Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105.818
Filtrar
1.
J Environ Sci (China) ; 147: 114-130, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003034

RESUMEN

Fenton and Fenton-like processes, which could produce highly reactive species to degrade organic contaminants, have been widely used in the field of wastewater treatment. Therein, the chemistry of Fenton process including the nature of active oxidants, the complicated reactions involved, and the behind reason for its strongly pH-dependent performance, is the basis for the application of Fenton and Fenton-like processes in wastewater treatment. Nevertheless, the conflicting views still exist about the mechanism of the Fenton process. For instance, reaching a unanimous consensus on the nature of active oxidants (hydroxyl radical or tetravalent iron) in this process remains challenging. This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants, reactions involved in the Fenton process, and the behind reason for the pH-dependent degradation of contaminants in the Fenton process. Then, we summarized several strategies that promote the Fe(II)/Fe(III) cycle, reduce the competitive consumption of active oxidants by side reactions, and replace the Fenton reagent, thus improving the performance of the Fenton process. Furthermore, advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.


Asunto(s)
Peróxido de Hidrógeno , Hierro , Eliminación de Residuos Líquidos , Hierro/química , Peróxido de Hidrógeno/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Oxidación-Reducción , Radical Hidroxilo/química
2.
J Environ Sci (China) ; 147: 217-229, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003041

RESUMEN

Dissolved black carbon (DBC) plays a crucial role in the migration and bioavailability of iron in water. However, the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied. Here, the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied. It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances. The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light, respectively. The concentration of phenolic hydroxyl groups increased from 10.0∼57.5 mmol/gC to 6.6 ∼65.2 mmol/gC, and the concentration of carboxyl groups increased from 49.7∼97.5 mmol/gC to 62.1 ∼113.3 mmol/gC. Then the impacts of DBC on pyrite dissolution and microalgae growth were also investigated. The complexing Fe3+ was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution. Due to complexing between iron ion and DBC, the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions. Fe-DBC complexations in solution significantly promoted microalga growth, which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis. The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.


Asunto(s)
Carbono , Carbón Orgánico , Hierro , Oxidación-Reducción , Hierro/química , Carbón Orgánico/química , Carbono/química , Contaminantes Químicos del Agua/química
3.
J Environ Sci (China) ; 147: 131-152, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003035

RESUMEN

Biomineralization has garnered significant attention in the field of wastewater treatment due to its notable cost reduction compared to conventional methods. The reinjection water from oilfields containing an exceedingly high concentration of calcium and ferric ions will pose a major hazard in production. However, the utilization of biomineralization for precipitating these ions has been scarcely investigated due to limited tolerance among halophiles towards such extreme conditions. In this study, free and immobilized halophiles Virgibacillus dokdonensis were used to precipitate these ions and the effects were compared, at the same time, biomineralization mechanisms and mineral characteristics were further explored. The results show that bacterial concentration and carbonic anhydrase activity were higher when additionally adding ferric ion based on calcium ion; the content of protein, polysaccharides, deoxyribonucleic acid and humic substances in the extracellular polymers also increased compared to control. Calcium ions were biomineralized into calcite and vaterite with multiple morphology. Due to iron doping, the crystallinity and thermal stability of calcium carbonate decreased, the content of OC = O, NC = O and CO-PO3 increased, the stable carbon isotope values became much more negative, and ß-sheet in minerals disappeared. Higher calcium concentrations facilitated ferric ion precipitation, while ferric ions hindered calcium precipitation. The immobilized bacteria performed better in ferric ion removal, with a precipitation ratio exceeding 90%. Free bacteria performed better in calcium removal, and the precipitation ratio reached a maximum of 56%. This research maybe provides some reference for the co-removal of calcium and ferric ions from the oilfield wastewater.


