Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 287: 120125, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34762904

RESUMEN

AIMS: 3-n-Butylphthalide (NBP) is widely used for the treatment of cerebral ischaemic stroke but can causeliver injury in clinical practice. This study aims to elucidate the underlying mechanisms and propose potential preventive strategies. MAIN METHODS: NBP and its four major metabolites, 3-hydroxy-NBP (3-OH-NBP), 10-hydroxy-NBP, 10-keto-NBP and NBP-11-oic acid, were synthesized and evaluated in primary human or rat hepatocytes (PHHs, PRHs). NBP-related substances or amino acid adducts were identified and semi-quantitated by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The target proteins and binding sites were identified by shotgun proteomics based on peptide mass fingerprinting coupled with tandem mass spectrometry and verified by molecular docking. KEY FINDINGS: The toxicity of NBP and its four major metabolites were compared in both PHHs and PRHs, and 3-OH-NBP was found to be the most toxic metabolite. 3-OH-NBP induced remarkable cell death and oxidative stresses in hepatocytes, which correlated well with the levels of glutathione and N-acetylcysteine adducts (3-GSH-NBP and 3-NAC-NBP) in cell supernatants. Additionally, 3-OH-NBP covalently conjugated with intracellular Cys, Lys and Ser, with preferable binding to Cys sites at Myh9 Cys1380, Prdx4 Cys53, Vdac2 Cys48 and Vdac3 Cys36. Furthermore, we found that CYP3A4 induction by rifampicin augmented NBP-induced cell toxicity and supplementing with GSH or NAC alleviated the oxidative stresses and reactive metabolites caused by 3-OH-NBP. SIGNIFICANCE: Our work suggests that glutathione depletion, mitochondrial injury and covalent protein modification are the main causes of NBP-induced hepatotoxicity, which may be prevented by exogenous GSH or NAC supplementation and avoiding concomitant use of CYP3A4 inducers.


Asunto(s)
Acetilcisteína/metabolismo , Benzofuranos/metabolismo , Benzofuranos/toxicidad , Glutatión/metabolismo , Hepatocitos/metabolismo , Animales , Sitios de Unión/fisiología , Células Cultivadas , Inductores del Citocromo P-450 CYP3A/metabolismo , Inductores del Citocromo P-450 CYP3A/toxicidad , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Humanos , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley
2.
Eur J Drug Metab Pharmacokinet ; 46(6): 779-791, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34495458

RESUMEN

BACKGROUND AND OBJECTIVE: Entrectinib is a selective inhibitor of ROS1/TRK/ALK kinases, recently approved for oncology indications. Entrectinib is predominantly cleared by cytochrome P450 (CYP) 3A4, and modulation of CYP3A enzyme activity profoundly alters the pharmacokinetics of both entrectinib and its active metabolite M5. We describe development of a combined physiologically based pharmacokinetic (PBPK) model for entrectinib and M5 to support dosing recommendations when entrectinib is co-administered with CYP3A4 inhibitors or inducers. METHODS: A PBPK model was established in Simcyp® Simulator. The initial model based on in vitro-in vivo extrapolation was refined using sensitivity analysis and non-linear mixed effects modeling to optimize parameter estimates and to improve model fit to data from a clinical drug-drug interaction study with the strong CYP3A4 inhibitor, itraconazole. The model was subsequently qualified against clinical data, and the final qualified model used to simulate the effects of moderate to strong CYP3A4 inhibitors and inducers on entrectinib and M5 pharmacokinetics. RESULTS: The final model showed good predictive performance for entrectinib and M5, meeting commonly used predictive performance acceptance criteria in each case. The model predicted that co-administration of various moderate CYP3A4 inhibitors (verapamil, erythromycin, clarithromycin, fluconazole, and diltiazem) would result in an average increase in entrectinib exposure between 2.2- and 3.1-fold, with corresponding average increases for M5 of approximately 2-fold. Co-administration of moderate CYP3A4 inducers (efavirenz, carbamazepine, phenytoin) was predicted to result in an average decrease in entrectinib exposure between 45 and 79%, with corresponding average decreases for M5 of approximately 50%. CONCLUSIONS: The model simulations were used to derive dosing recommendations for co-administering entrectinib with CYP3A4 inhibitors or inducers. PBPK modeling has been used in lieu of clinical studies to enable regulatory decision-making.


Asunto(s)
Benzamidas/metabolismo , Benzamidas/farmacocinética , Indazoles/metabolismo , Indazoles/farmacocinética , Simulación por Computador , Inductores del Citocromo P-450 CYP3A/metabolismo , Inductores del Citocromo P-450 CYP3A/farmacocinética , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Interacciones Farmacológicas/fisiología , Humanos
3.
Acta Pharmacol Sin ; 41(10): 1366-1376, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32235864

RESUMEN

Alflutinib (AST2818) is a third-generation epidermal growth factor receptor (EGFR) inhibitor that inhibits both EGFR-sensitive mutations and T790M mutations. Previous study has shown that after multiple dosages, alflutinib exhibits nonlinear pharmacokinetics and displays a time- and dose-dependent increase in the apparent clearance, probably due to its self-induction of cytochrome P450 (CYP) enzyme. In this study, we investigated the CYP isozymes involved in the metabolism of alflutinib and evaluated the enzyme inhibition and induction potential of alflutinib and its metabolites. The data showed that alflutinib in human liver microsomes (HLMs) was metabolized mainly by CYP3A4, which could catalyze the formation of AST5902. Alflutinib did not inhibit CYP isozymes in HLMs but could induce CYP3A4 in human hepatocytes. Rifampin is a known strong CYP3A4 inducer and is recommended by the FDA as a positive control in the CYP3A4 induction assay. We found that the induction potential of alflutinib was comparable to that of rifampin. The Emax of CYP3A4 induction by alflutinib in three lots of human hepatocytes were 9.24-, 11.2-, and 10.4-fold, while the fold-induction of rifampin (10 µM) were 7.22-, 19.4- and 9.46-fold, respectively. The EC50 of alflutinib-induced CYP3A4 mRNA expression was 0.25 µM, which was similar to that of rifampin. In addition, AST5902 exhibited much weak CYP3A4 induction potential compared to alflutinib. Given the plasma exposure of alflutinib and AST5902, both are likely to affect the pharmacokinetics of CYP3A4 substrates. Considering that alflutinib is a CYP3A4 substrate and a potent CYP3A4 inducer, drug-drug interactions are expected during alflutinib treatment.


Asunto(s)
Inductores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/metabolismo , Inducción Enzimática/efectos de los fármacos , Indoles/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Inductores del Citocromo P-450 CYP3A/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Indoles/metabolismo , Microsomas Hepáticos/metabolismo , Piridinas/metabolismo , Pirimidinas/metabolismo , Rifampin/farmacología
4.
Biopharm Drug Dispos ; 40(2): 81-93, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30724384

RESUMEN

CYP3A probe drugs such as midazolam and endogenous markers, and plasma 4ß-hydroxycholesterol (4ß-OHC) and urinary 6ß-hydroxycortisol-to-cortisol ratios (6ß-OHC/C) have been used as markers of CYP3A induction in cynomolgus monkeys, as with humans. However, there is limited information on their sensitivity and ability to detect CYP3A induction, as most studies were evaluated only at a high dose of the inducer, rifampicin (RIF; 20 mg/kg). In the present study, the CYP3A induction by RIF over a range doses of 0.2, 2 and 20 mg/kg (n = 4) was examined using CYP3A probe drugs (midazolam, triazolam and alprazolam) and the plasma and urinary endogenous CYP3A markers (4ß-OHC and 6ß-OHC/C). The sensitivity and relationship for detecting CYP3A induction was compared among the markers. Four days repeated oral administration of rifampicin to cynomolgus monkeys reduced the area under the plasma concentration-time curve of all CYP3A probe drugs in a rifampicin dose-dependent manner. Although the endogenous CYP3A markers (4ß-OHC and 6ß-OHC/C) were also changed for the middle (2 mg/kg) and high (20 mg/kg) doses of rifampicin, the fold-changes were relatively small, and CYP3A induction could not be detected at the lowest dose of rifampicin (0.2 mg/kg). In conclusion, CYP3A probe drugs are more sensitive for detecting CYP3A induction than endogenous CYP3A markers in cynomolgus monkeys, even for a short experimental period.


Asunto(s)
Alprazolam/farmacología , Inductores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/biosíntesis , Midazolam/farmacología , Rifampin/farmacología , Triazolam/farmacología , Alprazolam/sangre , Animales , Área Bajo la Curva , Biomarcadores/sangre , Biomarcadores/orina , Inductores del Citocromo P-450 CYP3A/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Hidrocortisona/análogos & derivados , Hidrocortisona/orina , Hidroxicolesteroles/sangre , Macaca fascicularis , Masculino , Midazolam/sangre , Rifampin/sangre , Triazolam/sangre
5.
Drug Metab Dispos ; 46(9): 1285-1303, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29959133

RESUMEN

The Innovation and Quality Induction Working Group presents an assessment of best practice for data interpretation of in vitro induction, specifically, response thresholds, variability, application of controls, and translation to clinical risk assessment with focus on CYP3A4 mRNA. Single concentration control data and Emax/EC50 data for prototypical CYP3A4 inducers were compiled from many human hepatocyte donors in different laboratories. Clinical CYP3A induction and in vitro data were gathered for 51 compounds, 16 of which were proprietary. A large degree of variability was observed in both the clinical and in vitro induction responses; however, analysis confirmed in vitro data are able to predict clinical induction risk. Following extensive examination of this large data set, the following recommendations are proposed. a) Cytochrome P450 induction should continue to be evaluated in three separate human donors in vitro. b) In light of empirically divergent responses in rifampicin control and most test inducers, normalization of data to percent positive control appears to be of limited benefit. c) With concentration dependence, 2-fold induction is an acceptable threshold for positive identification of in vitro CYP3A4 mRNA induction. d) To reduce the risk of false positives, in the absence of a concentration-dependent response, induction ≥ 2-fold should be observed in more than one donor to classify a compound as an in vitro inducer. e) If qualifying a compound as negative for CYP3A4 mRNA induction, the magnitude of maximal rifampicin response in that donor should be ≥ 10-fold. f) Inclusion of a negative control adds no value beyond that of the vehicle control.


Asunto(s)
Inductores del Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/metabolismo , Control de Medicamentos y Narcóticos , Invenciones/normas , Control de Calidad , ARN Mensajero/metabolismo , Inductores del Citocromo P-450 CYP3A/farmacología , Interacciones Farmacológicas/fisiología , Flumazenil/metabolismo , Flumazenil/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Rifampin/metabolismo , Rifampin/farmacología
6.
Drug Metab Dispos ; 46(2): 109-121, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29117990

RESUMEN

Midostaurin (PKC412) is being investigated for the treatment of acute myeloid leukemia (AML) and advanced systemic mastocytosis (advSM). It is extensively metabolized by CYP3A4 to form two major active metabolites, CGP52421 and CGP62221. In vitro and clinical drug-drug interaction (DDI) studies indicated that midostaurin and its metabolites are substrates, reversible and time-dependent inhibitors, and inducers of CYP3A4. A simultaneous pharmacokinetic model of parent and active metabolites was initially developed by incorporating data from in vitro, preclinical, and clinical pharmacokinetic studies in healthy volunteers and in patients with AML or advSM. The model reasonably predicted changes in midostaurin exposure after single-dose administration with ketoconazole (a 5.8-fold predicted versus 6.1-fold observed increase) and rifampicin (90% predicted versus 94% observed reduction) as well as changes in midazolam exposure (1.0 predicted versus 1.2 observed ratio) after daily dosing of midostaurin for 4 days. The qualified model was then applied to predict the DDI effect with other CYP3A4 inhibitors or inducers and the DDI potential with midazolam under steady-state conditions. The simulated midazolam area under the curve ratio of 0.54 and an accompanying observed 1.9-fold increase in the CYP3A4 activity of biomarker 4ß-hydroxycholesterol indicated a weak-to-moderate CYP3A4 induction by midostaurin and its metabolites at steady state in patients with advSM. In conclusion, a simultaneous parent-and-active-metabolite modeling approach allowed predictions under steady-state conditions that were not possible to achieve in healthy subjects. Furthermore, endogenous biomarker data enabled evaluation of the net effect of midostaurin and its metabolites on CYP3A4 activity at steady state and increased confidence in DDI predictions.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas/fisiología , Estaurosporina/análogos & derivados , Adulto , Biomarcadores/metabolismo , Inductores del Citocromo P-450 CYP3A/metabolismo , Inductores del Citocromo P-450 CYP3A/farmacocinética , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Femenino , Humanos , Hidroxicolesteroles/metabolismo , Cetoconazol/metabolismo , Cetoconazol/farmacocinética , Masculino , Midazolam/metabolismo , Midazolam/farmacocinética , Persona de Mediana Edad , Modelos Biológicos , Rifampin/metabolismo , Rifampin/farmacocinética , Estaurosporina/metabolismo , Estaurosporina/farmacocinética , Adulto Joven
7.
Biochem Biophys Res Commun ; 486(3): 639-644, 2017 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-28341123

