low amylose content variation (from 1.86 to 2.80%). These doubled haploids are superior to the original variety in some yield traits and represent valuable breeding material.


Asunto(s)
Amilosa , Haploidia , Oryza , Oryza/genética , Oryza/crecimiento & desarrollo , Amilosa/análisis , Amilosa/metabolismo , Medios de Cultivo , Genotipo , Reguladores del Crecimiento de las Plantas , Flores/genética , Flores/química , Fitomejoramiento
14.
Methods Mol Biol ; 2827: 243-266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985275

RESUMEN

Doubled haploid (DH) techniques remain valuable tools for wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) genetic improvement, and DH populations are used extensively in breeding and research endeavors. Several techniques are available for DH production in wheat and barley. Here, we describe two simple, robust anther culture methods used to produce more than 15,000 DH wheat and barley lines annually in Australia.


Asunto(s)
Flores , Haploidia , Hordeum , Fitomejoramiento , Triticum , Hordeum/genética , Hordeum/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Triticum/genética , Fitomejoramiento/métodos , Flores/crecimiento & desarrollo , Flores/genética , Técnicas de Cultivo de Tejidos/métodos
15.
Nature ; 632(8025): 576-584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866052

RESUMEN

Increasing planting density is a key strategy for enhancing maize yields1-3. An ideotype for dense planting requires a 'smart canopy' with leaf angles at different canopy layers differentially optimized to maximize light interception and photosynthesis4-6, among other features. Here we identified leaf angle architecture of smart canopy 1 (lac1), a natural mutant with upright upper leaves, less erect middle leaves and relatively flat lower leaves. lac1 has improved photosynthetic capacity and attenuated responses to shade under dense planting. lac1 encodes a brassinosteroid C-22 hydroxylase that predominantly regulates upper leaf angle. Phytochrome A photoreceptors accumulate in shade and interact with the transcription factor RAVL1 to promote its degradation via the 26S proteasome, thereby inhibiting activation of lac1 by RAVL1 and decreasing brassinosteroid levels. This ultimately decreases upper leaf angle in dense fields. Large-scale field trials demonstrate that lac1 boosts maize yields under high planting densities. To quickly introduce lac1 into breeding germplasm, we transformed a haploid inducer and recovered homozygous lac1 edits from 20 diverse inbred lines. The tested doubled haploids uniformly acquired smart-canopy-like plant architecture. We provide an important target and an accelerated strategy for developing high-density-tolerant cultivars, with lac1 serving as a genetic chassis for further engineering of a smart canopy in maize.


Asunto(s)
Producción de Cultivos , Fotosíntesis , Hojas de la Planta , Zea mays , Brasinoesteroides/metabolismo , Producción de Cultivos/métodos , Oscuridad , Haploidia , Homocigoto , Luz , Mutación , Fotosíntesis/efectos de la radiación , Fitocromo A/metabolismo , Fitomejoramiento , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Zea mays/anatomía & histología , Zea mays/enzimología , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/efectos de la radiación
16.
Can J Microbiol ; 70(9): 394-404, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38875715

RESUMEN

The number of copies of each chromosome, or ploidy, of an organism is a major genomic factor affecting adaptation. We set out to determine how ploidy can impact the outcome of evolution, as well as the likelihood of evolutionary rescue, using short-term experiments with yeast (Saccharomyces cerevisiae) in a high concentration of the fungicide nystatin. In similar experiments using haploid yeast, the genetic changes underlying evolutionary rescue were highly repeatable, with all rescued lines containing a single mutation in the ergosterol biosynthetic pathway. All of these beneficial mutations were recessive, which led to the expectation that diploids would find alternative genetic routes to adaptation. To test this, we repeated the experiment using both haploid and diploid strains and found that diploid populations did not evolve resistance. Although diploids are able to adapt at the same rate as haploids to a lower, not fully inhibitory, concentration of nystatin, the present study suggests that diploids are limited in their ability to adapt to an inhibitory concentration of nystatin, while haploids may undergo evolutionary rescue. These results demonstrate that ploidy can tip the balance between adaptation and extinction when organisms face an extreme environmental change.


Asunto(s)
Antifúngicos , Nistatina , Ploidias , Saccharomyces cerevisiae , Nistatina/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacología , Haploidia , Farmacorresistencia Fúngica/genética , Adaptación Fisiológica/genética , Mutación , Evolución Biológica , Diploidia
17.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38869242