Asunto(s)
Calcio , Hierro , Virgibacillus , Calcio/química , Hierro/química , Virgibacillus/metabolismo , Eliminación de Residuos Líquidos/métodos , Precipitación Química , Aguas Residuales/química , Biomineralización , Carbonato de Calcio/química
4.
J Environ Sci (China) ; 147: 342-358, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003052

RESUMEN

Secondary iron-sulfate minerals such as jarosite, which are easily formed in acid mine drainage, play an important role in controlling metal mobility. In this work, the typical iron-oxidizing bacterium Acidithiobacillus ferrooxidans ATCC 23270 was selected to synthesize jarosite in the presence of antimony ions, during which the solution behavior, synthetic product composition, and bacterial metabolism were studied. The results show that in the presence of Sb(V), Fe2+ was rapidly oxidized to Fe3+ by A. ferrooxidans and Sb(V) had no obvious effect on the biooxidation of Fe2+ under the current experimental conditions. The presence of Sb(III) inhibited bacterial growth and Fe2+ oxidation. For the group with Sb(III), products with amorphous phases were formed 72 hr later, which were mainly ferrous sulfate and pentavalent antimony oxide, and the amorphous precursor was finally transformed into a more stable crystal phase. For the group with Sb(V), the morphology and structure of jarosite were changed in comparison with those without Sb. The biomineralization process was accompanied by the removal of 94% Sb(V) to form jarosite containing the Fe-Sb-O complex. Comparative transcriptome analysis shows differential effects of Sb(III) and Sb(V) on bacterial metabolism. The expression levels of functional genes related to cell components were much more downregulated for the group with Sb(III) but much more regulated for that with Sb(V). Notably, cytochrome c and nitrogen fixation-relevant genes for the A.f_Fe2+_Sb(III) group were enhanced significantly, indicating their role in Sb(III) resistance. This study is of great value for the development of antimony pollution control and remediation technology.


Asunto(s)
Acidithiobacillus , Antimonio , Sulfatos , Acidithiobacillus/metabolismo , Acidithiobacillus/efectos de los fármacos , Sulfatos/metabolismo , Compuestos Férricos , Oxidación-Reducción , Minería , Hierro/metabolismo
5.
J Environ Sci (China) ; 147: 370-381, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003055

RESUMEN

Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened. The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II) and Mn(II) by Pseudomonas taiwanensis (marked as P4) and Pseudomonas plecoglossicida (marked as G1) contains rich reactive oxygen functional groups, which play critical roles in the removal efficiency and immobilization of heavy metal(loid)s in co-contamination system. The isolated strains P4 and G1 can grow well in the following environments: pH 5-9, NaCl 0-4%, and temperature 20-30°C. The removal efficiencies of Fe, Pb, As, Zn, Cd, Cu, and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system (the initial concentrations of heavy metal(loid) were 1 mg/L), approximately reaching 96%, 92%, 85%, 67%, 70%, 54% and 15%, respectively. The exchangeable and carbonate bound As, Cd, Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil, thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s. This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes del Suelo/metabolismo , Oxidación-Reducción , Pseudomonas/metabolismo , Manganeso , Hierro/química , Hierro/metabolismo , Suelo/química , Biodegradación Ambiental , Microbiología del Suelo
6.
J Environ Sci (China) ; 147: 487-497, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003064

RESUMEN

Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate (PMS) activation, however, neither Cu(II) nor Fe(III) shows efficient catalytic performance because of the slow rates of Cu(II)/Cu(I) and Fe(III)/Fe(II) cycles. Innovatively, we observed a significant enhancement on the degradation of organic contaminants when Cu(II) and Fe(III) were coupled to activate PMS in borate (BA) buffer. The degradation efficiency of Rhodamine B (RhB, 20 µmol/L) reached up to 96.3% within 10 min, which was higher than the sum of individual Cu(II)- and Fe(III)- activated PMS process. Sulfate radical, hydroxyl radical and high-valent metal ions (i.e., Cu(III) and Fe(IV)) were identified as the working reactive species for RhB removal in Cu(II)/Fe(III)/PMS/BA system, while the last played a predominated role. The presence of BA dramatically facilitated the reduction of Cu(II) to Cu(I) via chelating with Cu(II) followed by Fe(III) reduction by Cu(I), resulting in enhanced PMS activation by Cu(I) and Fe(II) as well as accelerated generation of reactive species. Additionally, the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(II) and Fe(III). In a word, this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.


