RESUMEN
OBJECTIVE: Short-term neurectomy-induced disuse (SN) has been shown to restore load responses in aged mice. We examined whether this restoration was further enhanced in both cortical and trabecular bone by simply extending the SN. METHODS: Following load:strain calibration, tibiae in female C57BL/J6 mice at 8, 14 and 20 weeks and 18 months (n=8/group) were loaded and bone changes measured. Effects of long-term SN examined in twenty-six 18 months-old mice, neurectomised for 5 or 100 days with/without subsequent loading. Cortical and trabecular responses were measured histomorphometrically or by micro-computed tomography. RESULTS: Loading increased new cortical bone formation, elevating cross-sectional area in 8, 14 and 20 week-old (p ⟨0.05), but not 18 month-old aged mice. Histomorphometry showed that short-term SN reinstated load-responses in aged mice, with significant 33% and 117% increases in bone accrual at 47% and 37%, but not 27% of tibia length. Cortical responses to loading was heightened and widespread, now evident at all locations, following prolonged SN (108, 167 and 98% at 47, 37 and 27% of tibial length, respectively). In contrast, loading failed to modify trabecular bone mass or architecture. CONCLUSIONS: Mechanoadaptation become deficient with ageing and prolonging disuse amplifies this response in cortical but not trabecular bone.
Asunto(s)
Adaptación Fisiológica/fisiología , Hueso Esponjoso/fisiopatología , Hueso Cortical/fisiopatología , Osteogénesis/fisiología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Desnervación Muscular , Osteoporosis/fisiopatología , Estrés MecánicoRESUMEN
OBJECTIVE:: To compare ultrasound propagation velocity with densitometry in the diaphyseal compact cortical bone of whole sheep metatarsals. METHODS:: The transverse ultrasound velocity and bone mineral density of 5-cm-long diaphyseal bone segments were first measured. The bone segments were then divided into four groups of 15 segments each and demineralized in an aqueous 0.5 N hydrochloric acid solution for 6, 12, 24 or 36 hours. All measurements were repeated after demineralization for each time duration and the values measured before and after demineralization were compared. RESULTS:: Ultrasound velocity and bone mineral density decreased with demineralization time, and most differences in the pre- and post-demineralization values within each group and between groups were significant: A moderate correlation coefficient (r=0.75956) together with a moderate agreement was determined between both post-demineralization parameters, detected by the Bland-Altman method. CONCLUSION:: We conclude that both ultrasound velocity and bone mineral density decrease as a result of demineralization, thus indicating that bone mineral content is of great importance for maintaining the acoustic parameters of cortical bone, as observed for cancellous bone. Ultrasound velocity can be used to evaluate both compact cortical bone quality and bone mineral density.
Asunto(s)
Técnica de Desmineralización de Huesos , Hueso Cortical/diagnóstico por imagen , Densitometría , Osteoporosis/diagnóstico por imagen , Ultrasonografía/métodos , Animales , Densidad Ósea , Hueso Cortical/fisiopatología , Huesos Metatarsianos/diagnóstico por imagen , Huesos Metatarsianos/fisiopatología , Osteoporosis/fisiopatología , Ovinos , Factores de TiempoRESUMEN
OBJECTIVE: To compare ultrasound propagation velocity with densitometry in the diaphyseal compact cortical bone of whole sheep metatarsals. METHODS: The transverse ultrasound velocity and bone mineral density of 5-cm-long diaphyseal bone segments were first measured. The bone segments were then divided into four groups of 15 segments each and demineralized in an aqueous 0.5 N hydrochloric acid solution for 6, 12, 24 or 36 hours. All measurements were repeated after demineralization for each time duration and the values measured before and after demineralization were compared. RESULTS: Ultrasound velocity and bone mineral density decreased with demineralization time, and most differences in the pre- and post-demineralization values within each group and between groups were significant: A moderate correlation coefficient (r=0.75956) together with a moderate agreement was determined between both post-demineralization parameters, detected by the Bland-Altman method. CONCLUSION: We conclude that both ultrasound velocity and bone mineral density decrease as a result of demineralization, thus indicating that bone mineral content is of great importance for maintaining the acoustic parameters of cortical bone, as observed for cancellous bone. Ultrasound velocity can be used to evaluate both compact cortical bone quality and bone mineral density.
Asunto(s)
Animales , Osteoporosis/diagnóstico por imagen , Ultrasonografía/métodos , Técnica de Desmineralización de Huesos , Densitometría , Hueso Cortical/diagnóstico por imagen , Osteoporosis/fisiopatología , Factores de Tiempo , Ovinos , Huesos Metatarsianos/fisiopatología , Huesos Metatarsianos/diagnóstico por imagen , Densidad Ósea , Hueso Cortical/fisiopatologíaRESUMEN
Although it is recognized that cortical bone contributes significantly to the mechanical strength of the skeleton, little is known about this compartment from bone biopsy studies, particularly in CKD patients. In addition, there is no prospective data on the effects of CKD-MBD therapy on cortical porosity (Ct.Po). This is a post hoc analysis on data from a randomized controlled trial on the effects of different phosphate binders on bone remodelling. Therapy was adjusted according to the first biopsy, and included sevelamer or calcium acetate, calcitriol and changes in calcium dialysate concentration. We measured Ct.Po at baseline and one year after. Fifty-two patients (46±13years old, 67% women and 60% white) were enrolled. Ct.Po was already high at baseline in 85% of patients [30% (17, 46)] and correlated with PTH (p=0.001). Low bone turnover was seen in 28 patients (54.9%). After one-year treatment, PTH increased in patients with low turnover, as intended. However, increased Ct.Po was seen in 49 patients (94%). This increase correlated with the delta of phosphate (p=0.015) and the delta of PTH (p=0.03); it was also higher among non-white patients than in white patients (p=0.039). The risk of increase in Ct.Po was 4.5 higher among non-white patients. Adjusted multiple regression analysis showed that the delta of Ct.Po was dependent on delta PTH and race (r(2)=0.193). We concluded that in an attempt to increase bone turnover, the increase in PTH levels might be associated with higher cortical porosity, particularly in non-white patients. Whether this finding leads to a high risk of fracture deserves further investigation.