RESUMEN
Seal lice, unique among insects, show remarkable adaptability to the extreme conditions of the deep sea. Evolving with their seal and sea lion hosts, they have managed to tolerate hypoxia, high salinity, low temperature, and elevated hydrostatic pressure. Given the diving capabilities of their mammalian hosts, which can reach depths of hundreds to thousands of meters, our study examines the morphological variation among closely related seal lice species infesting hosts with different maximum diving depths. In particular, our research reveals a significant morphological difference between lice associated with regular and deep-diving hosts, where lice from deep-diving hosts tend to be rounder. This could be an adaptation to withstand the high hydrostatic pressures found in the deep ocean. The rounded shape optimizes the louse's ability to withstand external pressure by redistributing it over a larger ventral/dorsal plane. This in turn minimizes the internal energy required to support body deformations, thereby increasing the louse's resilience in the deep sea environment.
Asunto(s)
Buceo , Animales , Buceo/fisiología , Interacciones Huésped-Parásitos , Infestaciones por Piojos/parasitología , Infestaciones por Piojos/veterinaria , Phocidae/parasitología , Phocidae/fisiología , Leones Marinos/parasitología , Leones Marinos/fisiologíaRESUMEN
Determining trophic habits of predator communities is essential to measure interspecific interactions and response to environmental fluctuations. South American fur seals, Arctocephalus australis (SAFS) and sea lions Otaria byronia (SASL), coexist along the coasts of Peru. Recently, ocean warming events (2014-2017) that can decrease and impoverish prey biomass have occurred in the Peruvian Humboldt Current System. In this context, our aim was to assess the effect of warming events on long-term inter- and intra-specific niche segregation. We collected whisker from SAFS (55 females and 21 males) and SASL (14 females and 22 males) in Punta San Juan, Peru. We used δ13C and δ15N values serially archived in otariid whiskers to construct a monthly time series for 2005-2019. From the same period we used sea level anomaly records to determine shifts in the predominant oceanographic conditions using a change point analysis. Ellipse areas (SIBER) estimated niche width of species-sex groups and their overlap. We detected a shift in the environmental conditions marking two distinct periods (P1: January 2005-October 2013; P2: November 2013-December 2019). Reduction in δ15N in all groups during P2 suggests impoverished baseline values with bottom-up effects, a shift towards consuming lower trophic level prey, or both. Reduced overlap between all groups in P2 lends support of a more redundant assemblage during the colder P1 to a more trophically segregated assemblage during warmer P2. SASL females show the largest variation in response to the warming scenario (P2), reducing both ellipse area and δ15N mean values. Plasticity to adapt to changing environments and feeding on a more available food source without fishing pressure can be more advantageous for female SASL, albeit temporary trophic bottom-up effects. This helps explain larger population size of SASL in Peru, in contrast to the smaller and declining SAFS population.
Asunto(s)
Lobos Marinos , Leones Marinos , Animales , Femenino , Lobos Marinos/fisiología , Masculino , Océanos y Mares , Perú , Leones Marinos/fisiologíaRESUMEN
We present estimates of the seasonal and spatial occupation by pinnipeds of the Wildlife Refuge of Ilha dos Lobos (WRIL), based on aerial photographic censuses. Twenty aerial photographic censuses were analysed between July 2010 and November 2018. To assess monthly differences in the numbers of pinnipeds in the WRIL we used a Generalized Linear Mixed Model. Spatial analysis was carried out using Kernel density analysis of the pinnipeds on a grid plotted along the WRIL. Subadult male South American sea lions (Otaria flavescens) were the most abundant pinniped in the WRIL. Potential females of this species were also recorded during half of the census. The maximum number of pinnipeds observed in the WRIL was 304 in September 2018, including an unexpected individual southern elephant seal (Mirounga leonina), and a high number of South American fur seal yearlings (Arctocephalus australis). However, there was no statistically significant difference in counts between months. In all months analysed, pinnipeds were most often found concentrated in the northern portion of the island, with the highest abundances reported in September. This study confirms the importance of the WRIL as a haulout site for pinnipeds in Brazil, recommends that land research and recreational activities occur in months when no pinnipeds are present, and encourages a regulated marine mammal-based tourism during winter and spring months.