Asunto(s)
Cobre , Peróxidos , Contaminantes Químicos del Agua , Cobre/química , Contaminantes Químicos del Agua/química , Peróxidos/química , Catálisis , Hierro/química , Rodaminas/química , Oxidación-Reducción
7.
J Environ Sci (China) ; 147: 474-486, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003063

RESUMEN

Nano zero-valent iron (nZVI) is widely used in soil remediation due to its high reactivity. However, the easy agglomeration, poor antioxidant ability and passivation layer of Fe-Cr coprecipitates of nZVI have limited its application scale in Cr-contaminated soil remediation, especially in high concentration of Cr-contaminated soil. Herein, we found that the carboxymethyl cellulose on nZVI particles could increase the zeta potential value of soil and change the phase of nZVI. Along with the presence of biochar, 97.0% and 96.6% Cr immobilization efficiency through CMC-nZVI/BC were respectively achieved in high and low concentrations of Cr-contaminated soils after 90-days remediation. In addition, the immobilization efficiency of Cr(VI) only decreased by 5.1% through CMC-nZVI/BC treatment after 10 weeks aging in air, attributing to the strong antioxidation ability. As for the surrounding Cr-contaminated groundwater, the Cr(VI) removal capacity of CMC-nZVI/BC was evaluated under different reaction conditions through column experiments and COMSOL Multiphysics. CMC-nZVI/BC could efficiently remove 85% of Cr(VI) in about 400 hr when the initial Cr(VI) concentration was 40 mg/L and the flow rate was 0.5 mL/min. This study demonstrates that uniformly dispersed CMC-nZVI/BC has an excellent remediation effect on different concentrations of Cr-contaminated soils.


Asunto(s)
Carboximetilcelulosa de Sodio , Carbón Orgánico , Cromo , Restauración y Remediación Ambiental , Hierro , Contaminantes del Suelo , Contaminantes del Suelo/química , Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Hierro/química , Cromo/química , Carboximetilcelulosa de Sodio/química , Suelo/química , Nanopartículas del Metal/química
8.
J Environ Sci (China) ; 147: 523-537, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003068

RESUMEN

Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.


Asunto(s)
Oxidación-Reducción , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Catálisis , Hierro/química
9.
J Environ Sci (China) ; 147: 597-606, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003074

RESUMEN

Harnessing bacteria for superoxide production in bioremediation holds immense promise, yet its practical application is hindered by slow production rates and the relatively weak redox potential of superoxide. This study delves into a cost-effective approach to amplify superoxide production using an Arthrobacter strain, a prevalent soil bacterial genus. Our research reveals that introducing a carbon source along with specific iron-binding ligands, including deferoxamine (DFO), diethylenetriamine pentaacetate (DTPA), citrate, and oxalate, robustly augments microbial superoxide generation. Moreover, our findings suggest that these iron-binding ligands play a pivotal role in converting superoxide into hydroxyl radicals by modulating the electron transfer rate between Fe(III)/Fe(II) and superoxide. Remarkably, among the tested ligands, only DTPA emerges as a potent promoter of this conversion process when complexed with Fe(III). We identify an optimal Fe(III) to DTPA ratio of approximately 1:1 for enhancing hydroxyl radical production within the Arthrobacter culture. This research underscores the efficacy of simultaneously introducing carbon sources and DTPA in facilitating superoxide production and its subsequent conversion to hydroxyl radicals, significantly elevating bioremediation performance. Furthermore, our study reveals that DTPA augments superoxide production in cultures of diverse soils, with various soil microorganisms beyond Arthrobacter identified as contributors to superoxide generation. This emphasizes the universal applicability of DTPA across multiple bacterial genera. In conclusion, our study introduces a promising methodology for enhancing microbial superoxide production and its conversion into hydroxyl radicals. These findings hold substantial implications for the deployment of microbial reactive oxygen species in bioremediation, offering innovative solutions for addressing environmental contamination challenges.


Asunto(s)
Arthrobacter , Biodegradación Ambiental , Radical Hidroxilo , Hierro , Superóxidos , Radical Hidroxilo/metabolismo , Superóxidos/metabolismo , Arthrobacter/metabolismo , Hierro/metabolismo , Ligandos , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Deferoxamina/metabolismo
10.
J Environ Sci (China) ; 147: 630-641, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003078

RESUMEN

Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.


Asunto(s)
Arsénico , Cadmio , Carbón Orgánico , Magnesio , Oryza , Contaminantes del Suelo , Suelo , Oryza/química , Cadmio/análisis , Cadmio/química , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Arsénico/análisis , Suelo/química , Magnesio/química , Hierro/química , Restauración y Remediación Ambiental/métodos
11.
FASEB J ; 38(13): e23725, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959016

RESUMEN

SLC40A1 is the sole iron export protein reported in mammals. In humans, its dysfunction is responsible for ferroportin disease, an inborn error of iron metabolism transmitted as an autosomal dominant trait and observed in different ethnic groups. As a member of the major facilitator superfamily, SLC40A1 requires a series of conformational changes to enable iron translocation across the plasma membrane. The influence of lipids on protein stability and its conformational changes has been little investigated to date. Here, we combine molecular dynamics simulations of SLC40A1 embedded in membrane bilayers with experimental alanine scanning mutagenesis to analyze the specific role of glycerophospholipids. We identify four basic residues (Lys90, Arg365, Lys366, and Arg371) that are located at the membrane-cytosol interface and consistently interact with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) molecules. These residues surround a network of salt bridges and hydrogens bonds that play a critical role in stabilizing SLC40A1 in its basal outward-facing conformation. More deeply embedded in the plasma membrane, we identify Arg179 as a charged amino acid residue also tightly interacting with lipid polar heads. This results in a local deformation of the lipid bilayer. Interestingly, Arg179 is adjacent to Arg178, which forms a functionally important salt-bridge with Asp473 and is a recurrently associated with ferroportin disease when mutated to glutamine. We demonstrate that the two p.Arg178Gln and p.Arg179Thr missense variants have similar functional behaviors. These observations provide insights into the role of phospholipids in the formation/disruption of the SLC40A1 inner gate, and give a better understanding of the diversity of molecular mechanisms of ferroportin disease.


Asunto(s)
Proteínas de Transporte de Catión , Hierro , Simulación de Dinámica Molecular , Humanos , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/química , Hierro/metabolismo , Glicerofosfolípidos/metabolismo , Glicerofosfolípidos/química , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química
12.
World J Gastroenterol ; 30(23): 2931-2933, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38946877

RESUMEN

In this editorial we comment on the article published in a recent issue of the World Journal of Gastroenterology. Acute liver failure (ALF) is a critical condition characterized by rapid hepatocellular injury and organ dysfunction, and it often necessitates liver transplant to ensure patient survival. Recent research has elucidated the involvement of distinct cell death pathways, namely ferroptosis and pyroptosis, in the pathogenesis of ALF. Ferroptosis is driven by iron-dependent lipid peroxidation, whereas pyroptosis is an inflammatory form of cell death; both pathways contribute to hepatocyte death and exacerbate tissue damage. This comprehensive review explores the interplay between ferroptosis and pyroptosis in ALF, highlighting the role of key regulators such as silent information regulator sirtuin 1. Insights from clinical and preclinical studies provide valuable perspectives on the dysregulation of cell death pathways in ALF and the therapeutic potential of targeting these pathways. Collaboration across multiple disciplines is essential for translating the experimental insights into effective treatments for this life-threatening condition.


Asunto(s)
Ferroptosis , Fallo Hepático Agudo , Piroptosis , Animales , Humanos , Hepatocitos/metabolismo , Hierro/metabolismo , Peroxidación de Lípido , Hígado/metabolismo , Hígado/patología , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/terapia , Trasplante de Hígado , Transducción de Señal , Sirtuina 1/metabolismo
13.
Front Immunol ; 15: 1410150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947331

RESUMEN

The recent trend of global warming poses a significant threat to ecosystems worldwide. This global climate change has also impacted the pollution levels in aquatic ecosystems, subsequently affecting human health. To address these issues, an experiment was conducted to investigate the mitigating effects of iron nanoparticles (Fe-NPs) on arsenic and ammonia toxicity as well as high temperature stress (As+NH3+T). Fe-NPs were biologically synthesized using fish waste and incorporated into feed formulations at 10, 15, and 20 mg kg-1 diet. A total of 12 treatments were designed in triplicate following a completely randomized design involving 540 fish. Fe-NPs at 15 mg kg-1 diet notably reduced the cortisol levels in fish exposed to multiple stressors. The gene expressions of HSP 70, DNA damage-inducible protein (DDIP), and DNA damage were upregulated by stressors (As+NH3+T) and downregulated by Fe-NPs. Apoptotic genes (Cas 3a and 3b) and detoxifying genes (CYP 450), metallothionein (MT), and inducible nitric oxide synthase (iNOS) were downregulated by Fe-NPs at 15 mg kg-1 diet in fish subjected to As+NH3+T stress. Immune-related genes such as tumor necrosis factor (TNFα), immunoglobulin (Ig), and interleukin (IL) were upregulated by Fe-NPs, indicating enhanced immunity in fish under As+NH3+T stress. Conversely, Toll-like receptor (TLR) expression was notably downregulated by Fe-NPs at 15 mg kg-1 diet in fish under As+NH3+T stress. Immunological attributes such as nitro blue tetrazolium chloride, total protein, albumin, globulin, A:G ratio, and myeloperoxidase (MPO) were improved by dietary Fe-NPs at 15 mg kg-1 diet in fish, regardless of stressors. The antioxidant genes (CAT, SOD, and GPx) were also strengthened by Fe-NPs in fish. Genes associated with growth performance, such as growth hormone regulator (GHR1 and GHRß), growth hormone (GH), and insulin-like growth factor (IGF 1X and IGF 2X), were upregulated, enhancing fish growth under stress, while SMT and MYST were downregulated by Fe-NPs in the diet. Various growth performance indicators were improved by dietary Fe-NPs at 15 mg kg-1 diet. Notably, Fe-NPs also enhanced arsenic detoxification and reduced the cumulative mortality after a bacterial infection. In conclusion, this study highlights that dietary Fe-NPs can effectively mitigate arsenic and ammonia toxicity as well as high temperature stress by modulating gene expression in fish.


Asunto(s)
Peces , Regulación de la Expresión Génica , Hierro , Estrés Fisiológico , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Hierro/metabolismo , Peces/inmunología , Estrés Fisiológico/inmunología , Estrés Fisiológico/efectos de los fármacos , Nanopartículas del Metal , Arsénico/toxicidad
14.
Georgian Med News ; (349): 85-88, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38963208

RESUMEN

Objectives - postmenopausal women (PMW) undergo a physiological phase of lack or insufficient female sex hormones resulting in some consequences including hematological deficits. The present study aimed to investigate the detection of anemia in postmenopausal women using easy laboratory tools. In this retrospective analysis of patient data collected during the period between 2014-2022. Data retrieved from PMW records were collected over 4 years and analyzed. In comparison to normal ranges, data of PMW has shown reduced levels of hemoglobin, packed cell volume, mean corpuscular volume, and mean corpuscular hemoglobin. PMW has also shown elevated levels of red cell distribution width and levels of serum iron. Compared to normal ranges, no changes have been seen regarding red blood cell count, Mean corpuscular hemoglobin concentration, unsaturated or total iron binding capacity, transferrin saturation, serum ferritin, white blood cells count, and platelets. To provide in-depth investigation, we divide our participants into three groups according to their ages: 45-55 years, 56-65 years, and 66-80 years. The older the age, the more parameters are altered. The study highlighted the potential impact of postmenopausal hormone alteration on hematological parameters and the routine laboratory tools could be used to assess such alteration in blood parameters.


Asunto(s)
Anemia Ferropénica , Índices de Eritrocitos , Ferritinas , Hierro , Posmenopausia , Humanos , Femenino , Posmenopausia/sangre , Persona de Mediana Edad , Anciano , Anemia Ferropénica/sangre , Anemia Ferropénica/diagnóstico , Estudios Retrospectivos , Anciano de 80 o más Años , Hierro/sangre , Ferritinas/sangre , Hemoglobinas/análisis , Hematócrito
15.
FASEB J ; 38(13): e23788, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963329

RESUMEN

Intermittent hypoxia (IH) is an independent risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). Copper deficiency can disrupt redox homeostasis, iron, and lipid metabolism. Here, we investigated whether hepatic copper deficiency plays a role in IH-associated MAFLD and explored the underlying mechanism(s). Male C57BL/6 mice were fed a western-type diet with adequate copper (CuA) or marginally deficient copper (CuD) and were exposed separately to room air (RA) or IH. Hepatic histology, plasma biomarkers, copper-iron status, and oxidative stress were assessed. An in vitro HepG2 cell lipotoxicity model and proteomic analysis were used to elucidate the specific targets involved. We observed that there were no differences in hepatic phenotypes between CuA-fed and CuD-fed mice under RA. However, in IH exposure, CuD-fed mice showed more pronounced hepatic steatosis, liver injury, and oxidative stress than CuA-fed mice. IH induced copper accumulation in the brain and heart and exacerbated hepatic copper deficiency and secondary iron deposition. In vitro, CuD-treated cells with IH exposure showed elevated levels of lipid accumulation, oxidative stress, and ferroptosis susceptibility. Proteomic analysis identified 360 upregulated and 359 downregulated differentially expressed proteins between CuA and CuD groups under IH; these proteins were mainly enriched in citrate cycle, oxidative phosphorylation, fatty acid metabolism, the peroxisome proliferator-activated receptor (PPAR)α pathway, and ferroptosis. In IH exposure, CuD significantly upregulated the ferroptosis-promoting factor arachidonyl-CoA synthetase long chain family member (ACSL)4. ACSL4 knockdown markedly eliminated CuD-induced ferroptosis and lipid accumulation in IH exposure. In conculsion, IH can lead to reduced hepatic copper reserves and secondary iron deposition, thereby inducing ferroptosis and subsequent MAFLD progression. Insufficient dietary copper may worsen IH-associated MAFLD.


Asunto(s)
Cobre , Ferroptosis , Hipoxia , Ratones Endogámicos C57BL , Animales , Cobre/metabolismo , Cobre/deficiencia , Masculino , Ratones , Hipoxia/metabolismo , Humanos , Células Hep G2 , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo , Metabolismo de los Lípidos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/etiología , Hierro/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , PPAR alfa/metabolismo , PPAR alfa/genética
17.
Sci Rep ; 14(1): 15107, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956066

RESUMEN

Ferroptosis is an iron-dependent cell death form characterized by reactive oxygen species (ROS) overgeneration and lipid peroxidation. Myricetin, a flavonoid that exists in numerous plants, exhibits potent antioxidant capacity. Given that iron accumulation and ROS-provoked dopaminergic neuron death are the two main pathological hallmarks of Parkinson's disease (PD), we aimed to investigate whether myricetin decreases neuronal death through suppressing ferroptosis. The PD models were established by intraperitoneally injecting 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into rats and by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+), respectively. Ferroptosis was identified by assessing the levels of Fe2+, ROS, malondialdehyde (MDA), and glutathione (GSH). The results demonstrated that myricetin treatment effectively mitigated MPTP-triggered motor impairment, dopamine neuronal death, and α-synuclein (α-Syn) accumulation in PD models. Myricetin also alleviated MPTP-induced ferroptosis, as evidenced by decreased levels of Fe2+, ROS, and MDA and increased levels of GSH in the substantia nigra (SN) and serum in PD models. All these changes were reversed by erastin, a ferroptosis activator. In vitro, myricetin treatment restored SH-SY5Y cell viability and alleviated MPP+-induced SH-SY5Y cell ferroptosis. Mechanistically, myricetin accelerated nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and subsequent glutathione peroxidase 4 (Gpx4) expression in MPP+-treated SH-SY5Y cells, two critical inhibitors of ferroptosis. Collectively, these data demonstrate that myricetin may be a potential agent for decreasing dopaminergic neuron death by inhibiting ferroptosis in PD.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Ferroptosis , Flavonoides , Especies Reactivas de Oxígeno , Ferroptosis/efectos de los fármacos , Animales , Flavonoides/farmacología , Ratas , Masculino , Especies Reactivas de Oxígeno/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Línea Celular Tumoral , Hierro/metabolismo , alfa-Sinucleína/metabolismo , Ratas Sprague-Dawley , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo
18.
Sci Adv ; 10(27): eadl6428, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959319

