Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.711
Filtrar
1.
Cell Physiol Biochem ; 58(4): 361-381, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092504

RESUMEN

BACKGROUND/AIMS: Traumatic brain injury is a significant public problem with an incidence of 10 million people per year, causing the largest deaths and disabilities worldwide. Head injuries can be classified into primary and secondary head injuries. Secondary head injuries can be caused by several factors such as ischemia, cerebral edema, and neuroinflammation. AIF and MMP-9 are two parameters that can be indicators in measuring the effect of Oleuropein on traumatic brain injury in rats. Oleuropein itself has many activities such as antioxidant, anti-apoptotic, antimicrobial, anti-inflammatory, and neuroprotective. METHODS: Adult male Sprague-Dawley rats (250-350 grams) were exposed to head injury, with or without intraperitoneal administration of Oleuropein. Within 24-72 hours brain tissue was isolated for immunohistochemical analysis, ELISA, and TUNEL. AIF, GFAP, MMP-9, and HMGB-1 levels were determined using immunohistochemistry in both the control and treatment groups. Statistical analysis was made using the One-Way Analysis of Variance (ANOVA) and paired t-test. RESULTS: The results showed that Oleuropein was able to reduce AIF and MMP-9 levels in rats with traumatic brain injury. This indicates that Oleuropein has a neuroprotective effect by reducing inflammation and apoptosis. CONCLUSION: Oleuropein has a potential neuroprotective effect in traumatic brain injury by reducing inflammation and apoptosis. Therefore, Oleuropein can be considered as a potential therapeutic agent for traumatic brain injury in the future.


Asunto(s)
Factor Inductor de la Apoptosis , Lesiones Traumáticas del Encéfalo , Modelos Animales de Enfermedad , Glucósidos Iridoides , Iridoides , Metaloproteinasa 9 de la Matriz , Ratas Sprague-Dawley , Animales , Glucósidos Iridoides/farmacología , Glucósidos Iridoides/uso terapéutico , Metaloproteinasa 9 de la Matriz/metabolismo , Masculino , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Iridoides/farmacología , Iridoides/uso terapéutico , Ratas , Factor Inductor de la Apoptosis/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteína HMGB1/metabolismo , Apoptosis/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos
2.
Medicine (Baltimore) ; 103(31): e39065, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093733

RESUMEN

In patients with severe acute respiratory syndrome coronavirus 2 (which causes coronavirus disease 2019 [COVID-19]), oxidative stress (OS) is associated with disease severity and death. OS is also involved in the pathogenesis of atherosclerosis (AS). Previous studies have shown that geniposide has anti-inflammatory and anti-viral properties, and can protect cells against OS. However, the potential target(s) of geniposide in patients with COVID-19 and AS, as well as the mechanism it uses, are unclear. We combined pharmacology and bioinformatics analysis to obtain geniposide against COVID-19/AS targets, and build protein-protein interaction network to filter hub genes. The hub genes were performed an enrichment analysis by ClueGO, including Gene Ontology and KEGG. The Enrichr database and the target microRNAs (miRNAs) of hub genes were predicted through the MiRTarBase via Enrichr. The common miRNAs were used to construct the miRNAs-mRNAs regulated network, and the miRNAs' function was evaluated by mirPath v3.0 software. Two hundred forty-seven targets of geniposide were identified in patients with COVID-19/AS comorbidity by observing the overlap between the genes modulated by geniposide, COVID-19, and AS. A protein-protein interaction network of geniposide in patients with COVID-19/AS was constructed, and 27 hub genes were identified. The results of enrichment analysis suggested that geniposide may be involved in regulating the OS via the FoxO signaling pathway. MiRNA-mRNA network revealed that hsa-miR-34a-5p may play an important role in the therapeutic mechanism of geniposide in COVID-19/AS patients. Our study found that geniposide represents a promising therapy for patients with COVID-19 and AS comorbidity. Furthermore, the target genes and miRNAs that we identified may aid the development of new treatment strategies against COVID-19/AS.


Asunto(s)
Aterosclerosis , Tratamiento Farmacológico de COVID-19 , COVID-19 , Biología Computacional , Iridoides , MicroARNs , Mapas de Interacción de Proteínas , SARS-CoV-2 , Iridoides/farmacología , Iridoides/uso terapéutico , Humanos , Biología Computacional/métodos , MicroARNs/metabolismo , MicroARNs/genética , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Mapas de Interacción de Proteínas/efectos de los fármacos , SARS-CoV-2/genética , Estrés Oxidativo/efectos de los fármacos
3.
BMC Complement Med Ther ; 24(1): 297, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123180

RESUMEN

BACKGROUND: Although synthetic preservatives and antioxidants may have high antimicrobial and antioxidant activity, they are usually associated with adverse effects on human health. Currently, there is a growing interest in natural antimicrobial and antioxidant agents. This study aimed to evaluate the antimicrobial activity of two medicinal plant extracts and one active compound. Olive leaf extracts (0.2, 0.3, and 0.4% w/v), oleuropein (0.2, 0.4, and 0.6% w/v), thyme oil (0.1%), and oleuropein in combination with thyme oil (0.4% w/v and 0.1% v/v) were used against three bacterial strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) and two fungal strains (Candida albicans and Aspergillus niger). RESULTS: The use of oleuropein resulted in complete antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In this context, a reduction of 7 logs was achieved during the storage period (4 weeks). Oleuropein showed no fungal activity at low concentrations (0.2%), but Aspergillus niger was reduced by 2.35 logs at higher concentrations (0.6% w/v). Similar antibacterial and antifungal properties were observed for the olive leaf extracts. Oleuropein at a concentration of 0.4 w/v and a mixture of oleuropein and thyme at concentrations of 0.4 and 0.1 (v/v) showed strong antimicrobial activity against the studied microorganisms. CONCLUSION: Olive leaf extract, thyme oil, and oleuropein have strong antibacterial and weak antifungal properties. There was a good synergistic effect between oleuropein and thymol.


Asunto(s)
Antibacterianos , Antifúngicos , Glucósidos Iridoides , Iridoides , Olea , Extractos Vegetales , Hojas de la Planta , Thymus (Planta) , Thymus (Planta)/química , Glucósidos Iridoides/farmacología , Olea/química , Extractos Vegetales/farmacología , Antifúngicos/farmacología , Antibacterianos/farmacología , Iridoides/farmacología , Pruebas de Sensibilidad Microbiana , Aspergillus niger/efectos de los fármacos , Candida albicans/efectos de los fármacos , Aceites de Plantas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos
4.
Molecules ; 29(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125062

RESUMEN

This study aims to extract phenolic-enriched compounds, specifically oleuropein, luteoloside, and hydroxytyrosol, from olive leaves using ball milling-assisted extraction (BMAE). Response surface methodology (RSM) and the Box-Behnken design (BBD) were used to evaluate the effects of the temperature, solvent-to-solid ratio, and milling speed on extraction recovery. The contents of the extract were determined by ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS) and converted to recoveries to evaluate the extraction efficiency. The optimal extraction conditions for oleuropein, luteoloside, and hydroxytyrosol were identified. Oleuropein had a recovery of 79.0% ± 0.9% at a temperature of 56.4 °C, a solvent-to-solid ratio of 39.1 mL/g, and a milling speed of 429 rpm. Luteoloside's recovery was 74.6% ± 1.2% at 58.4 °C, 31.3 mL/g, and 328 rpm. Hydroxytyrosol achieved 43.1% ± 1.3% recovery at 51.5 °C, 32.7 mL/g, and 317 rpm. The reason for the high recoveries might be that high energy ball milling could reduce the sample size further, breaking down the cell walls of olive leaves, to enhance the mass transfer of these components from the cell to solvent. BMAE is displayed to be an efficient approach to extracting oleuropein, luteoloside, and hydroxytyrosol from olive leaves, which is easy to extend to industrial production.


Asunto(s)
Glucósidos Iridoides , Olea , Fenoles , Extractos Vegetales , Hojas de la Planta , Olea/química , Hojas de la Planta/química , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/análisis , Extractos Vegetales/química , Glucósidos Iridoides/química , Cromatografía Líquida de Alta Presión/métodos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/química , Alcohol Feniletílico/aislamiento & purificación , Iridoides/química , Iridoides/aislamiento & purificación , Espectrometría de Masas , Solventes/química
5.
Int J Biol Macromol ; 277(Pt 1): 133991, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089904

RESUMEN

Galactooligosaccharides (GOS), as mimics of human milk oligosaccharides, are important prebiotics for modulating the ecological balance of intestinal microbiota. A novel carrier-free cell immobilization method was established using genipin to cross-link Kluyveromyces lactis CGMCC 2.1494, which produced ß-galactosidase, an enzyme essential for GOS synthesis. The resulting immobilized cells were characterized as stable by thermogravimetric analysis and confirmed to be crosslinked through scanning electron microscopy analysis (SEM) and Fourier transform infrared spectroscopy (FTIR). The Km and Vmax values of ß-galactosidase in immobilized cells towards o-nitrophenyl ß-D-galactoside were determined to be 3.446 mM and 2210 µmol min-1 g-1, respectively. The enzyme in the immobilized showed higher thermal and organic solvent tolerance compared to that in free cells. The immobilized cells were subsequently employed for GOS synthesis using plant-derived galactose as the substrate. The synthetic reaction conditions were optimized through both single-factor experiments and response surface methodology, resulting in a high yield of 49.1 %. Moreover, the immobilized cells showed good reusability and could be reused for at least 20 batches of GOS synthesis, with the enzyme activity remaining above 70 % at 35 °C.


Asunto(s)
Células Inmovilizadas , Galactosa , Iridoides , Kluyveromyces , Oligosacáridos , Prebióticos , beta-Galactosidasa , Iridoides/química , Iridoides/metabolismo , Galactosa/química , Oligosacáridos/química , Células Inmovilizadas/metabolismo , Kluyveromyces/metabolismo , beta-Galactosidasa/metabolismo , Reactivos de Enlaces Cruzados/química
6.
Chem Biol Interact ; 400: 111182, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098740

RESUMEN

Depression is a severe mental illness affecting patient's physical and mental health. However, long-term effects of existing therapeutic modalities for depression are not satisfactory. Geniposide is an iridoid compound highly expressed in gardenia jasminoides for removing annoyance. The activity of geniposide against depression has been widely studied while most studies concentrated on the expression levels of gene and protein. Herein, the aim of the present study was to employ non-target metabolomic platform of serum to investigate metabolic changes of depression mice and further verify in hippocampus for analyzing the antidepressant mechanism of geniposide. Then we discovered that 9 metabolites of serum were significantly increased in depressive group (prostaglandin E2, leukotriene C4, arachidonic acid, phosphatidylcholine (PC, 16:0/16:0), LysoPC (18:1 (9Z)/0:0), phosphatidylethanolamine (14:0/16:0), creatine, oleamide and aminomalonic acid) and 6 metabolites were decreased (indoxylsulfuric acid, testosterone, lactic acid, glucose 6-phosphate, leucine and valine). The levels of arachidonic acid, LysoPC, lactic acid and glucose 6-phosphate in hippocampus were consistent change with serum in depression mice. Most of them showed significant tendencies to be normal by geniposide treatment. Metabolic pathway analysis indicated that arachidonic acid metabolism and glucose metabolism were the main pathogenesis for the antidepressant effect of geniposide. In addition, the levels of serum tumor necrosis factor-α and interleukin-1 were increased in depressive mice and reversed after geniposide treatment. This study revealed that abnormal metabolism of inflammatory response and glucose metabolism of the serum and hippocampus involved in the occurrence of depressive disorder and antidepressant effect of geniposide.


Asunto(s)
Antidepresivos , Depresión , Modelos Animales de Enfermedad , Glucosa , Hipocampo , Inflamación , Iridoides , Animales , Iridoides/farmacología , Iridoides/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/metabolismo , Ratones , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Masculino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Glucosa/metabolismo , Metabolómica
7.
J Int Adv Otol ; 20(3): 189-195, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-39158163

RESUMEN

Different organs respond differently to cisplatin (CDDP)-induced toxicity. Oleuropein (OLE) is a natural phenolic antioxidant. The purpose of this study was to determine the potential protective effect of OLE against CDDP-induced ototoxicity by evaluating expression of genes associated with deoxyribonucleic acid (DNA) damage and repair in cochlear cells. House Ear Institute-Organ of Corti 1 (HEI-OC1) cells were treated using CDDP, OLE, and OLE-CDDP. The water-soluble tetrazolium salt assay was used for monitoring cell viability. Deoxyribonucleic acid damage in cells due to the CDDP, OLE, and combination treatments was determined using a flow-cytometric kit. The change in the expression of 84 genes associated with CCDP, OLE, and OLE-CDDP treatments that induced DNA damage was tested using the reverse transcription polymerase chain reaction array. Changes ≥3-fold were considered significant. House Ear Institute-Organ of Corti 1 cell viability was significantly reduced by CDDP. The OLE-CDDP combination restored the cell viability. Cisplatin increased the H2AX ratio, while OLE-CDDP combination decreased it. Some of the DNA damage-associated genes whose expression was upregulated with CDDP were downregulated with OLE-CDDP, while the expression of genes such as Gadd45g and Rev1 was further downregulated. The expression of DNA repair-related Abl1, Dbd2, Rad52, and Trp53 genes was downregulated with CDDP, whereas their expression was upregulated with OLE-CDDP treatment. In cochlear cells, the OLE-CDDP combination downregulated DNA damage-associated gene expression relative to that upregulated mainly by CDDP. The results revealed that OLE has a potential protective effect on CDDP-induced ototoxicity in cochlear cells by altering the expression of DNA damage-related genes.


Asunto(s)
Supervivencia Celular , Cisplatino , Cóclea , Daño del ADN , Glucósidos Iridoides , Ototoxicidad , Cisplatino/toxicidad , Glucósidos Iridoides/farmacología , Daño del ADN/efectos de los fármacos , Animales , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Cóclea/patología , Supervivencia Celular/efectos de los fármacos , Ototoxicidad/prevención & control , Ratones , Iridoides/farmacología , Antineoplásicos/toxicidad , Antioxidantes/farmacología , Humanos , Línea Celular , Expresión Génica/efectos de los fármacos
8.
Nutrients ; 16(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999871

RESUMEN

IL-17A drives inflammation and oxidative stress, affecting the progression of chronic lung diseases (asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and cystic fibrosis). Oleuropein (OLP) is a polyphenolic compound present in olive oil and widely included in the Mediterranean diet. It exerts antioxidant and anti-inflammatory activities, oxidative stress resistance, and anticarcinogenic effects with a conceivable positive impact on human health. We hypothesized that OLP positively affects the mechanisms of oxidative stress, apoptosis, DNA damage, cell viability during proliferation, and cell growth in alveolar epithelial cells and tested its effect in a human alveolar epithelial cell line (A549) in the presence of IL-17A. Our results show that OLP decreases the levels of oxidative stress (Reactive Oxygen Species, Mitochondrial membrane potential) and DNA damage (H2AX phosphorylation-ser139, Olive Tail Moment data) and increases cell apoptosis in A549 cells exposed to IL-17A. Furthermore, OLP decreases the number of viable cells during proliferation, the migratory potential (Scratch test), and the single cell capacity to grow within colonies as a cancer phenotype in A549 cells exposed to IL-17A. In conclusion, we suggest that OLP might be useful to protect lung epithelial cells from oxidative stress, DNA damage, cell growth, and cell apoptosis. This effect might be exerted in lung diseases by the downregulation of IL-17A activities. Our results suggest a positive effect of the components of olive oil on human lung health.


Asunto(s)
Apoptosis , Proliferación Celular , Daño del ADN , Interleucina-17 , Glucósidos Iridoides , Iridoides , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Interleucina-17/metabolismo , Glucósidos Iridoides/farmacología , Proliferación Celular/efectos de los fármacos , Células A549 , Daño del ADN/efectos de los fármacos , Apoptosis/efectos de los fármacos , Iridoides/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Aceite de Oliva/farmacología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo
9.
Biomed Mater ; 19(5)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39059433

RESUMEN

To explore the feasibility and safety of biomaterials for posterior scleral reinforcement (PSR) in rabbits. Decellularization and genipin crosslink were applied to the fresh bovine pericardium and porcine endocranium, and then mechanical properties, suture retention strength, and stability were tested. PSR operation was performed on 24 rabbit eyes using treated biological materials. Ophthalmic examination was performed regularly before and after PSR operation (1 week, 1 month, 3 months, 6 months). To evaluate the effectiveness, A ultrasound, diopter, and optical coherence tomography were conducted. General condition, fundus photograph, and pathological examination were recorded to evaluate the safety. Compared with genipin crosslinked bovine pericardium (Gen-BP) (21.29 ± 13.29 Mpa), genipin crosslinked porcine endocranium (Gen-PE) (34.85 ± 3.67 Mpa,P< 0.01) showed a closer elastic modulus to that of genipin crosslinked human sclera. There were no complications or toxic reactions directly related to the materials. Capillary hyperplasia, inflammatory cell infiltration, and collagen fiber deposition were observed, and the content of type I collagen fibers increased after PSR. Overall, the choroidal thickness of treated eyes was significantly thickened at different time points after PSR, which were 96.84 ± 21.08 µm, 96.72 ± 22.00 µm, 90.90 ± 16.57 µm, 97.28 ± 14.74 µm, respectively. The Gen-PE group showed changes that were almost consistent with the overall data. Gen-BP and Gen-PE are safe biological materials for PSR. The Gen-PE group demonstrated more significant advantages over the Gen-BP group in terms of material properties.


Asunto(s)
Materiales Biocompatibles , Estudios de Factibilidad , Iridoides , Ensayo de Materiales , Esclerótica , Animales , Conejos , Materiales Biocompatibles/química , Bovinos , Porcinos , Iridoides/química , Suturas , Pericardio , Tomografía de Coherencia Óptica , Humanos , Reactivos de Enlaces Cruzados/química , Módulo de Elasticidad
10.
Int J Biol Macromol ; 276(Pt 1): 133850, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004259

RESUMEN

The interaction between genipin and a model protein bovine serum albumin (BSA), with and without the addition of acetic acid, has been studied experimentally and by modelling. The number of amino groups available to react was determined to be 5.6 % of the total number of amino acid building blocks on BSA. Fluorescence intensity was used to record the progress of the reaction over the 24 h, while the modelling study focused on capturing the kinetic profiles of the reaction. The experiments revealed a slow start to the BSA and genipin interaction, that subsequently accelerated in an S-shaped curve which the modelling study linked with the existence of the feedback cycle for both reactive amino groups and genipin. At BSA concentrations ≥30 mg/mL the reaction was accelerated in the presence of acid, while below 30 mg/mL the acidified conditions delayed the onset of the reaction. Contrary to the reaction mechanisms previously proposed, a degree of breakdown of the fluorescent links in the products formed was denoted both experimentally and in a modelling study. This indicated the reversibility of the processes forming fluorescent product/s and suggested feasibility of the successful release of the protein following prospective encapsulation within the genipin-crosslinked hydrogel structure.


Asunto(s)
Iridoides , Albúmina Sérica Bovina , Iridoides/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Cinética , Fluorescencia , Espectrometría de Fluorescencia/métodos , Modelos Teóricos , Unión Proteica
11.
Colloids Surf B Biointerfaces ; 242: 114079, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39029247

RESUMEN

Water-in-water (W/W) Pickering emulsions, exhibit considerable potential in the food and pharmaceutical fields owing to their compartmentalization and high biocompatibility. However, constrained by the non-uniform distribution of shear forces during emulsification or the spatial obstruction in polydimethylsiloxane (PDMS) passive microfluidic platform, the existing methods cannot generate monodisperse W/W Pickering emulsions with high particle coverage rate, thereby limiting their applications. Herein, a novel microfluidic system is designed for the preparation of monodisperse and highly particle-covered W/W Pickering emulsions under mild conditions. pH-responsive Polyethylene glycol (PEG)/phosphate aqueous two-phase system (ATPS) is used for the emulsions' preparation. Notably, a coverage rate of 96 ± 3 % is obtained by adjusting the length of the helical coiled tube, as well as the size and contact angle of genipin cross-linked BSA (BSA-GP) particles. Moreover, these W/W Pickering emulsions, with surfaces almost completely covered, can maintain monodisperse (Ncoal = 1.18 ± 0.03) for one day. Furthermore, the results of ranitidine hydrochloride (RH) release demonstrated that the drug release rate of W/W Pickering emulsions in the simulated gastric fluid (SGF) was 10 times faster than that in the neutral solution. We believe that the highly particle-covered monodisperse W/W Pickering emulsions possess great potential applications in bioencapsulation for foods and drug delivery.


Asunto(s)
Emulsiones , Microfluídica , Tamaño de la Partícula , Polietilenglicoles , Albúmina Sérica Bovina , Agua , Emulsiones/química , Agua/química , Microfluídica/métodos , Polietilenglicoles/química , Albúmina Sérica Bovina/química , Iridoides/química , Concentración de Iones de Hidrógeno , Ranitidina/química , Propiedades de Superficie , Dimetilpolisiloxanos/química
12.
Fitoterapia ; 177: 106098, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950636

RESUMEN

Brain edema after ischemic stroke could worsen cerebral injury in patients who received intravenous thrombolysis. Cornus officinalis Sieb. et Zucc., a long-established traditional Chinese medicine, is beneficial to the treatment of neurodegenerative diseases including ischemic stroke. In particular, its major component, cornel iridoid glycoside (CIG), was evidenced to exhibit neuroprotective effects against cerebral ischemic/reperfusion injury (CIR/I). Aimed to explore the effects of the CIG on brain edema of the CIR/I rats, the CIG was analyzed with the main constituents by using HPLC. The molecular docking analysis was performed between the CIG constituents and AQP4-M23. TGN-020, an AQP4 inhibitor, was used as a comparison. In the in vivo experiments, the rats were pre-treated with the CIG and were injured by performing middle cerebral artery occlusion/reperfusion (MCAO/R). After 24 h, the rats were examined for neurological function, pathological changes, brain edema, and polarized Aqp4 expressions in the brain. The HPLC analysis indicated that the CIG was composed of morroniside and loganin. The molecular docking analysis showed that both morroniside and loganin displayed lower binding energies to AQP4-M23 than TGN-020. The CIG pre-treated rats exhibited fewer neurological function deficits, minimized brain swelling, and reduced lesion volumes compared to the MCAO/R rats. In the peri-infarct and infarct regions, the CIG pre-treatment restored the polarized Aqp4 expression which was lost in the MCAO/R rats. The results suggested that the CIG could attenuate brain edema of the cerebral ischemia/reperfusion rats by modulating the polarized Aqp4 through the interaction of AQP4-M23 with morroniside and loganin.


Asunto(s)
Acuaporina 4 , Edema Encefálico , Cornus , Glicósidos Iridoides , Iridoides , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Masculino , Ratas , Acuaporina 4/metabolismo , Encéfalo/efectos de los fármacos , Edema Encefálico/tratamiento farmacológico , Isquemia Encefálica/tratamiento farmacológico , Cornus/química , Glicósidos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Glicósidos Iridoides/farmacología , Glicósidos Iridoides/aislamiento & purificación , Iridoides/farmacología , Estructura Molecular , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico
13.
Biomed Chromatogr ; 38(9): e5951, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38956830

RESUMEN

Loganic acid is an iridoid compound extracted from Gentianaceae plant Gentiana macrophylla Pall. It can effectively inhibit inflammation and tumor migration and has antioxidant activity. In this paper, we establish a simple, fast, sensitive and validated LC-MS method with the purpose of quantification of loganic acid in rat plasma with gliclazide as an internal standard (IS). Methanol was used to precipitate the protein in the plasma sample, and a C18 column (2.1 × 50 mm, 1.7 µm) was used for the separation of the target compound. Meanwhile, 0.1% formic acid water-methanol was employed as the mobile phase. Multiple reaction monitoring detection mode was adopted in detection with m/z 375.1 > 213.2 for loganic acid and m/z 322.1 > 169.9 for the IS, respectively, in negative ion scan mode. The linear range of calibration curve was 5.77-11,540.00 ng/ml, and the lower limit of detedtion was 2.89 ng/ml. The inter-day and intra-day precision and accuracy were <15% for lower limit of quantitation, low, middle and high quality control samples. This method was successfully used for the pharmacokinetic study of loganic acid in rat plasma at a dose range of 50-150 mg/kg for oral administration and 2 mg/kg for intravenous administration. The pharmacokinetic results showed that the oral bioavailability of loganic acid was low (2.71-5.58%).


Asunto(s)
Iridoides , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Animales , Ratas , Iridoides/farmacocinética , Iridoides/sangre , Iridoides/química , Límite de Detección , Modelos Lineales , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem/métodos
14.
Phytomedicine ; 132: 155799, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968789

RESUMEN

Gardenia jasminoides Ellis, a staple in herbal medicine, has long been esteemed for its purported hepatoprotective properties. Its primary bioactive constituent, geniposide, has attracted considerable scientific interest owing to its multifaceted therapeutic benefits across various health conditions. However, recent investigations have unveiled potential adverse effects associated with its metabolite, genipin, particularly at higher doses and prolonged durations of administration, leading to hepatic injury. Determining the optimal dosage and duration of geniposide administration while elucidating its pharmacological and toxicological mechanisms is imperative for safe and effective clinical application. This study aimed to evaluate the safe dosage and administration duration of geniposide in mice and investigate its toxicological mechanisms within a comprehensive dosage-duration-efficacy/toxicity model. Four distinct mouse models were employed, including wild-type mice, cholestasis-induced mice, globally farnesoid X-activated receptor (FXR) knock out mice, and high-fat diet-induced (HFD) NAFLD mice. Various administration protocols, spanning one or four weeks and comprising two or three oral doses, were tailored to each model's requirements. Geniposide has positive effects on bile acid and lipid metabolism at doses below 220 mg/kg/day without causing liver injury in normal mice. However, in mice with NAFLD, this dosage is less effective in improving liver function, lipid profiles, and bile acid metabolism compared to lower doses. In cholestasis-induced mice, prolonged use of geniposide at 220 mg/kg/day worsened liver damage. Additionally, in NAFLD mice, this dosage of geniposide for four weeks led to intestinal pyroptosis and liver inflammation. These results highlight the lipid-lowering and bile acid regulatory effects of geniposide, but also warn of potential negative impacts on intestinal epithelial cells, particularly with higher doses and longer treatment durations. Therefore, achieving optimal therapeutic results requires a decrease in treatment duration as the dosage increases, in order to maintain a balanced approach to the use of geniposide in clinical settings.


Asunto(s)
Gardenia , Iridoides , Ratones Endogámicos C57BL , Animales , Iridoides/farmacología , Iridoides/administración & dosificación , Masculino , Gardenia/química , Ratones , Modelos Animales de Enfermedad , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Ratones Noqueados , Metabolismo de los Lípidos/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Hígado/efectos de los fármacos , Hígado/metabolismo , Colestasis/tratamiento farmacológico , Colestasis/inducido químicamente , Ácidos y Sales Biliares/metabolismo , Relación Dosis-Respuesta a Droga , Receptores Citoplasmáticos y Nucleares
15.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063062

RESUMEN

Olive leaves (OLLs) are an exceptional bioresource of natural polyphenols with proven antioxidant activity, yet the applicability of OLL extracts is constrained by the relatively high polarity of the major polyphenols, which occur as glycosides. To overcome this limitation, OLLs were subjected to both hydrothermal and ethanol organosolv treatments, fostered by acid catalysis to solicit in parallel increased polyphenol recovery and polyphenol modification into simpler, lower-polarity substances. After an initial screening of natural organic acids, oxalic acid (OxAc) was found to be the highest-performing catalyst. The extraction behavior using OxAc-catalyzed hydrothermal and ethanol organosolv treatments was appraised using kinetics, while treatment optimization was accomplished by deploying response-surface methodology. The comparative assessment of the composition extracts produced under optimal conditions of residence time and temperature was performed with liquid chromatography-tandem mass spectrometry and revealed that OLLs treated with 50% ethanol/1.5% HCl suffered extensive oleuropein and flavone glycoside hydrolysis, affording almost 23.4 mg hydroxytyrosol and 2 mg luteolin per g dry weight. On the other hand, hydrothermal treatment with 5% OxAc provided 20.2 and 0.12 mg of hydroxytyrosol and luteolin, respectively. Apigenin was in all cases a minor extract constituent. The study presented herein demonstrated for the first time the usefulness of using a natural, food-grade organic acid to perform such a task, yet further investigation is needed to maximize the desired effect.


Asunto(s)
Etanol , Glicósidos , Glucósidos Iridoides , Olea , Hojas de la Planta , Olea/química , Hojas de la Planta/química , Hidrólisis , Etanol/química , Glicósidos/química , Catálisis , Flavonoides/química , Iridoides/química , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Polifenoles/química
16.
Int J Biol Macromol ; 274(Pt 1): 133519, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960235

RESUMEN

This study investigated the development of a genipin-crosslinked chitosan (CS)-based polyvinylpyrrolidone (PVP) hydrogel containing curcumin nanosuspensions (Cur-NSs) to promote wound healing in an excisional wound model. Cur-NSs were prepared, and a simplex centroid mixture design was employed to optimize hydrogel properties for high water absorption, degree of crosslinking, and sufficient toughness. The in vivo wound healing effect was tested in Wistar rats. The optimized hydrogel consisted of a 70:30 ratio of CS:PVP, crosslinked with a 2 % w/w genipin solution. It exhibited high swelling capability (486 %) while maintaining solidity, robustness, and durability. Incorporating 5 % w/w Cur-NSs resulted in a more compact structure, although with a reduction in swelling properties. The release kinetics of Cur from the hydrogel followed the Korsmeyer-Peppas Fickian diffusion model. In vitro biocompatibility studies demonstrated that the hydrogel was non-toxic to skin fibroblast cells. The in vivo experiment revealed a desirable wound healing rate with over 80 % recovery by day 7. Cur-NSs likely aided wound healing by reducing the inflammatory response and stimulating fibroblast proliferation. Additionally, the CS-based hydrogel provided a moist wound environment with hydration and gas transfer, further accelerating wound closure. These findings suggest that the Cur-NS-embedded hydrogel shows promise as a wound dressing material.


Asunto(s)
Quitosano , Curcumina , Hidrogeles , Iridoides , Povidona , Ratas Wistar , Cicatrización de Heridas , Curcumina/farmacología , Curcumina/química , Cicatrización de Heridas/efectos de los fármacos , Quitosano/química , Animales , Iridoides/química , Iridoides/farmacología , Povidona/química , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Fibroblastos/efectos de los fármacos , Masculino , Nanopartículas/química , Reactivos de Enlaces Cruzados/química
17.
Nutrients ; 16(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999733

RESUMEN

Natural and synthetic colorants present in food can modulate hemostasis, which includes the coagulation process and blood platelet activation. Some colorants have cardioprotective activity as well. However, the effect of genipin (a natural blue colorant) and synthetic blue colorants (including patent blue V and brilliant blue FCF) on hemostasis is not clear. In this study, we aimed to investigate the effects of three blue colorants-genipin, patent blue V, and brilliant blue FCF-on selected parameters of hemostasis in vitro. The anti- or pro-coagulant potential was assessed in human plasma by measuring the following coagulation times: thrombin time (TT), prothrombin time (PT), and activated partial thromboplastin time (APTT). Moreover, we used the Total Thrombus formation Analysis System (T-TAS, PL-chip) to evaluate the anti-platelet potential of the colorants in whole blood. We also measured their effect on the adhesion of washed blood platelets to fibrinogen and collagen. Lastly, the cytotoxicity of the colorants against blood platelets was assessed based on the activity of extracellular lactate dehydrogenase (LDH). We observed that genipin (at all concentrations (1-200 µM)) did not have a significant effect on the coagulation times (PT, APTT, and TT). However, genipin at the highest concentration (200 µM) and patent blue V at the concentrations of 1 and 10 µM significantly prolonged the time of occlusion measured using the T-TAS, which demonstrated their anti-platelet activity. We also observed that genipin decreased the adhesion of platelets to fibrinogen and collagen. Only patent blue V and brilliant blue FCF significantly shortened the APTT (at the concentration of 10 µM) and TT (at concentrations of 1 and 10 µM), demonstrating pro-coagulant activity. These synthetic blue colorants also modulated the process of human blood platelet adhesion, stimulating the adhesion to fibrinogen and inhibiting the adhesion to collagen. The results demonstrate that genipin is not toxic. In addition, because of its ability to reduce blood platelet activation, genipin holds promise as a novel and valuable agent that improves the health of the cardiovascular system and reduces the risk of cardiovascular diseases. However, the mechanism of its anti-platelet activity remains unclear and requires further studies. Its in vivo activity and interaction with various anti-coagulant and anti-thrombotic drugs, including aspirin and its derivatives, should be examined as well.


Asunto(s)
Coagulación Sanguínea , Plaquetas , Colorantes de Alimentos , Iridoides , Humanos , Iridoides/farmacología , Coagulación Sanguínea/efectos de los fármacos , Colorantes de Alimentos/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Hemostasis/efectos de los fármacos , Tiempo de Tromboplastina Parcial , Adhesividad Plaquetaria/efectos de los fármacos , Fibrinógeno/metabolismo , Bencenosulfonatos/farmacología , Tiempo de Protrombina , Colorantes de Rosanilina/farmacología , Hemostáticos/farmacología , Activación Plaquetaria/efectos de los fármacos , Tiempo de Trombina
18.
J Oleo Sci ; 73(8): 1105-1112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085084