RESUMEN

Cytochrome P450 (CYP) 3A subfamily members are known to metabolize various types of drugs, highlighting the importance of understanding drug-drug interactions (DDI) depending on CYP3A induction or inhibition. While transcriptional regulation of CYP3A members is widely understood, post-translational regulation needs to be elucidated. We previously reported that acetaminophen (APAP) induces CYP3A activity via inhibition of protein degradation and proposed a novel DDI concept. N-Acetyl-p-benzoquinone imine (NAPQI), the reactive metabolite of APAP formed by CYP, is known to cause adverse events related to depletion of intracellular reduced glutathione (GSH). We aimed to inspect whether NAPQI rather than APAP itself could cause the inhibitory effects on protein degradation. We found that N-acetyl-l-cysteine, the precursor of GSH, and 1-aminobenzotriazole, a nonselective CYP inhibitor, had no effect on CYP3A1/23 protein levels affected by APAP. Thus, we used APAP analogs to test CYP3A1/23 mRNA levels, protein levels, and CYP3A activity. We found N-acetyl-m-aminophenol (AMAP), a regioisomer of APAP, has the same inhibitory effects of CYP3A1/23 protein degradation, while p-acetamidobenzoic acid (PAcBA), a carboxy-substituted form of APAP, shows no inhibitory effects. AMAP and PAcBA cannot be oxidized to quinone imine forms such as NAPQI, so the inhibitory effects could depend on the specific chemical structure of APAP.


Asunto(s)
Acetaminofén/farmacología , Benzoquinonas/farmacología , Inductores del Citocromo P-450 CYP3A/farmacología , Inhibidores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/genética , Hepatocitos/efectos de los fármacos , Iminas/farmacología , Acetaminofén/metabolismo , Acetilcisteína/farmacología , Animales , Benzoquinonas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inductores del Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Regulación de la Expresión Génica , Glutatión/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Iminas/metabolismo , Masculino , Cultivo Primario de Células , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad , Triazoles/farmacología
8.
Clin Pharmacokinet ; 56(4): 409-420, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27599706

RESUMEN

BACKGROUND: Antiretroviral drugs are among the therapeutic agents with the highest potential for drug-drug interactions (DDIs). In the absence of clinical data, DDIs are mainly predicted based on preclinical data and knowledge of the disposition of individual drugs. Predictions can be challenging, especially when antiretroviral drugs induce and inhibit multiple cytochrome P450 (CYP) isoenzymes simultaneously. METHODS: This study predicted the magnitude of the DDI between efavirenz, an inducer of CYP3A4 and inhibitor of CYP2C8, and dual CYP3A4/CYP2C8 substrates (repaglinide, montelukast, pioglitazone, paclitaxel) using a physiologically based pharmacokinetic (PBPK) modeling approach integrating concurrent effects on CYPs. In vitro data describing the physicochemical properties, absorption, distribution, metabolism, and elimination of efavirenz and CYP3A4/CYP2C8 substrates as well as the CYP-inducing and -inhibitory potential of efavirenz were obtained from published literature. The data were integrated in a PBPK model developed using mathematical descriptions of molecular, physiological, and anatomical processes defining pharmacokinetics. Plasma drug-concentration profiles were simulated at steady state in virtual individuals for each drug given alone or in combination with efavirenz. The simulated pharmacokinetic parameters of drugs given alone were compared against existing clinical data. The effect of efavirenz on CYP was compared with published DDI data. RESULTS: The predictions indicate that the overall effect of efavirenz on dual CYP3A4/CYP2C8 substrates is induction of metabolism. The magnitude of induction tends to be less pronounced for dual CYP3A4/CYP2C8 substrates with predominant CYP2C8 metabolism. CONCLUSION: PBPK modeling constitutes a useful mechanistic approach for the quantitative prediction of DDI involving simultaneous inducing or inhibitory effects on multiple CYPs as often encountered with antiretroviral drugs.