RESUMEN

Cyanobacteria use a series of adaptation strategies and a complicated regulatory network to maintain intracellular iron (Fe) homeostasis. Here, a global activator named IutR has been identified through three-dimensional chromosome organization and transcriptome analysis in a model cyanobacterium Synechocystis sp. PCC 6803. Inactivation of all three homologous IutR-encoding genes resulted in an impaired tolerance of Synechocystis to Fe deficiency and loss of the responses of Fe uptake-related genes to Fe-deplete conditions. Protein-promoter interaction assays confirmed the direct binding of IutR with the promoters of genes related to Fe uptake, and chromatin immunoprecipitation sequencing analysis further revealed that in addition to Fe uptake, IutR could regulate many other physiological processes involved in intracellular Fe homeostasis. These results proved that IutR is an important transcriptional activator, which is essential for cyanobacteria to induce Fe-deficiency response genes. This study provides in-depth insights into the complicated Fe-deficient signaling network and the molecular mechanism of cyanobacteria adaptation to Fe-deficient environments.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Homeostasis , Hierro , Regiones Promotoras Genéticas , Synechocystis , Hierro/metabolismo , Synechocystis/metabolismo , Synechocystis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/metabolismo , Cianobacterias/genética , Perfilación de la Expresión Génica
19.
Anal Chim Acta ; 1316: 342876, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969434

RESUMEN

BACKGROUND: Ofloxacin (OFL) is often abused in medicine and animal husbandry, which poses a great threat to human health and ecological environment. Therefore, it is necessary to establish efficient method to detect OFL. Electrochemical sensor has attracted widespread attention due to the advantages of low cost and fast response. However, most electrochemical sensors usually use one response signal to detect the target, which makes it sensitive to the variable background noise in the complex environment, resulting in low robustness and selectivity. The ratio detection mode and employing molecularly imprinted polymer (MIP) are two strategies to solve these problems. RESULTS: A novel molecular imprinting polymer-ratiometric electrochemical sensor (MIP-RECS) based on Fe-MOF-NH2/CNTs-NH2/MXene composite was prepared for the rapid and sensitive detection of OFL. The positively charged Fe-MOF-NH2 and CNTs-NH2 as interlayer spacers were introduced into the negatively charged MXene through a simple electrostatic self-assembly technique, which effectively prevented the agglomeration of MXene and increased the electrocatalytic activity. A glass carbon electrode was modified by the composite and a MIP film was electropolymerized on it using o-phenylenediamine and ß-cyclodextrin as bifunctional monomers and OFL as template. Then a MIP-RECS was designed by adding dopamine (DA) into the electrolyte solution as internal reference, and OFL was quantified by the response current ratio of OFL to DA. The current ratio and the concentration of OFL displayed a satisfying linear relationship in the range of 0.1 µM-100 µM, with a limit of detection (LOD) of 13.2 nM. SIGNIFICANCE: Combining molecular imprinting strategy and ratio strategy, the MIP-RECS has impressive selectivity compared with the non-imprinted polymer-RECS, and has better repeatability and reproducibility than non-ratiometric sensor. The MIP-RECS has high sensitivity and accuracy, which was applied for the detection of OFL in four different brands of milk and was verified by HPLC method with satisfactory results.


Asunto(s)
Técnicas Electroquímicas , Estructuras Metalorgánicas , Polímeros Impresos Molecularmente , Ofloxacino , Ofloxacino/análisis , Ofloxacino/química , Técnicas Electroquímicas/métodos , Polímeros Impresos Molecularmente/química , Estructuras Metalorgánicas/química , Nanotubos de Carbono/química , Hierro/química , Hierro/análisis , Límite de Detección , Impresión Molecular , Animales , Electrodos , Leche/química
20.
J Environ Sci (China) ; 146: 163-175, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969445

RESUMEN

Heterogeneous iron-based catalysts have drawn increasing attention in the advanced oxidation of persulfates due to their abundance in nature, the lack of secondary pollution to the environment, and their low cost over the last a few years. In this paper, the latest progress in the research on the activation of persulfate by heterogeneous iron-based catalysts is reviewed from two aspects, in terms of synthesized catalysts (Fe0, Fe2O3, Fe3O4, FeOOH) and natural iron ore catalysts (pyrite, magnetite, hematite, siderite, goethite, ferrohydrite, ilmenite and lepidocrocite) focusing on efforts made to improve the performance of catalysts. The advantages and disadvantages of the synthesized catalysts and natural iron ore were summarized. Particular interests were paid to the activation mechanisms in the catalyst/PS/pollutant system for removal of organic pollutants. Future research challenges in the context of field application were also discussed.


Asunto(s)
Hierro , Sulfatos , Contaminantes Químicos del Agua , Catálisis , Hierro/química , Sulfatos/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...