RESUMEN
Noradrenaline (NA) and serotonin (5-HT) induce nociception and antinociception. This antagonistic effect can be explained by the dose and type of activated receptors. We investigated the existence of synergism between the noradrenergic and serotonergic systems during peripheral antinociception. The paw pressure test was performed in mice that had increased sensitivity by intraplantar injection of prostaglandin E2 (PGE2). Noradrenaline (80 ng) administered intraplantarly induced an antinociceptive effect, that was reversed by the administration of selective antagonists of serotoninergic receptors 5-HT1B isamoltan, 5-HT1D BRL15572, 5-HT2A ketanserin, 5-HT3 ondansetron, but not by selective receptor antagonist 5-HT7 SB-269970. The administration of escitalopram, a serotonin reuptake inhibitor, potentiated the antinociceptive effect at a submaximal dose of NA. These results, indicate the existence of synergism between the noradrenergic and serotonergic systems in peripheral antinociception in mice.
Asunto(s)
Norepinefrina , Receptores de Serotonina , Antagonistas de la Serotonina , Serotonina , Animales , Ratones , Norepinefrina/metabolismo , Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Masculino , Receptores de Serotonina/metabolismo , Dinoprostona/metabolismo , Citalopram/farmacología , Nocicepción/efectos de los fármacos , Analgésicos/farmacología , Ondansetrón/farmacología , Ketanserina/farmacología , Dolor/tratamiento farmacológico , Dolor/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacologíaRESUMEN
Rhinella marina toad is abundant in Brazil. Its poison contains cardiac glycosides called bufadienolides, which are extensively investigated for their bioactivity. Our aim was to characterize the vasoactivity of Rhinella marina poison (RmP) on the aorta of male Wistar rats. For this, the RmP was first collected and processed to obtain an alcoholic extract. To determine cardiovascular effects of RmP, we performed in vivo tests by administering RmP intravenously in doses of 0.1-0.8 mg/kg. Vascular reactivity was also performed through concentration-response curves to RmP (10 ng/mL to 200 µg/mL) in aortic segments with and without endothelium. RmP induced a concentration-dependent contraction in rat aorta which was partly endothelium-mediated. Nitric oxide contributes with this response in view that incubation with L-NAME increased the contractile response. Additionally, treatment with indomethacin [cyclooxygenase, (COX) inhibitor], nifedipine (L-type voltage-gated calcium channels blocker), and BQ-123 (ETA receptors antagonist) decreased maximum response, and ketanserin (5-HT2 receptors antagonist) decreased pEC50, suggesting active participation of these pathways in the contractile response. On the other hand, apocynin (NADPH oxidase inhibitor) did not alter contractility. Incubation with prazosin (α1-adrenergic receptor antagonist) abolished the contractile response, suggesting that the RmP-induced contraction is dependent on the adrenergic pathway. In the Na+/K+ ATPase protocol, a higher Emax was observed in the RmP experimental group, suggesting that RmP potentiated Na+/K+ATPase hyperpolarizing response. When this extract was injected (i.v.) in vivo, increase in blood pressure and decrease in heart rate were observed. The results were immediate and transitory, and occurred in a dose-dependent manner. Overall, these data suggest that the poison extract of R. marina toad has an important vasoconstrictor action and subsequent vasopressor effects, and its use can be investigated to some cardiovascular disorders.
Asunto(s)
Bufanólidos , Venenos , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Adrenérgicos/farmacología , Antagonistas Adrenérgicos/farmacología , Animales , Bufanólidos/toxicidad , Bufo marinus/metabolismo , Canales de Calcio , Endotelio Vascular , Hemodinámica , Indometacina/farmacología , Ketanserina/farmacología , Masculino , Metanol/farmacología , NADPH Oxidasas , NG-Nitroarginina Metil Éster , Nifedipino/farmacología , Óxido Nítrico/metabolismo , Prazosina/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ratas , Ratas Wistar , Serotonina/farmacología , VasoconstrictoresRESUMEN
Acute intermittent hypoxia (AIH) modifies the functioning of the respiratory network, causing respiratory motor facilitation in anesthetized animals and a compensatory increase in pulmonary ventilation in freely behaving animals. However, it is still unclear whether the ventilatory facilitation induced by AIH in unanesthetized animals is associated with changes in the respiratory pattern. We found that Holtzman male rats (80-150 g) exposed to AIH (10 × 6% O2 for 30-40 s every 5 min, n = 9) exhibited a prolonged (30 min) increase in baseline minute ventilation (P < 0.05) compared to control animals (n = 13), combined with the occurrence of late expiratory peak flow events, suggesting the presence of active expiration. The increase in ventilation after AIH was also accompanied by reductions in arterial CO2 and body temperature (n = 5-6, P < 0.05). The systemic treatment with ketanserin (a 5-HT2 receptor antagonist) before AIH prevented the changes in ventilation and active expiration (n = 11) but potentiated the hypothermic response (n = 5, P < 0.05) when compared to appropriate control rats (n = 13). Our findings indicate that the ventilatory long-term facilitation elicited by AIH exposure in unanesthetized rats is linked to the generation of active expiration by mechanisms that may depend on the activation of serotonin receptors. In contrast, the decrease in body temperature induced by AIH may not require 5-HT2 receptor activation.