RESUMEN

Genomic selection and doubled haploids hold significant potential to enhance genetic gains and shorten breeding cycles across various crops. Here, we utilized stochastic simulations to investigate the best strategies for optimize a sweet corn breeding program. We assessed the effects of incorporating varying proportions of old and new parents into the crossing block (3:1, 1:1, 1:3, and 0:1 ratio, representing different degrees of parental substitution), as well as the implementation of genomic selection in two distinct pipelines: one calibrated using the phenotypes of testcross parents (GSTC scenario) and another using F1 individuals (GSF1). Additionally, we examined scenarios with doubled haploids, both with (DH) and without (DHGS) genomic selection. Across 20 years of simulated breeding, we evaluated scenarios considering traits with varying heritabilities, the presence or absence of genotype-by-environment effects, and two program sizes (50 vs 200 crosses per generation). We also assessed parameters such as parental genetic mean, average genetic variance, hybrid mean, and implementation costs for each scenario. Results indicated that within a conventional selection program, a 1:3 parental substitution ratio (replacing 75% of parents each generation with new lines) yielded the highest performance. Furthermore, the GSTC model outperformed the GSF1 model in enhancing genetic gain. The DHGS model emerged as the most effective, reducing cycle time from 5 to 4 years and enhancing hybrid gains despite increased costs. In conclusion, our findings strongly advocate for the integration of genomic selection and doubled haploids into sweet corn breeding programs, offering accelerated genetic gains and efficiency improvements.


Asunto(s)
Simulación por Computador , Haploidia , Modelos Genéticos , Fitomejoramiento , Selección Genética , Zea mays , Zea mays/genética , Fitomejoramiento/métodos , Genómica/métodos , Fenotipo , Genoma de Planta , Genotipo
18.
Sci Rep ; 14(1): 13989, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886371

RESUMEN

In vitro evolution and whole genome analysis has proven to be a powerful method for studying the mechanism of action of small molecules in many haploid microbes but has generally not been applied to human cell lines in part because their diploid state complicates the identification of variants that confer drug resistance. To determine if haploid human cells could be used in MOA studies, we evolved resistance to five different anticancer drugs (doxorubicin, gemcitabine, etoposide, topotecan, and paclitaxel) using a near-haploid cell line (HAP1) and then analyzed the genomes of the drug resistant clones, developing a bioinformatic pipeline that involved filtering for high frequency alleles predicted to change protein sequence, or alleles which appeared in the same gene for multiple independent selections with the same compound. Applying the filter to sequences from 28 drug resistant clones identified a set of 21 genes which was strongly enriched for known resistance genes or known drug targets (TOP1, TOP2A, DCK, WDR33, SLCO3A1). In addition, some lines carried structural variants that encompassed additional known resistance genes (ABCB1, WWOX and RRM1). Gene expression knockdown and knockout experiments of 10 validation targets showed a high degree of specificity and accuracy in our calls and demonstrates that the same drug resistance mechanisms found in diverse clinical samples can be evolved, discovered and studied in an isogenic background.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Haploidia , Humanos , Resistencia a Antineoplásicos/genética , Antineoplásicos/farmacología , Genoma Humano , Secuenciación Completa del Genoma/métodos , Línea Celular
19.
Mol Plant ; 17(7): 1005-1018, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38877700

RESUMEN

Doubled haploid (DH) technology and synthetic apomixis approaches can considerably shorten breeding cycles and enhance breeding efficiency. Compared with traditional breeding methods, DH technology offers the advantage of rapidly generating inbred lines, while synthetic apomixis can effectively fix hybrid vigor. In this review, we focus on (i) recent advances in identifying and characterizing genes responsible for haploid induction (HI), (ii) the molecular mechanisms of HI, (iii) spontaneous haploid genome doubling, and (iv) crop synthetic apomixis. We also discuss the challenges and potential solutions for future crop breeding programs utilizing DH technology and synthetic apomixis. Finally, we provide our perspectives about how to integrate DH and synthetic apomixis for precision breeding and de novo domestication.


Asunto(s)
Productos Agrícolas , Haploidia , Fitomejoramiento , Fitomejoramiento/métodos , Productos Agrícolas/genética , Apomixis/genética
20.
Theor Popul Biol ; 158: 121-138, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844263

RESUMEN

Muller's ratchet, in its prototype version, models a haploid, asexual population whose size N is constant over the generations. Slightly deleterious mutations are acquired along the lineages at a constant rate, and individuals carrying less mutations have a selective advantage. The classical variant considers fitness proportional selection, but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et al. (2009) we propose a parameter scaling which fits well to the "near-critical" regime that was in the focus of Etheridge et al. (2009) (and in which the mutation-selection ratio diverges logarithmically as N→∞). Using a Moran model, we investigate the"rule of thumb" given in Etheridge et al. (2009) for the click rate of the "classical ratchet" by putting it into the context of new results on the long-time evolution of the size of the best class of the ratchet with (binary) tournament selection. This variant of Muller's ratchet was introduced in González Casanova et al. (2023), and was analysed there in a subcritical parameter regime. Other than that of the classical ratchet, the size of the best class of the tournament ratchet follows an autonomous dynamics up to the time of its extinction. It turns out that, under a suitable correspondence of the model parameters, this dynamics coincides with the so called Poisson profile approximation of the dynamics of the best class of the classical ratchet.


Asunto(s)
Selección Genética , Mutación , Aptitud Genética , Modelos Genéticos , Haploidia , Evolución Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA