Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.987
Filtrar
1.
Int J Med Mushrooms ; 26(8): 13-25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967208

RESUMEN

Calvatia gigantea, commonly known as the giant puffball mushroom, has traditionally been regarded as a significant edible and medicinal species due to its wide spectrum of bioactive compounds and its health-promoting properties. This study aims to systematize the knowledge on the nutritional value and therapeutic potential of C. gigantea, highlighting its role in traditional and contemporary medicine. The mushroom is recognized for its nutritional content, including easily digestible protein, carbohydrates, fiber, phenolic compounds, vitamins, and minerals, while being low in calories, cholesterol, and sodium. Furthermore, C. gigantea exhibits a range of biological effects, such as antioxidant, anticancer, antimicrobial, antidiabetic, and wound-healing properties, attributed to its diverse chemical composition that includes unsaturated fatty acids, free amino acids, polysaccharides, and bioactive metabolites.


Asunto(s)
Antioxidantes , Antioxidantes/farmacología , Antioxidantes/química , Humanos , Valor Nutritivo , Agaricales/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Cicatrización de Heridas/efectos de los fármacos
2.
J Mol Model ; 30(8): 260, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981921

RESUMEN

CONTEXT: Diabetes mellitus (DM) is a metabolic disorder disease that causes hyperglycemia conditions and associated with various chronic complications leading to mortality. Due to high toxicity of conventional diabetic drugs, the exploration of natural compounds as alternative diabetes treatments has been widely carried out. Previous in silico studies have highlighted berberine, a natural compound, as a promising alternative in antidiabetic therapy, potentially acting through various pathways, including the inhibition of the FOXO1 transcription factor in the gluconeogenesis pathway. However, the specific mechanism by which berberine interacts with FOXO1 remains unclear, and research in this area is relatively limited. Therefore, this study aims to determine the stability of berberine structure with FOXO1 based on RMSD, RMSF, binding energy, and trajectory analysis to determine the potential of berberine to inhibit the gluconeogenesis pathway. This research was conducted by in silico method with molecular docking using AutoDock4.2 and molecular dynamics study using Amber20, then visualized by VMD. METHODS: Docking between ligand and FOXO1 receptor was carried out with Autodock4.2. For molecular dynamics simulations, the force fields of DNA.OL15, protein.ff14SB, gaff2, and tip3p were used.


Asunto(s)
Berberina , Proteína Forkhead Box O1 , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Berberina/química , Berberina/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/química , Humanos , Unión Proteica , Sitios de Unión , Ligandos
3.
J Ovarian Res ; 17(1): 136, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956672

RESUMEN

INTRODUCTION: This study investigated changes in plasma microbial-derived extracellular vesicles (EVs) in patients with polycystic ovary syndrome and insulin resistance (PCOS-IR) before and after metformin treatment, and aimed to identify bacterial taxa within EVs that were biologically and statistically significant for diagnosis and treatment. METHODS: The case-control study was conducted at Xiamen Chang Gung Hospital, Hua Qiao University. Plasma samples were collected from five PCOS-IR patients of childbearing age before and after 3 months of metformin treatment, and the samples were sequenced. The diversity and taxonomic composition of different microbial communities were analyzed through full-length 16 S glycosomal RNA gene sequencing. RESULTS: After metformin treatment, fasting plasma glucose levels and IR degree of PCOS-IR patients were significantly improved. The 16 S analysis of plasma EVs from metformin-treated patients showed higher microbial diversity. There were significant differences in EVs derived from some environmental bacteria before and after metformin treatment. Notably, Streptococcus salivarius was more abundant in the metformin-treated group, suggesting it may be a potential probiotic. DISCUSSION: The study demonstrated changes in the microbial composition of plasma EVs before and after metformin treatment. The findings may offer new insights into the pathogenesis of PCOS-IR and provide new avenues for research.