Asunto(s)
Hipoxia/fisiopatología , Ketanserina/farmacología , Ventilación Pulmonar/fisiología , Mecánica Respiratoria/fisiología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Modelos Animales de Enfermedad , Masculino , Ventilación Pulmonar/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Mecánica Respiratoria/efectos de los fármacos , Volumen de Ventilación Pulmonar/fisiologíaRESUMEN
Ketamine has addictive potential, a troublesome fact due to its promising use as a therapeutic drug. An important phenomenon associated with drug addiction is behavioral sensitization, usually characterized as augmented locomotion. However, other behaviors may also be susceptible to sensitization, and/or interfere with locomotor activity. Thus, this study drew a comprehensive behavioral 'profiling' in an animal model of repeated administration of ketamine. Adult Swiss mice received single daily ketamine injections (30 or 50â¯mg/Kg, i.p.), which were followed by open field testing for 7â¯days (acquisition period, ACQ). A ketamine challenge (sensitization test, ST) was carried out after a 5-day withdrawal. Locomotion, rearing, grooming, rotation and falling were assessed during ACQ and ST. All behaviors were affected from the first ACQ day onwards, with no indication of competition between locomotion and the other behaviors. Only locomotion in response to 30â¯mg/Kg of ketamine both escalated during ACQ and expressed increased levels at ST, evidencing development and expression of locomotor sensitization. Considering the involvement of serotonin 5HT(2) and dopamine D(2) receptors on addiction mechanisms, we further tested the involvement of these receptors in ketamine-induced sensitization. Ketanserin (5HT2 antagonist, 3â¯mg/Kg, s.c.) prevented ketamine-evoked development of locomotor sensitization. However, ketanserin pretreatment during ACQ failed to inhibit its expression during ST. Raclopride (D2 antagonist, 0.5â¯mg/Kg, s.c.) evoked less robust reductions in locomotion but prevented the development of ketamine-evoked sensitization. Pretreatment during ACQ further inhibited the expression of sensitization during ST. These results indicate that a partial overlap in serotonergic and dopaminergic mechanisms underlies ketamine-induced locomotor sensitization.
Asunto(s)
Sensibilización del Sistema Nervioso Central/efectos de los fármacos , Ketamina/farmacología , Locomoción/efectos de los fármacos , Receptores de Dopamina D2/fisiología , Receptores de Serotonina 5-HT2/fisiología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Ketamina/antagonistas & inhibidores , Ketanserina/farmacología , Masculino , Ratones , Racloprida/farmacología , Conducta Estereotipada/efectos de los fármacosRESUMEN
BACKGROUND: Although produced by several types of tumours, the role of serotonin on cancer biology is yet to be understood. METHODS: The effects of serotonin (5-HT) on human breast cancer cells proliferation, signalling pathways and metabolic profile were evaluated by cytometry, western blotting, qPCR, enzymology and confocal microscopy. RESULTS: Our results revealed that incubation of MCF-7 cells with 10 µM 5-HT increased cell growth rate by 28%, an effect that was prevented by the 5-HTR2A/C antagonist, ketanserin. Conversely, increasing concentrations of 5-HT promoted glucose consumption and lactate production by MCF-7 cells. We also showed that increased glucose metabolism is provoked by the upregulation of pyruvate kinase M2 (PKM2) isoform through 5-HTR2A/C-triggered activation of Jak1/STAT3 and ERK1/2 subcellular pathways. However, we noticed a decrease in the rate of produced lactate per consumed glucose as a function of the hormone concentration, suggesting a disruption of the Warburg effect. The latter effect is due to 5-HTR2A/C-dependent mitochondrial biogenesis and metabolism, which is triggered by adenylyl cyclase/PKA, enhancing the oxidation of lactate within these cells. CONCLUSIONS: We showed that serotonin, through 5-HTR2A/C, interferes with breast cancer cells proliferation and metabolism by triggering two distinct signalling pathways: Jak1/STAT3 that boosts glycolysis through upregulation of PKM2, and adenylyl cyclase/PKA that enhances mitochondrial biogenesis.
Asunto(s)
Neoplasias de la Mama/genética , Proliferación Celular/efectos de los fármacos , Janus Quinasa 1/genética , Factor de Transcripción STAT3/genética , Adenilil Ciclasas/genética , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Portadoras/genética , Supervivencia Celular/efectos de los fármacos , Femenino , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Ketanserina/farmacología , Sistema de Señalización de MAP Quinasas/genética , Células MCF-7 , Proteínas de la Membrana/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Serotonina/farmacología , Hormonas Tiroideas/genética , Proteínas de Unión a Hormona TiroideRESUMEN
BACKGROUND: Diabetic foot ulcers are one disabling complication of diabetes mellitus. Pirfenidone (PFD) is a potent modulator of extracellular matrix. Modified diallyl disulfide oxide (M-DDO) is an antimicrobial and antiseptic agent. AIM: To evaluate efficacy of topical PFD + M-DDO in a randomized, double-blind trial versus ketanserin in the treatment of noninfected chronic DFU. METHODS: Patients received PFD + M-DDO or ketanserin for 6 months. Relative ulcer volume (RUV) was measured every month; biopsies were taken at baseline and months 1 and 2 for histopathology and gene expression analysis for COL-1α, COL-4, KGF, VEGF, ACTA2 (α-SMA), elastin, fibronectin, TGF-ß1, TGF-ß3, HIF-1α, and HIF-1ß. RESULTS: Reduction of median RUV in the PFD + M-DDO group was 62%, 89.8%, and 99.7% at months 1-3 and 100% from months 4 to 6. Ketanserin reduced RUV in 38.4%, 56%, 60.8%, 94%, 94.8%, and 100% from the first to the sixth month, respectively. Healing score improved 4.5 points with PFD + M-DDO and 1.5 points with ketanserin compared to basal value. Histology analysis revealed few inflammatory cells and organized/ordered collagen fiber bundles in PFD + M-DDO. Expression of most genes was increased with PFD + M-DDO; 43.8% of ulcers were resolved using PFD + M-DDO and 23.5% with ketanserin. CONCLUSION: PFD + M-DDO was more effective than ketanserin in RUV reduction.
Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Pie Diabético/tratamiento farmacológico , Piridonas/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Adulto , Anciano , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antiinflamatorios no Esteroideos/farmacología , Disulfuros , Método Doble Ciego , Quimioterapia Combinada , Femenino , Humanos , Ketanserina/farmacología , Ketanserina/uso terapéutico , Masculino , Persona de Mediana Edad , Piridonas/farmacología , Ácidos Sulfínicos/farmacología , Ácidos Sulfínicos/uso terapéutico , Resultado del TratamientoRESUMEN
BACKGROUND: The purpose of this study was to determine the role of spinal 5-HT2A, 5-HT2B and 5-HT2C receptors in the development and maintenance of formalin-induced long-lasting secondary allodynia and hyperalgesia in rats, as well as their expression in the dorsal root ganglia (DRG) during this process. METHODS: 0.5-1% formalin was used to produce long-lasting secondary allodynia and hyperalgesia in rats. Western blot was used to determine 5-HT2 receptors expression in DRG. RESULTS: Formalin (0.5-1%) injection produced long-lasting (1-12 days) secondary allodynia and hyperalgesia in both ipsilateral and contralateral hind paws. Intrathecal pre-treatment or post-treatment with the 5-HT2 receptor agonist, DOI (1-10nmol), increased 0.5% formalin-induced secondary allodynia and hyperalgesia in both paws. In contrast, intrathecal pre-treatment with the selective 5-HT2A (ketanserin 1-100nmol), 5-HT2B (RS 127445 1-100nmol) or 5-HT2C (RS 102221 1-100nmol) receptor antagonists prevented and reversed, respectively, 1% formalin-induced secondary allodynia and hyperalgesia in both paws. Likewise, the pronociceptive effect of DOI (10nmol) was blocked by ketanserin, RS 127445 or RS 102221 (0.01nmol). 5-HT2A/2B/2C receptors were expressed in DRG of naïve rats. Formalin injection (1%) increased bilaterally 5-HT2A/2B receptors expression in DRG. In contrast, formalin injection decreased 5-HT2C receptors expression bilaterally in DRG. CONCLUSION: Data suggest that spinal 5-HT2A/2B/2C receptors have pronociceptive effects and participate in the development and maintenance of formalin-induced long-lasting hypersensitivity. These receptors are expressed in DRG and their expression is modulated by formalin.
Asunto(s)
Formaldehído/farmacología , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Receptores de Serotonina 5-HT2/metabolismo , Médula Espinal/metabolismo , Animales , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ketanserina/farmacología , Dimensión del Dolor/métodos , Pirimidinas/farmacología , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Compuestos de Espiro/farmacología , Sulfonamidas/farmacologíaRESUMEN
The role of serotonin (5-HT) in nociception will vary according to the subtypes of receptors activated. When administered peripherally, it induces pain in humans and in rats by activation of 5-HT1, 5-HT2 and 5-HT3 receptors. In addition, endogenous 5-HT produced in situ, is involved in the nociceptive response induced by formalin in rat's paw inflammation, possibly via 5-HT3 receptors. Moreover, it has been shown that 5-HT released in the dorsal horn of the spinal cord by stimulation of the periaqueductal gray causes activation of inhibitory interneurons, resulting in inhibition of spinal neurons. In the present study we evaluated the effect of serotonin and its receptors at peripheral antinociception. The mice paw pressure test was used in animals that had increased sensitivity by an intraplantar injection of PGE2 (2 µg). We used selective antagonists of serotonin receptors (isamoltan 5-HT1B, BRL 15572 5-HT1D, ketanserin 5-HT2A, ondansetron 5-HT3 and SB-269970 5-HT7). Administration of serotonin into the right hind paw (62.5, 125, 250 and 500 ng and 1 µg) produced a dose-dependent peripheral mechanical antihyperalgesic effect of serotonin in mice. Selective antagonists for 5-HT1B, 5-HT2A, 5-HT3 receptors at doses of 0.1, 1 and 10 µg, reversed the antihyperalgesic effect induced by 250 ng serotonin. In contrast, selective antagonists for 5-HT1D and 5-HT7 receptors were unable to reverse the antihyperalgesic effect induced by serotonin. These results demonstrated for the first time, the peripheral mechanical antihyperalgesic effect of serotonin, and participation of 5-HT1B, 5-HT2A and 5-HT3 receptors in this event.
Asunto(s)
Hiperalgesia/prevención & control , Dimensión del Dolor/efectos de los fármacos , Receptores de Serotonina/metabolismo , Serotonina/farmacología , Animales , Compuestos de Bifenilo/farmacología , Dinoprostona , Relación Dosis-Respuesta a Droga , Hiperalgesia/inducido químicamente , Ketanserina/farmacología , Masculino , Ratones , Ondansetrón/farmacología , Fenoles/farmacología , Piperazinas/farmacología , Propanolaminas/farmacología , Antagonistas de la Serotonina/farmacología , Sulfonamidas/farmacologíaRESUMEN
The role of 5-HT2A/2B/2C receptors in formalin-induced secondary allodynia and hyperalgesia in rats was assessed. Formalin produced acute nociceptive behaviors (flinching and licking/lifting) followed by long-term secondary mechanical allodynia and hyperalgesia. Pre-treatment for five consecutive days with compound 48/80 (1, 3, 10, 10, and 10 µg/paw) prevented formalin-induced secondary allodynia and hyperalgesia. Ipsilateral, but not contralateral, peripheral pre-treatment (nmol/paw) with the 5-HT2 receptor agonist DOI (3-30), 5-HT (10-100) or fluoxetine (0.3-3) significantly increased 0.5% formalin-induced secondary allodynia and hyperalgesia in both paws. The pronociceptive effect of DOI (10 nmol/paw), 5-HT (100 nmol/paw) and fluoxetine (1 nmol/paw) was blocked by selective 5-HT2A (ketanserin), 5-HT2B (RS-127445), and 5-HT2C (RS-102221) receptor antagonists. Furthermore, ipsilateral pre-treatment (nmol/paw) with ketanserin (1, 10, and 100), RS-127445 (0.01, 0.1 and 1) or RS-102221 (1, 10 and 100) prevented while post-treatment reversed 1% formalin-induced secondary allodynia and hyperalgesia in both paws. In marked contrast, contralateral injection of the greatest tested dose of 5-HT2A/2B/2C receptor antagonists did not modify long-lasting secondary allodynia and hyperalgesia. These results suggest that 5-HT released from mast cells after formalin injection sensitizes primary afferent neurons via 5-HT2A/2B/2C receptors leading to the development and maintenance of secondary allodynia and hyperalgesia.
Asunto(s)
Formaldehído/toxicidad , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2B/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Anfetaminas/farmacología , Analgésicos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Fluoxetina/farmacología , Hiperalgesia/tratamiento farmacológico , Ketanserina/farmacología , Pirimidinas/farmacología , Ratas Wistar , Serotonina/administración & dosificación , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Compuestos de Espiro/farmacología , Sulfonamidas/farmacología , p-Metoxi-N-metilfenetilamina/farmacologíaRESUMEN
Latent inhibition (LI) is a decrement in learning performance that results from the nonreinforced pre-exposure of the to-be-conditioned stimulus, in both vertebrates and invertebrates. In vertebrates, LI development involves dopamine and serotonin; in invertebrates there is yet no information. We studied differential olfactory conditioning of the proboscis extension response in the honeybee Apis mellifera, and we compared LI in individuals treated with antagonists of biogenic amines (dopamine, octopamine, and serotonin). An antagonist of octopamine receptors and two antagonists of serotonin receptors showed LI disruption. We thus provide evidence that serotonin would participate in the regulation of LI in honeybees.