RESUMEN

Recently, biomolecules from natural products have paved the way for novel drug in the treatment of some diseases in vitro and in vivo models as diabetes, cancer and infertility. As such, we aimed to evaluate the capacity of Oleuropein (OLE), the major bio-phenol in olive leaf, to protect human sperm against bacterial lipopolysaccharide (LPS) inducing sperm oxidative stress and defective sperm functions. The toxic effect of OLE on human sperm was firstly investigated by evaluating sperm parameters after incubation during 60 minutes with different concentrations. Determined non-toxic concentration was then used to evaluate the capacity of OLE to protect sperm against LPS oxidative damages and sperm parameters alterations. Thus, sperms were consecutively incubated with LPS (10 µg/mL) and OLE (40 µg/mL) during 60 minutes, then submitted to sperm parameters analysis and oxidative stress assessment by measuring malondialdehyde (MDA), carbonyl groups (CG) levels and the activity of some antioxidant enzymes: superoxide dismutase (SOD) and catalase (CAT). A significant decrease of sperm parameters as well as a significant increase in MDA levels, CG levels, SOD and CAT activities was found after stimulation by LPS. However, a non-significant difference was shown comparing sperms treated by LPS and OLE with LPS-treated control sperms. Consequently, despite the high antioxidant and anti-inflammatory capacity of OLE reported in diverse cells, this phenolic compound seems to be not appropriate to protect human sperm in vitro against induced LPS oxidative stress and seems to have a "double-edged sword" behavior.


Asunto(s)
Antioxidantes , Catalasa , Glucósidos Iridoides , Lipopolisacáridos , Malondialdehído , Olea , Estrés Oxidativo , Extractos Vegetales , Hojas de la Planta , Espermatozoides , Superóxido Dismutasa , Humanos , Masculino , Estrés Oxidativo/efectos de los fármacos , Olea/química , Espermatozoides/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Hojas de la Planta/química , Catalasa/metabolismo , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Glucósidos Iridoides/farmacología , Malondialdehído/metabolismo , Iridoides/farmacología , Iridoides/aislamiento & purificación , Técnicas In Vitro , Relación Dosis-Respuesta a Droga
19.
Med Oncol ; 41(8): 186, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918260

RESUMEN

This comprehensive review delves into the multifaceted aspects of genipin, a bioactive compound derived from medicinal plants, focusing on its anti-cancer potential. The review begins by detailing the sources and phytochemical properties of genipin, underscoring its significance in traditional medicine and its transition into contemporary cancer research. It then explores the intricate relationship between genipin's chemical structure and its observed anti-cancer activity, highlighting the molecular underpinnings contributing to its therapeutic potential. This is complemented by a thorough analysis of preclinical studies, which investigates genipin's efficacy against various cancer cell lines and its mechanisms of action at the cellular level. A crucial component of the review is the examination of genipin's bioavailability and pharmacokinetics, providing insights into how the compound is absorbed, distributed, metabolized, and excreted in the body. Then, this review offers a general and updated overview of the anti-cancer studies of genipin and its derivatives based on its basic molecular mechanisms, induction of apoptosis, inhibition of cell proliferation, and disruption of cancer cell signaling pathways. We include information that complements the genipin study, such as toxicity data, and we differentiate this review by including commercial status, disposition, and regulation. Also, this review of genipin stands out for incorporating information on proposals for a technological approach through its load in nanotechnology to improve its bioavailability. The culmination of this information positions genipin as a promising candidate for developing novel anti-cancer drugs capable of supplementing or enhancing current cancer therapies.


Asunto(s)
Iridoides , Neoplasias , Humanos , Iridoides/farmacología , Iridoides/química , Iridoides/uso terapéutico , Neoplasias/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/química , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Apoptosis/efectos de los fármacos
20.
Int J Biol Macromol ; 274(Pt 2): 133213, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889834

RESUMEN

Poor stability during gastrointestinal digestion is a major challenge for the applications of protein-based nanoparticles as oral delivery systems. In this work, genipin was used to crosslink the partially enzymatic hydrolyzed soy protein nanoparticles, aiming to improve their performance in gastrointestinal tract as delivery carrier. Results showed that the obtained genipin-crosslinked soy protein nanoparticles (GSPNPs) were still spherically monodisperse with a diameter around 60 nm. Encapsulation with GSPNPs significantly improved the solubility of curcumin (Cur) and its stability against UV light as well as long-term storage. Compared to those un-crosslinked nanoparticles, particles crosslinked by genipin had a more compact structure less sensitive to ionic effect and digestive enzymes, showing enhanced digestion stability. The well-maintained nanoparticulate structure of GSPNPs further contributed to the enhanced bioaccessibility and facilitated absorption by epithelial cells. Furthermore, in vivo experiment on rats showed that Cur encapsulated in GSPNPs exhibited a slowed down and sustained absorption manner with an 8.11-fold improvement in its bioavailability. These suggested that GSPNPs could be a promising nanocarrier to enhance the bioavailability of functional factors.


Asunto(s)
Disponibilidad Biológica , Curcumina , Iridoides , Nanopartículas , Proteínas de Soja , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacología , Nanopartículas/química , Iridoides/química , Animales , Ratas , Proteínas de Soja/química , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Estabilidad de Medicamentos , Digestión/efectos de los fármacos , Portadores de Fármacos/química , Tamaño de la Partícula , Solubilidad , Reactivos de Enlaces Cruzados/química , Ratas Sprague-Dawley , Masculino , Células CACO-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...