Asunto(s)
Vesículas Extracelulares , Resistencia a la Insulina , Metformina , Síndrome del Ovario Poliquístico , Humanos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/microbiología , Síndrome del Ovario Poliquístico/sangre , Metformina/farmacología , Metformina/uso terapéutico , Femenino , Vesículas Extracelulares/metabolismo , Adulto , Estudios de Casos y Controles , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Adulto Joven
4.
An Acad Bras Cienc ; 96(3): e20230604, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39016352

RESUMEN

This study aims to evaluate the phytochemical properties of Bauhinia holophylla (Bong.) Steud leaf extract, and their impact on maternal reproductive and fetal development in diabetic rats. For this, adult female Wistar rats (100 days of life) received streptozotocin (40 mg/Kg, intraperitoneal) for induction of diabetes, were mated and distributed into four groups: Nondiabetic; Nondiabetic given B. holophylla; Diabetic; and Diabetic given B. holophylla. The plant extract was given by gavage at increasing doses: 200, 400, and 800 mg/Kg. At day 21 of pregnancy, liver and blood samples were obtained for oxidative parameters and biochemical analysis, respectively. The uterus was removed for maternal-fetal outcomes. Phytochemical analysis showed a high content of phenolic components and biogenic amines. B. holophylla extract did not alter the glycemic levels but improved the lipid profile in diabetic animals. Besides that, the number of live fetuses and maternal weight gain were decreased in Diabetic group, and were not observed in animals treated. The group Diabetic treated presented a higher percentage of fetuses classified as adequate for gestational age compared to the Diabetic group. However, the treatment with plant extract caused embryo losses, fetal growth restriction, and teratogenicity in nondiabetic rats. Thus, the indiscriminate consumption requires carefulness.


Asunto(s)
Bauhinia , Diabetes Mellitus Experimental , Hipoglucemiantes , Extractos Vegetales , Ratas Wistar , Animales , Femenino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Bauhinia/química , Embarazo , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Ratas , Fitoquímicos/farmacología , Fitoquímicos/análisis , Desarrollo Fetal/efectos de los fármacos , Estreptozocina , Glucemia/efectos de los fármacos , Glucemia/análisis , Hojas de la Planta/química
5.
J Med Food ; 27(7): 627-635, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38976324

RESUMEN

Type 2 diabetes (T2D) is a serious health problem, and its prevalence is expected to increase worldwide in the years ahead. Cruciferous vegetables such as Brassica oleracea var. capitata L. (green cabbage) and Raphanus sativus L. (radish) have therapeutic properties that can be used to support the treatment of T2D. This study evaluated the effect of B. oleracea (BAE) and R. sativus (RAE) aqueous extracts on zoometric parameters, glycemic profiles, and pancreas and liver in prediabetic rats induced by a high-sucrose diet (HSD). BAE and RAE were administered to male HSD-induced Wistar rats (n = 35) at 5 and 10 mg/kg doses for 5 weeks. Zoometric and biochemical changes were measured, and then the pancreas and liver histological preparations were analyzed to observe the protective effect. BAE decreased feed intake and weight gain. Both extracts decreased fasting glucose and insulin levels compared with control (not treated), although not significantly (P > .05). The extracts significantly (P < .05) reduced homeostatic model assessment for insulin resistance, homeostasis model assessment of ß-cell function, and glucose intolerance, similar to metformin control. In addition, minor damage occurred in the pancreas and liver. The results indicated that BAE and RAE decreased weight gain, improved glucose regulation, and protected the pancreas and liver in HSD rats. Therefore, they have multiple therapeutical properties and may be helpful in the prevention of T2D.


Asunto(s)
Glucemia , Brassica , Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Insulina , Hígado , Extractos Vegetales , Estado Prediabético , Raphanus , Ratas Wistar , Animales , Brassica/química , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Ratas , Estado Prediabético/tratamiento farmacológico , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Raphanus/química , Insulina/sangre , Insulina/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Humanos , Resistencia a la Insulina , Modelos Animales de Enfermedad
6.
J Agric Food Chem ; 72(28): 15704-15714, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38976778

RESUMEN

Pueraria lobata (Willd.) Ohwi, known as kudzu and used as a "longevity powder" in China, is an edible plant which is rich in flavonoids and believed to be useful for regulating blood sugar and treating diabetes, although the modes of action are unknown. Here, a total of 53 flavonoids including 6 novel compounds were isolated from kudzu using multidimensional preparative liquid chromatography. The flavonoid components were found to lower blood sugar levels, promote urine sugar levels in mice, and reduce the urine volume. Molecular docking and in vitro assays suggested that the antidiabetic effect of kudzu was attributed to at least three targets: sodium-dependent glucose transporter 2 (SGLT2), protein tyrosine phosphatase-1B (PTP1B), and alpha-glucosidase (AG). This study suggests a possible mechanism for the antidiabetic effect that may involve the synergistic action of multiple active compounds from kudzu.


Asunto(s)
Flavonoides , Hipoglucemiantes , Extractos Vegetales , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Pueraria , Pueraria/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Flavonoides/química , Animales , Ratones , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Simulación del Acoplamiento Molecular , Masculino , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Glucemia/metabolismo , Plantas Comestibles/química
7.
PeerJ ; 12: e17681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011385

RESUMEN

Background: This research aims to explore the phenolics identification, phenolics quantification, antioxidant and potential biofunctional properties of lesser-known Thai fruits and their potency to treat type 2 diabetes mellitus (T2DM). Including, Antidesma puncticulatum, Dillenia indica, Diospyros decandra, Elaeagnus latifolia, Flacourtia indica, Garcinia dulcis, Lepisanthes fruticose, Mimusops elengi, Muntingia calabura, Phyllanthus reticulatus, Streblus asper, Syzygium cumini, Syzygium malaccense, Willughbeia edulis and Schleichera oleosa were analyzed by their phenolic and flavonoid content. These fruits have received limited scientific attention, prompting an investigation into their health benefits, particularly their relevance to diabetes management. Methods: The study utilized methanolic crude extracts to measure phenolic and flavonoid levels. Additionally, UHPLC-DAD was utilized to identify and quantify phenolics. The methanolic extracts were assessed for antioxidant and antidiabetic abilities, including α-glucosidase and α-amylase inhibition. Results and Conclusion: The study highlighted S. cumini as a rich source of phenolic (980.42 ± 0.89 mg GAE/g and flavonoid (3.55 ± 0.02 mg QE/g) compounds with strong antioxidant activity (IC50 by DPPH; 3.00 ± 0.01 µg/ml, IC50 by ABTS; 40 ± 0.01 µg/ml, FRAP; 898.63 ± 0.02 mg TE/ml). Additionally, S. cumini exhibited promising antidiabetic effects (S. cumini IC50; 0.13 ± 0.01 mg/ml for α-glucosidase inhibition, 3.91 ± 0.05 mg/ml for α-amylase inhibition), compared to Acarbose (IC50; 0.86 ± 0.01 mg/ml for α-glucosidase inhibition, 0.39 ± 0.05 mg/ml for α-amylase inhibition). Remarkably, compounds like catechins, gallic acid, kaempferol, and ellagic acid were identified in various quantities.This study suggests that these fruits, packed with phenolics, hold the potential to be included in an anti-diabetic diet and even pharmaceutical applications due to their health-promoting properties.


Asunto(s)
Antioxidantes , Frutas , Hipoglucemiantes , Fenoles , Extractos Vegetales , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Antioxidantes/farmacología , Antioxidantes/química , Frutas/química , Tailandia , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fenoles/análisis , Fenoles/farmacología , Flavonoides/análisis , Flavonoides/farmacología , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/análisis , Diabetes Mellitus Tipo 2/tratamiento farmacológico , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Pueblos del Sudeste Asiático
8.
J Dermatolog Treat ; 35(1): 2375580, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39013549

RESUMEN

Psoriasis is a prevalent skin disease affecting approximately 1%-3% of the population and imposes significant medical, social and economic burdens. Psoriasis involves multiple organs and is often complicated with obesity, diabetes, dyslipidemia, and hypertension. Because of the benefits of lipid-lowering agents and antidiabetic medications for psoriasis, metabolic abnormalities possibly play a pathogenic role in psoriasis.This review focuses on the impacts of a variety of metabolic disorders on psoriasis and the underlying mechanisms.In psoriasis, enhanced glycolysis, glutamine metabolism and altered fatty acid composition in the psoriatic lesion and plasma result in the excessive proliferation of keratinocytes and secretion of inflammatory cytokines. Altered metabolism is associated with the activation of MTORC signaling pathway and transcription factors such as HIF and S6K1. Therefore, MTORC1 can be a target for the treatment of psoriasis. Additionally, there are diabetes drugs and lipid-lowering drugs including TZDs, GLP-1 RAs, Metformin, statins and fibrates, which improve both metabolic levels and psoriasis symptoms.