Asunto(s)
Condicionamiento Clásico/fisiología , Dopamina/metabolismo , Extinción Psicológica/fisiología , Inhibición Psicológica , Serotonina/metabolismo , Análisis de Varianza , Animales , Abejas/fisiología , Condicionamiento Clásico/efectos de los fármacos , Dibenzazepinas/farmacología , Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Etilcetociclazocina/análogos & derivados , Etilcetociclazocina/farmacología , Extinción Psicológica/efectos de los fármacos , Flufenazina/farmacología , Habituación Psicofisiológica/efectos de los fármacos , Antagonistas de los Receptores Histamínicos H1/farmacología , Imidazoles/farmacología , Ketanserina/farmacología , Metisergida/farmacología , Odorantes , Serotonina/farmacología , Antagonistas de la Serotonina/farmacología , Olfato/efectos de los fármacos , Olfato/fisiologíaRESUMEN
Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT(1A) and 5-HT(2A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT(1A) and 5-HT(2B/2C) receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 µl intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT(1A) receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT(2B/2C) receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAA), mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 µl), a 5-HT(2A/2C) receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAA enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT(2C) receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice.
Asunto(s)
Analgésicos/farmacología , Aprendizaje por Laberinto/fisiología , Nocicepción/fisiología , Sustancia Gris Periacueductal/fisiología , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Agonistas del Receptor de Serotonina 5-HT2/fisiología , 8-Hidroxi-2-(di-n-propilamino)tetralin/administración & dosificación , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Ácido Acético/antagonistas & inhibidores , Ácido Acético/farmacología , Analgésicos/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Ketanserina/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Microinyecciones , Nocicepción/efectos de los fármacos , Sustancia Gris Periacueductal/efectos de los fármacos , Piperazinas/administración & dosificación , Piperazinas/antagonistas & inhibidores , Piperazinas/farmacología , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Agonistas del Receptor de Serotonina 5-HT1/fisiología , Agonistas del Receptor de Serotonina 5-HT2/administración & dosificación , Antagonistas de la Serotonina/farmacologíaRESUMEN
Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is a phenolic compound present in several plants with claimed beneficial effects in prevention and treatment of disorders linked to oxidative stress and inflammation. In this study, we aimed to verify the possible antidepressant-like effect of acute oral administration of ferulic acid in the forced swimming test (FST) and tail suspension test (TST) in mice. Additionally, the mechanisms involved in the antidepressant-like action and the effects of the association of ferulic acid with the antidepressants fluoxetine, paroxetine, and sertraline in the TST were investigated. Ferulic acid produced an antidepressant-like effect in the FST and TST (0.01-10 mg/kg, p.o.), without accompanying changes in ambulation. The pretreatment of mice with WAY100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) or ketanserin (5 mg/kg, i.p., a 5-HT(2A) receptor antagonist) was able to reverse the anti-immobility effect of ferulic acid (0.01 mg/kg, p.o.) in the TST. The combination of fluoxetine (5 mg/kg, p.o.), paroxetine (0.1 mg/kg, p.o.) or sertraline (1 mg/kg, p.o.) with a sub-effective dose of ferulic acid (0.001 mg/kg, p.o.) produced a synergistic antidepressant-like effect in the TST, without causing hyperlocomotion in the open-field test. Taken together, these results demonstrate that ferulic acid exerts antidepressant-like effect in the FST and TST in mice through modulation of the serotonergic system.
Asunto(s)
Antidepresivos/farmacología , Ácidos Cumáricos/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Antagonistas del Receptor de Serotonina 5-HT1/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Ácidos Cumáricos/agonistas , Ácidos Cumáricos/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Fluoxetina/farmacología , Pérdida de Tono Postural/efectos de los fármacos , Ketanserina/farmacología , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Paroxetina/farmacología , Piperazinas/farmacología , Piridinas/farmacología , Receptor de Serotonina 5-HT1A , Receptor de Serotonina 5-HT2A , Sertralina/farmacologíaRESUMEN
Serotonin in the lateral septum has been implicated in the modulation of defense and hence in anxiety. However, it deserves investigation how changes in 5-HT-mechanisms in this area modulate defensive responses associated with specific subtypes of anxiety disorders. We evaluated the effects of intra-dorsolateral septum (DLS) injections of the preferential 5-HT(2A) receptor agonist DOI (8 and 16nmol), the 5-HT(2C) selective agonist MK-212 (0.1 and 1nmol) and the preferential 5-HT(2A) antagonist ketanserin (10 and 20nmol) in rats exposed to the elevated T-maze (ETM), a model which allows the measurement of two defensive responses: inhibitory avoidance and escape. These responses have been respectively related to generalized anxiety and panic disorder. All animals were tested in an open-field after the ETM for locomotor activity assessments. Results showed that intra-DLS DOI increased avoidance latencies, an anxiogenic effect. MK and ketanserin were without effect. Also, none of the drugs administered affected the escape performance. Ketanserin blocked the anxiogenic effect caused by DOI. No changes to locomotion were observed. The data suggests that DLS 5-HT(2A) receptors are involved in the control of inhibitory avoidance and that a failure in this mechanism may be of importance to the physiopathology of generalized anxiety.