Asunto(s)
Benzoxazinas/metabolismo , Inductores del Citocromo P-450 CYP2C8/metabolismo , Inhibidores del Citocromo P-450 CYP2C8/metabolismo , Inductores del Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/metabolismo , Modelos Biológicos , Adolescente , Adulto , Alquinos , Ciclopropanos , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas/fisiología , Femenino , Predicción , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
9.
J Pharm Sci ; 104(1): 223-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25381754

RESUMEN

The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process.


Asunto(s)
Inductores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/metabolismo , Descubrimiento de Drogas/métodos , Hepatocitos/efectos de los fármacos , Modelos Moleculares , Receptores de Esteroides/agonistas , Inteligencia Artificial , Citocromo P-450 CYP3A/genética , Inductores del Citocromo P-450 CYP3A/química , Inductores del Citocromo P-450 CYP3A/metabolismo , Bases de Datos de Proteínas , Transferencia de Energía , Inducción Enzimática/efectos de los fármacos , Sistemas Especialistas , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Imagenología Tridimensional , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor X de Pregnano , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Reproducibilidad de los Resultados
10.
J Antimicrob Chemother ; 69(7): 1933-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24695353

RESUMEN

OBJECTIVES: The reduction in mother-to-child transmission of HIV-1 by single-dose nevirapine given at birth onset is achieved at the expense of de novo HIV-1 resistance mutations. In the VITA1 study, single-dose carbamazepine accelerated nevirapine elimination, but the accompanying trend towards fewer de novo HIV-1 mutations was statistically non-significant. METHODS: We investigated if the effect of carbamazepine was confounded by the individual variability in nevirapine metabolism and transport. RESULTS: Nine of 34 (26%) single-dose nevirapine-treated women had one or more nevirapine-associated resistance mutations, compared with 3 of 34 (9%) in the single-dose nevirapine/carbamazepine arm. The genetic polymorphisms in CYP2B6 and MRP7 affected neither nevirapine kinetics nor the development of HIV-1 resistance. In contrast, the reduction in HIV-1 mutations by single-dose carbamazepine reached statistical significance at P = 0.04 with an OR of 0.1 (95% CI 0.01-0.90) upon consideration of CYP3A activity, defined as the ratio of 4ß-hydroxycholesterol to cholesterol, and it was more likely in women with higher CYP3A activity. These findings were in agreement with CYP3A induction in carbamazepine-treated patients. Likewise, carbamazepine induced CYP3A4, but not CYP2B6, in vitro when combined with nevirapine. CONCLUSIONS: The induction of nevirapine elimination reduces HIV-1 resistance mutations, but this effect is modulated by individual CYP3A activity. The study suggests that CYP3A4 activity could be monitored using an endogenous marker and, if needed, boosted to improve clinical endpoints.


Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Carbamazepina/administración & dosificación , Inductores del Citocromo P-450 CYP3A/administración & dosificación , Farmacorresistencia Viral , VIH-1/efectos de los fármacos , Mutación Missense/efectos de los fármacos , Nevirapina/administración & dosificación , Fármacos Anti-VIH/farmacología , Carbamazepina/metabolismo , Quimioprevención/métodos , Citocromo P-450 CYP3A/metabolismo , Inductores del Citocromo P-450 CYP3A/metabolismo , Femenino , Infecciones por VIH/prevención & control , VIH-1/genética , Humanos , Nevirapina/farmacología , Embarazo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...