Asunto(s)
Psoriasis , Psoriasis/tratamiento farmacológico , Psoriasis/metabolismo , Psoriasis/complicaciones , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Transducción de Señal/efectos de los fármacos
9.
Eur J Med Chem ; 275: 116632, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959726

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) is a pivotal receptor involved in blood glucose regulation and influencing feeding behavior. It has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. Peptide GLP-1 receptor agonists (GLP-1RAs) have achieved tremendous success in the market, driving the vigorous development of small molecule GLP-1RAs. Currently, several small molecules have entered the clinical research stage. Additionally, recent discoveries of GLP-1R positive allosteric modulators (PAMs) are also unveiling new regulatory patterns and treatment methods. This article reviews the structure and functional mechanisms of GLP-1R, recent reports on small molecule GLP-1RAs and PAMs, as well as the optimization process. Furthermore, it combines computer simulations to analyze structure-activity relationships (SAR) studies, providing a foundation for exploring new strategies for designing small molecule GLP-1RAs.


Asunto(s)
Diseño de Fármacos , Receptor del Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Relación Estructura-Actividad , Sitios de Unión , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Estructura Molecular , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química
10.
Sci Rep ; 14(1): 16167, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003280

RESUMEN

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia. It involves disturbances in carbohydrate, fat, and protein metabolism due to defects in insulin secretion, insulin action, or both. Novel therapeutic approaches are continuously being explored to enhance metabolic control and prevent complications associated with the disease. This study investigates the therapeutic potential of kaempherol-3-rhamnoside, a flavonoid, in managing diabetes by modulating the AMP-activated protein kinase (AMPK) pathway and improving metabolic enzyme activities in streptozotocin (STZ) -induced diabetic mice. Diabetic mice were treated with varying doses of kaempherol-3-rhamnoside and/or insulin over a 28-day period. Glycolytic and gluconeogenesis enzyme activities in the liver, fasting blood glucose levels, serum insulin levels, lipid profiles and oxidative stress markers were assessed. Treatment with kaempherol-3-rhamnoside significantly improved glycolytic enzyme activities, reduced fasting blood glucose, and enhanced insulin levels compared to diabetic controls. The compound also normalized lipid profiles and reduced oxidative stress in the liver, suggesting its potential in reversing diabetic dyslipidemia and oxidative damage. Furthermore, kaempherol-3-rhamnoside activated the AMPK pathway, indicating a mechanism through which it could exert its effects. Kaempherol-3-rhamnoside exhibits promising antidiabetic properties, potentially through AMPK pathway activation and metabolic enzyme modulation. These findings support its potential use as an adjunct therapy for diabetes management. Further clinical studies are warranted to validate these results in human subjects.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Experimental , Hígado , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratones , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Insulina/metabolismo , Insulina/sangre , Estreptozocina , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
11.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000356

RESUMEN

The glucose-lowering drug metformin alters the composition of the gut microbiome in patients with type 2 diabetes mellitus (T2DM) and other diseases. Nevertheless, most studies on the effects of this drug have relied on fecal samples, which provide limited insights into its local effects on different regions of the gut. Using a high-fat diet (HFD)-induced mouse model of T2DM, we characterize the spatial variability of the gut microbiome and associated metabolome in response to metformin treatment. Four parts of the gut as well as the feces were analyzed using full-length sequencing of 16S rRNA genes and targeted metabolomic analyses, thus providing insights into the composition of the microbiome and associated metabolome. We found significant differences in the gut microbiome and metabolome in each gut region, with the most pronounced effects on the microbiomes of the cecum, colon, and feces, with a significant increase in a variety of species belonging to Akkermansiaceae, Lactobacillaceae, Tannerellaceae, and Erysipelotrichaceae. Metabolomics analysis showed that metformin had the most pronounced effect on microbiome-derived metabolites in the cecum and colon, with several metabolites, such as carbohydrates, fatty acids, and benzenoids, having elevated levels in the colon; however, most of the metabolites were reduced in the cecum. Thus, a wide range of beneficial metabolites derived from the microbiome after metformin treatment were produced mainly in the colon. Our study highlights the importance of considering gut regions when understanding the effects of metformin on the gut microbiome and metabolome.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Metaboloma , Metformina , Metformina/farmacología , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones , Metaboloma/efectos de los fármacos , Masculino , Heces/microbiología , ARN Ribosómico 16S/genética , Hipoglucemiantes/farmacología , Ratones Endogámicos C57BL , Ciego/microbiología , Ciego/metabolismo , Ciego/efectos de los fármacos , Colon/metabolismo , Colon/efectos de los fármacos , Colon/microbiología , Metabolómica/métodos
12.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000541