Asunto(s)
Ansiedad/metabolismo , Reacción de Fuga/fisiología , Receptor de Serotonina 5-HT2A/metabolismo , Tabique del Cerebro/metabolismo , Anfetaminas/farmacología , Animales , Ansiedad/fisiopatología , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Reacción de Fuga/efectos de los fármacos , Ketanserina/farmacología , Masculino , Ratas , Ratas Wistar , Tabique del Cerebro/efectos de los fármacos , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacologíaRESUMEN
Several lines of evidence support the involvement of serotonergic (5-HT) neurons of the median raphe nucleus (MRN) in anxiety-like behaviour. In this context, it is known that blockade of 5-HT(1A) somatodendritic autoreceptors in the midbrain raphe nuclei increases the firing rate of these neurons, disinhibiting 5-HT release in postsynaptic target areas such as amygdala, hippocampus and periaqueductal grey matter (PAG). However, while activation of 5-HT(1A) or 5-HT(2) receptors in forebrain targets such as the amygdala or hippocampus enhances anxiety-like behaviours in rodents, stimulation of both receptor subtypes in the midbrain PAG markedly reduces anxiety-like behaviour. In view of these findings, the present study investigated whether the anti-anxiety effects induced by pharmacological disinhibition of 5-HT neurons in the MRN are attenuated by the blockade of 5-HT(2) receptors within the PAG. Mice received combined intra-PAG injection with ketanserin (10 nmol/0.1 µl), a 5-HT(2) receptor antagonist, followed by intra-MRN injection of WAY-100635 (5.6 nmol/0.1 µl), a highly selective 5-HT(1A) receptor antagonist. They were then individually exposed to the elevated plus-maze (EPM), with the videotaped behavioural sessions subsequently scored for both conventional and ethological measures. The results confirmed that intra-MRN infusion of WAY100635 reduces behavioural indices of anxiety without significantly altering general activity measures, and further showed that this effect was completely blocked by intra-PAG pretreatment with an intrinsically-inactive dose of ketanserin. Together, these results suggest that 5HT(2) receptor populations located within the midbrain PAG play a significant role in the reduction of anxiety observed following disinhibition of 5-HT neurons in the MRN.
Asunto(s)
Ansiolíticos/farmacología , Ketanserina/farmacología , Sustancia Gris Periacueductal/efectos de los fármacos , Piperazinas/farmacología , Piridinas/farmacología , Núcleos del Rafe/efectos de los fármacos , Antagonistas de la Serotonina/farmacología , Animales , Ansiolíticos/antagonistas & inhibidores , Conducta Animal/efectos de los fármacos , Ketanserina/administración & dosificación , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Microinyecciones/psicología , Piperazinas/administración & dosificación , Piridinas/administración & dosificación , Antagonistas de la Serotonina/administración & dosificaciónRESUMEN
The central nervous system control of food intake has been extensively studied, hence, several neurotransmitter systems regulating this function are now clearly identified, for example, the endocannabinoid and serotoninergic systems. The former stimulates feeding while the latter inhibits it. Oleamide (Ole) is a cannabimimetic molecule affecting both systems. In this work, we tested the orexigenic and anorectic potential of Ole when administered into the nucleus accumbens shell (NAcS), a brain region that has been related to the orexigenic effects of cannabinoids. Additionally, we tested if Ole administered into this nucleus affects the activity of the hypothalamic nuclei involved in feeding behaviour, just as other cannabinoids do. We found a hyperphagic effect of Ole that is mediated through CB1 activation. The combination of Ole and the CB1 antagonist, AM251, produced a hypophagia that was fully blocked by SB212084, a 5-HT2C receptor antagonist. We also show that blockade of 5-HT2C and 5-HT2A receptors in the NAcS stimulates food intake. Finally, the combination of Ole and AM251 activates hypothalamic nuclei, an effect also blocked by SB242084. In conclusion, we show, for the first time, that Ole administered into the NAcS has a dual effect on feeding behaviour, acting through cannabinoid and serotonin receptors. These effects probably result from a downstream interaction with the hypothalamus.
Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Ácidos Oléicos/farmacología , Receptor Cannabinoide CB1/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Aminopiridinas/farmacología , Animales , Conducta Alimentaria/fisiología , Hiperfagia/inducido químicamente , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Indoles/farmacología , Ketanserina/farmacología , Masculino , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ácidos Oléicos/administración & dosificación , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/biosíntesis , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2C/metabolismoRESUMEN
Chemical stimulation of the lateral nucleus of the habenula (LHb), an area implicated in the regulation of serotonergic activity in raphe nuclei, affects the acquisition of inhibitory avoidance and escape expression of rats submitted to the elevated T-maze test of anxiety. Here, we investigated whether facilitation of 5-HT-mediated neurotransmission in the dorsal periaqueductal gray (dPAG) accounts for the behavioral consequences in the elevated T-maze induced by chemical stimulation of the LHb. The dPAG in the midbrain, which is innervated by 5-HT fibers originating from the dorsal raphe nucleus (DRN), has been consistently implicated in the genesis/regulation of anxiety- and fear-related defensive responses. The results showed that intra-dPAG injection of WAY-100635 or ketanserin, 5-HT(1A) and 5-HT(2A/2C) receptor antagonists, respectively, counteracted the anti-escape effect caused by bilateral intra-LHb injection of kainic acid (60pmol/0.2microl). Ketanserin, but not WAY-100635, blocked kainic acid's facilitatory effect on inhibitory avoidance acquisition. Overall, the results suggest that the pathway connecting the LHb to the DRN is involved in the control of 5-HT release in the dPAG, and facilitation of 5-HT-mediated neurotransmission in the latter area distinctively impacts upon the expression of anxiety- and fear-related defensive behaviors. While stimulation of 5-HT(1A) receptors selectively affects escape performance, 5-HT(2A/2C) receptors modulate both inhibitory avoidance and escape.
Asunto(s)
Reacción de Prevención , Habénula/fisiología , Sustancia Gris Periacueductal/fisiología , Serotonina/fisiología , Transmisión Sináptica , Animales , Ácido Kaínico/farmacología , Ketanserina/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Sustancia Gris Periacueductal/efectos de los fármacos , Piperazinas/farmacología , Piridinas/farmacología , Ratas , Ratas Wistar , Receptor de Serotonina 5-HT1A/fisiología , Receptor de Serotonina 5-HT2A/fisiología , Receptor de Serotonina 5-HT2C/fisiología , Antagonistas del Receptor de Serotonina 5-HT1 , Antagonistas del Receptor de Serotonina 5-HT2RESUMEN
BACKGROUND: Descending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical paw incision. RESULTS: The number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 5-HT1/2B/2C (methysergide), 5-HT2A (ketanserin) or 5-HT1/2A/2C/5/6/7 (methiothepin) receptors antagonists, in the ipsilateral lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the lamina X by LY 278,584, ketanserin or methiothepin. CONCLUSIONS: We conclude: (1) muscarinic cholinergic mechanisms reduce incision-induced response of spinal neurons inputs from the contralateral paw; (2) 5-HT1/2A/2C/3 receptors-mediate mechanisms increase the activity of descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3) 5-HT1/2A/2C and 5-HT1/2C receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral paw; (4) 5-HT2A/3 receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; (5) alpha-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.
Asunto(s)
Dolor Postoperatorio/metabolismo , Dolor/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de Serotonina/metabolismo , Médula Espinal/metabolismo , Animales , Atropina/farmacología , Antagonistas Colinérgicos/farmacología , Inmunohistoquímica , Ketanserina/farmacología , Masculino , Metiotepina/farmacología , Metisergida/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Norepinefrina/metabolismo , Dimensión del Dolor , Dolor Postoperatorio/tratamiento farmacológico , Fenoxibenzamina/farmacología , Ratas , Ratas Wistar , Antagonistas de la Serotonina/farmacología , Médula Espinal/citología , Médula Espinal/efectos de los fármacosRESUMEN
The antidepressant-like effect of the ethanolic extract obtained from barks of Tabebuia avellanedae, a plant widely employed in folk medicine, was investigated in two predictive models of depression: forced swimming test (FST) and tail suspension test (TST) in mice. Additionally, the mechanisms involved in this antidepressant-like action and the effects of the association of the extract with the antidepressants fluoxetine, desipramine and bupropion in the TST were investigated. The extract from T. avellanedae produced an antidepressant-like effect, in the FST (100 mg/kg, p.o.) and in the TST (10-300 mg/kg, p.o.), without accompanying changes in ambulation when assessed in the open-field test. The anti-immobility effect of the extract (30 mg/kg, p.o.) in the TST was prevented by pre-treatment of mice with ketanserin (5 mg/kg, i.p., a preferential 5-HT(2A) receptor antagonist), prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a beta-adrenoceptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist) and SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist). The combined administration of a subeffective dose of WAY100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) and a subeffective dose of the extract (1 mg/kg, p.o.) produced a significant reduction in the immobility time in the TST. In addition, the combination of fluoxetine (1 mg/kg, p.o.), desipramine (0.1 mg/kg, p.o.), or bupropion (1 mg/kg, p.o.) with a subeffective dose of the extract (1 mg/kg, p.o.) produced a synergistic antidepressant-like effect in the TST, without causing hyperlocomotion in the open-field test. It may be concluded that the extract from T. avellanedae produces an antidepressant-like effect in the FST and in the TST that is dependent on the monoaminergic system. Taken together, our results suggest that T. avellanedae deserves further investigation as a putative alternative therapeutic tool that could help the conventional pharmacotherapy of depression.
Asunto(s)
Antidepresivos/uso terapéutico , Monoaminas Biogénicas/metabolismo , Depresión/tratamiento farmacológico , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , Tabebuia/química , Antagonistas Adrenérgicos alfa/uso terapéutico , Análisis de Varianza , Animales , Antidepresivos/farmacología , Monoaminas Biogénicas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Dopaminérgicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Conducta Exploratoria/efectos de los fármacos , Suspensión Trasera/métodos , Pérdida de Tono Postural/efectos de los fármacos , Ketanserina/farmacología , Ketanserina/uso terapéutico , Ratones , Actividad Motora/efectos de los fármacos , Extractos Vegetales/farmacología , Prazosina/farmacología , Prazosina/uso terapéutico , Antagonistas de la Serotonina/farmacología , Antagonistas de la Serotonina/uso terapéutico , Natación/psicologíaRESUMEN
The locus coeruleus (LC) is a noradrenergic nucleus that plays an important role in the ventilatory response to hypercapnia. This nucleus is densely innervated by serotonergic fibers and contains high density of serotonin (5-HT) receptors, including 5-HT(1A) and 5-HT(2). We assessed the possible modulation of respiratory response to hypercapnia by 5-HT, through 5-HT(1A) and 5-HT(2) receptors, in the LC. To this end, we determined the concentrations of 5-HT and its metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) in the LC after hypercapnic exposure. Pulmonary ventilation (VE: , plethysmograph) was measured before and after unilateral microinjection (100 nL) of WAY-100635 (5-HT(1A) antagonist, 5.6 and 56 mM), 8-OHDPAT (5-HT(1A/7) agonist, 7 and 15 mM), Ketanserin (5-HT(2A) antagonist, 3.7 and 37 mM), or (+/-)-2,5-dimethoxy-4-iodoamphetaminehydrochloride (DOI; 5-HT(2A) agonist, 6.7 and 67 mM) into the LC, followed by a 60-min period of 7% CO(2) exposure. Hypercapnia increased 5-HTIAA levels and 5-HIAA/5-HT ratio within the LC. WAY-100635 and 8-OHDPAT intra-LC decreased the hypercapnic ventilatory response due to a lower tidal volume. Ketanserin increased CO(2) drive to breathing and DOI caused the opposite response, both acting on tidal volume. The current results provide evidence of increased 5-HT release during hypercapnia in the LC and that 5-HT presents an inhibitory modulation of the stimulatory role of LC on hypercapnic ventilatory response, acting through postsynaptic 5-HT(2A) receptors in this nucleus. In addition, hypercapnic responses seem to be also regulated by presynaptic 5-HT(1A) receptors in the LC.
Asunto(s)
Locus Coeruleus/metabolismo , Ventilación Pulmonar/fisiología , Respiración , Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Antagonistas Adrenérgicos alfa/farmacología , Anfetaminas/farmacología , Animales , Ácido Hidroxiindolacético/metabolismo , Hipercapnia/metabolismo , Idazoxan/farmacología , Ketanserina/farmacología , Locus Coeruleus/citología , Locus Coeruleus/efectos de los fármacos , Masculino , Microinyecciones , Piperazinas/farmacología , Piridinas/farmacología , Ratas , Ratas Wistar , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Agonistas del Receptor de Serotonina 5-HT1 , Antagonistas del Receptor de Serotonina 5-HT1 , Agonistas del Receptor de Serotonina 5-HT2 , Antagonistas del Receptor de Serotonina 5-HT2 , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacologíaRESUMEN
Independent studies have shown that the median raphe nucleus (MRN) and dorsal hippocampus (DH) are involved in the expression of contextual conditioned fear (CFC). However, studies that examine the integrated involvement of serotonergic mechanisms of the MRN-DH are lacking. To address this issue, a CFC paradigm was used to test whether the serotonergic projections from the MRN to DH can influence CFC. Serotoninergic drugs were infused either into the MRN or DH prior to testing sessions in which freezing and startle responses were measured in the same context where 6h previously rats received footshocks. A reduction of serotonin (5-HT) transmission in the MRN by local infusions of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) decreased freezing in response to the context but did not reduce fear-potentiated startle. This pattern of results is consistent with the hypothesis that MRN serotonergic mechanisms selectively modulate the freezing response to the aversive context. As for the DH, a decrease in postsynaptic 5-HT receptor activity at projection areas has been proposed to be the main consequence of 5-HT(1A) receptor activation in the MRN. Intra-DH injections of 8-OH-DPAT inhibited both the freezing and fear-potentiated startle response to the context. To reconcile these findings, an inhibitory mechanism may exist between the incoming 5-HT pathway from the MRN to DH and the neurons of the DH output to other structures. The DH-amygdala or medial prefrontal cortex projections could well be this output circuit modulating the expression of CFC as revealed by measurements of Fos immunoreactivity in these areas.