RESUMEN

Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglucemia , Hiperlipidemias , Metabolismo de los Lípidos , Hígado , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Polisacáridos Fúngicos/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Termitomyces/metabolismo , Glucemia/metabolismo , Polisacáridos/farmacología , Ratones Endogámicos C57BL
13.
World J Gastroenterol ; 30(23): 2964-2980, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38946874

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a hepatic manifestation of the metabolic syndrome. It is one of the most common liver diseases worldwide and shows increasing prevalence rates in most countries. MAFLD is a progressive disease with the most severe cases presenting as advanced fibrosis or cirrhosis with an increased risk of hepatocellular carcinoma. Gut microbiota play a significant role in the pathogenesis and progression of MAFLD by disrupting the gut-liver axis. The mechanisms involved in maintaining gut-liver axis homeostasis are complex. One critical aspect involves preserving an appropriate intestinal barrier permeability and levels of intestinal lumen metabolites to ensure gut-liver axis functionality. An increase in intestinal barrier permeability induces metabolic endotoxemia that leads to steatohepatitis. Moreover, alterations in the absorption of various metabolites can affect liver metabolism and induce liver steatosis and fibrosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are a class of drugs developed for the treatment of type 2 diabetes mellitus. They are also commonly used to combat obesity and have been proven to be effective in reversing hepatic steatosis. The mechanisms reported to be involved in this effect include an improved regulation of glycemia, reduced lipid synthesis, ß-oxidation of free fatty acids, and induction of autophagy in hepatic cells. Recently, multiple peptide receptor agonists have been introduced and are expected to increase the effectiveness of the treatment. A modulation of gut microbiota has also been observed with the use of these drugs that may contribute to the amelioration of MAFLD. This review presents the current understanding of the role of the gut-liver axis in the development of MAFLD and use of members of the GLP-1 RA family as pleiotropic agents in the treatment of MAFLD.


Asunto(s)
Microbioma Gastrointestinal , Receptor del Péptido 1 Similar al Glucagón , Hígado , Humanos , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Animales , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Incretinas/uso terapéutico , Incretinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Agonistas Receptor de Péptidos Similares al Glucagón
14.
Molecules ; 29(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38998923

RESUMEN

Elderberry (Sambucus nigra L.) is a widespread deciduous shrub, of which the fruits (elderberries) are used in the food industry to produce different types of dietary supplement products. These berries have been found to show multiple bioactivities, including antidiabetic, anti-infective, antineoplastic, anti-obesity, and antioxidant activities. An elderberry extract product, Sambucol®, has also been used clinically for the treatment of viral respiratory infections. As the major components, phenolic compounds, such as simple phenolic acids, anthocyanins and other flavonoids, and tannins, show promising pharmacological effects that could account for the bioactivities observed for elderberries. Based on these components, salicylic acid and its acetate derivative, aspirin, have long been used for the treatment of different disorders. Dapagliflozin, an FDA-approved antidiabetic drug, has been developed based on the conclusions obtained from a structure-activity relationship study for a simple hydrolyzable tannin, ß-pentagalloylglucoside (ß-PGG). Thus, the present review focuses on the development of therapeutic agents from elderberries and their small-molecule secondary metabolites. It is hoped that this contribution will support future investigations on elderberries.


Asunto(s)
Frutas , Extractos Vegetales , Sambucus nigra , Sambucus nigra/química , Humanos , Frutas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Animales , Antiinfecciosos/farmacología , Antiinfecciosos/química
15.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998996

RESUMEN

Diabetes mellitus is a severe endocrine disease that affects more and more people every year. Modern medical chemistry sets itself the task of finding effective and safe drugs against diabetes. This review provides an overview of potential antidiabetic drugs based on three heterocyclic compounds, namely morpholine, piperazine, and piperidine. Studies have shown that compounds containing their moieties can be quite effective in vitro and in vivo for the treatment of diabetes and its consequences.


Asunto(s)
Hipoglucemiantes , Morfolinas , Piperazina , Piperidinas , Humanos , Piperidinas/química , Piperidinas/farmacología , Piperidinas/uso terapéutico , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Morfolinas/química , Morfolinas/farmacología , Morfolinas/uso terapéutico , Piperazina/química , Piperazina/farmacología , Animales , Piperazinas/química , Piperazinas/farmacología , Piperazinas/síntesis química , Piperazinas/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Relación Estructura-Actividad
16.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998999

RESUMEN

Phellinus is a precious perennial medicinal fungus. Its polysaccharides are important bioactive components, and their chemical composition is complex. The polysaccharides are mainly extracted from the fruiting body and mycelium. The yield of the polysaccharides is dependent on the extraction method. They have many pharmacological activities, such as antitumor, immunomodulatory, antioxidant, hypoglycemic, anti-inflammatory, etc. They are also reported to show minor toxic and side effects. Many studies have reported the anticancer activity of Phellinus polysaccharides. This review paper provides a comprehensive examination of the current methodologies for the extraction and purification of Phellinus polysaccharides. Additionally, it delves into the structural characteristics, pharmacological activities, and mechanisms of action of these polysaccharides. The primary aim of this review is to offer a valuable resource for researchers, facilitating further studies on Phellinus polysaccharides and their potential applications.


Asunto(s)
Polisacáridos Fúngicos , Humanos , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/aislamiento & purificación , Basidiomycota/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Animales , Phellinus/química
17.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999001

RESUMEN

The root of Adenophora tetraphylla (Thunb.) Fisch. is a common Chinese materia medica and the polysaccharides which have been isolated from the plant are important active components for medicinal purposes. The objective of the current study was to optimize the extraction parameters and evaluate the glucose consumption activity for Adenophorae root polysaccharides (ARPs). The optimization of ARP extraction was evaluated with preliminary experiments and using response surface methodology (RSM). The conditions investigated were 35-45 °C extraction temperature, 20-30 (v/w) water-to-solid ratio, and 3-5 h extraction time. The antidiabetic effects of ARPs for the glucose consumption activity were evaluated in HepG2 cells. The statistical analyses of the experiments indicated that temperature, water-to-solid ratio, and extraction time significantly affected ARP yield (p < 0.01). The correlation analysis revealed that the experimental data were well-aligned with a quadratic polynomial model, as evidenced by the mathematical regression model's fit. The optimal conditions for maximum ARP yield were 45 °C extraction temperature and 28.47:1 (mL/g) water-to-solid ratio with a 4.60 h extraction time. Extracts from these conditions showed significant activity of promoting cell proliferation from 11.26% (p < 0.001) to 32.47% (p < 0.001) at a dose of 50 µg/mL to 800 µg/mL and increasing glucose consumption to 75.86% (p < 0.001) at 250 µg/mL on HepG2 cells. This study provides a sustainable alternative for the industry since it allowed simplified handling and a specific quantity of ARPs. Furthermore, ARPs might directly stimulate the glucose consumption in the liver and showed no cytotoxicity; therefore, ARPs probably could be taken as a potential natural source of antidiabetic materials.


Asunto(s)
Glucosa , Raíces de Plantas , Polisacáridos , Agua , Humanos , Células Hep G2 , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Glucosa/metabolismo , Raíces de Plantas/química , Agua/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Solubilidad , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación
18.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999025

RESUMEN

Enzymatic fructosylation has emerged as a strategy to enhance the hydrophilicity of polyphenols by introducing sugar moieties, leading to the development of phenolic glycosides, which exhibit improved solubility, stability, and biological activities compared to their non-glycosylated forms. This study provides a detailed analysis of the interactions between five phenolic fructosides (4MFPh, MFF, DFPh, MFPh, and MFPu) and twelve proteins (11ß-HS1, CRP, DPPIV, IRS, PPAR-γ, GK, AMPK, IR, GFAT, IL-1ß, IL-6, and TNF-α) associated with the pathogenesis of T2DM. The strongest interactions were observed for phlorizin fructosides (DFPh) with IR (-16.8 kcal/mol) and GFAT (-16.9 kcal/mol). MFPh with 11ß-HS1 (-13.99 kcal/mol) and GFAT (-12.55 kcal/mol). 4MFPh with GFAT (-11.79 kcal/mol) and IR (-12.11 kcal/mol). MFF with AMPK (-9.10 kcal/mol) and PPAR- γ (-9.71 kcal/mol), followed by puerarin and ferulic acid monofructosides. The fructoside group showed lower free energy binding values than the controls, metformin and sitagliptin. Hydrogen bonding (HB) was identified as the primary interaction mechanism, with specific polar amino acids such as serin, glutamine, glutamic acid, threonine, aspartic acid, and lysine identified as key contributors. ADMET results indicated favorable absorption and distribution characteristics of the fructosides. These findings provide valuable information for further exploration of phenolic fructosides as potential therapeutic agents for T2DM.


Asunto(s)
Hipoglucemiantes , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Fenoles/química , Fenoles/farmacología , Humanos , Simulación del Acoplamiento Molecular , Isoflavonas/química , Isoflavonas/metabolismo , Isoflavonas/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Florizina/química , Florizina/farmacología , Fructosa/química , Fructosa/metabolismo , Glicosilación , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo
19.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999040

RESUMEN

The Jatropha curcas cake, a protein-rich by-product of biofuel production, was the subject of our study. We identified and quantified the ACE inhibitory, antioxidant, and antidiabetic activities of bioactive peptides from a Jatropha curcas L. var Sevangel protein isolate. The protein isolate (20.44% recovered dry matter, 38.75% protein content, and 34.98% protein yield) was subjected to two enzyme systems for hydrolysis: alcalase (PEJA) and flavourzyme (PEJF), recording every 2 h until 8 h had passed. The highest proteolytic capacity in PEJA was reached at 2 h (4041.38 ± 50.89), while in PEJF, it was reached at 6 h (3435.16 ± 59.31). Gel electrophoresis of the PEJA and PEJF samples showed bands corresponding to peptides smaller than 10 kDa in both systems studied. The highest values for the antioxidant capacity (DPPH) were obtained at 4 h for PEJA (56.17 ± 1.14), while they were obtained at 6 h for PEJF (26.64 ± 0.52). The highest values for the antihypertensive capacity were recorded at 6 h (86.46 ± 1.85) in PEJF. The highest antidiabetic capacity obtained for PEJA and PEJF was observed at 6 h, 68.86 ± 8.27 and 52.75 ± 2.23, respectively. This is the first report of their antidiabetic activity. Notably, alcalase hydrolysate outperformed flavourzyme hydrolysate and the cereals reported in other studies, confirming its better multi-bioactivity.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Antioxidantes , Hipoglucemiantes , Jatropha , Proteínas de Plantas , Jatropha/química , Hidrólisis , Antioxidantes/química , Antioxidantes/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Subtilisinas/metabolismo , Subtilisinas/química , Endopeptidasas
20.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999038

RESUMEN

This study focuses on synthesizing a new series of isoxazolinyl-1,2,3-triazolyl-[1,4]-benzoxazin-3-one derivatives 5a-5o. The synthesis method involves a double 1,3-dipolar cycloaddition reaction following a "click chemistry" approach, starting from the respective [1,4]-benzoxazin-3-ones. Additionally, the study aims to evaluate the antidiabetic potential of these newly synthesized compounds through in silico methods. This synthesis approach allows for the combination of three heterocyclic components: [1,4]-benzoxazin-3-one, 1,2,3-triazole, and isoxazoline, known for their diverse biological activities. The synthesis procedure involved a two-step process. Firstly, a 1,3-dipolar cycloaddition reaction was performed involving the propargylic moiety linked to the [1,4]-benzoxazin-3-one and the allylic azide. Secondly, a second cycloaddition reaction was conducted using the product from the first step, containing the allylic part and an oxime. The synthesized compounds were thoroughly characterized using spectroscopic methods, including 1H NMR, 13C NMR, DEPT-135, and IR. This molecular docking method revealed a promising antidiabetic potential of the synthesized compounds, particularly against two key diabetes-related enzymes: pancreatic α-amylase, with the two synthetic molecules 5a and 5o showing the highest affinity values of 9.2 and 9.1 kcal/mol, respectively, and intestinal α-glucosidase, with the two synthetic molecules 5n and 5e showing the highest affinity values of -9.9 and -9.6 kcal/mol, respectively. Indeed, the synthesized compounds have shown significant potential as antidiabetic agents, as indicated by molecular docking studies against the enzymes α-amylase and α-glucosidase. Additionally, ADME analyses have revealed that all the synthetic compounds examined in our study demonstrate high intestinal absorption, meet Lipinski's criteria, and fall within the required range for oral bioavailability, indicating their potential suitability for oral drug development.


Asunto(s)
Benzoxazinas , Inhibidores de Glicósido Hidrolasas , Simulación del Acoplamiento Molecular , alfa-Glucosidasas , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/síntesis química , Benzoxazinas/química , Benzoxazinas/farmacología , Benzoxazinas/síntesis química , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/metabolismo , Reacción de Cicloadición , Estructura Molecular , Simulación por Computador , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , Humanos , Relación Estructura-Actividad , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Amilasas/química , Intestinos/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...