Asunto(s)
Lobos Marinos/fisiología , Leones Marinos/fisiología , Animales , Brasil , Caniformia/fisiología , Femenino , Masculino , Phocidae/fisiología , Estaciones del AñoRESUMEN
Community marine reserves are geographical areas closed to fishing activities, implemented and enforced by the same fishermen that fish around them. Their main objective is to recover commercial stocks of fish and invertebrates. While marine reserves have proven successful in many parts of the world, their success near important marine predator colonies, such as the California sea lion (Zalophus californianus) and the Pacific harbor seal (Phoca vitulina richardii), is yet to be analyzed. In response to the concerns expressed by local fishermen about the impact of the presence of pinnipeds on their communities' marine reserves, we conducted underwater surveys around four islands in the Pacific west of the Baja California Peninsula: two without reserves (Todos Santos and San Roque); one with a recently established reserve (San Jeronimo); and, a fourth with reserves established eight years ago (Natividad). All these islands are subject to similar rates of exploitation by fishing cooperatives with exclusive rights. We estimated fish biomass and biodiversity in the seas around the islands, applying filters for potential California sea lion and harbor seal prey using known species from the literature. Generalized linear mixed models revealed that the age of the reserve has a significant positive effect on fish biomass, while the site (inside or outside of the reserve) did not, with a similar result found for the biomass of the prey of the California sea lion. Fish biodiversity was also higher around Natividad Island, while invertebrate biodiversity was higher around San Roque. These findings indicate that marine reserves increase overall fish diversity and biomass, despite the presence of top predators, even increasing the numbers of their potential prey. Community marine reserves may help to improve the resilience of marine mammals to climate-driven phenomena and maintain a healthy marine ecosystem for the benefit of both pinnipeds and fishermen.
Asunto(s)
Biomasa , Especies en Peligro de Extinción , Phoca/fisiología , Conducta Predatoria , Leones Marinos/fisiología , Animales , Biodiversidad , Peces/fisiología , Cadena AlimentariaRESUMEN
Pinniped vibrissae provide information on changes in diet at seasonal and annual scales; however, species-specific growth patterns must first be determined in order to interpret these data. In this study, a simple linear model was used to estimate the growth rate of vibrissae from adult female California sea lions (Zalophus californianus) from San Esteban Island in the Gulf of California, Mexico. The δ15N and δ13C values do not display a marked oscillatory pattern that would permit direct determination of the time period contained in each vibrissa; thus, time (age) was calculated in two ways: 1) based on the correlation between the observed number of peaks (Fourier series) in the δ15N profile and the length of each vibrissa, and 2) through direct comparison with the observed number of peaks in the δ15N profile. Cross-correlation confirmed that the two peaks in the δ15N profile reflected the two peaks in the chlorophyll-a concentration recorded annually around the island. The mean growth rate obtained from the correlation was 0.08 ± 0.01 mm d-1, while that calculated based on the observed number of peaks was 0.10 ± 0.05 mm d-1. Both are consistent with the rates reported for adult females of other otariid species (0.07 to 0.11 mm d-1). Vibrissa growth rates vary by individual, age, sex, and species; moreover, small differences in the growth rate can result in significant differences over the time periods represented by the isotopic signal. Thus, it is important to assess this parameter on a species-by-species basis.
Asunto(s)
Isótopos de Carbono/química , Isótopos de Nitrógeno/química , Leones Marinos/fisiología , Animales , California , Dieta , Femenino , Islas , MéxicoRESUMEN
The trophic behavior of marine predators varies according to the level of competition to which they are exposed. In general, populations that inhabit lower productivity systems face a strong intraspecific competition, which contributes to the development of different foraging strategies to maximize nutritional efficiency. Given the high trophic flexibility of Zalophus wollebaeki, this species is considered appropriate for the analysis of such behavior. Furthermore, this trophic flexibility has allowed them to persist in a seemingly marginal ecosystem. In this study, we used a comparative analysis of variables (diet and dive behavior) related to Z. wollebaeki trophic niche plasticity to better understand their foraging ecology, using techniques such scat analysis, satellite telemetry and complementarily an isotopic analysis. Scat analysis revealed intra-population variation in their diet, represented by prey from different environments (epipelagic and benthic). These results are supported by the animals' locations at sea and diving profiles. Global Positioning System (GPS) and time-depth recorder (TDR) records showed the existence of two groups, with differing feeding areas and diving behavior. Also the δ15N values showed differences in the trophic level at which the species fed. These results constitute a relevant finding in the evolutionary behavior of the species, showing that Z. wollebaeki has developed a high degree of foraging flexibility, thus increasing its survival rate in an ecosystem that is highly demanding in terms of resource availability.
Asunto(s)
Conducta Alimentaria , Leones Marinos/fisiología , Animales , Ecuador , Análisis de Componente Principal , Tecnología de Sensores Remotos , Especificidad de la EspecieRESUMEN
The past decades have been characterized by a growing number of climatic anomalies. As these anomalies tend to occur suddenly and unexpectedly, it is often difficult to procure empirical evidence of their effects on natural populations. We analysed how the recent sea surface temperature (SST) anomaly in the northeastern Pacific Ocean affects body condition, nutritional status, and immune competence of California sea lion pups. We found that pup body condition and blood glucose levels of the pups were lower during high SST events, although other biomarkers of malnutrition remained unchanged, suggesting that pups were experiencing early stages of starvation. Glucose-dependent immune responses were affected by the SST anomaly; specifically, pups born during high SST events had lower serum concentrations of IgG and IgA, and were unable to respond to an immune challenge. This means that not only were pups that were born during the SST anomaly less able to synthesize protective antibodies; they were also limited in their ability to respond rapidly to nonspecific immune challenges. Our study provides empirical evidence that atypical climatic conditions can limit energetic reserves and compromise physiological responses that are essential for the survival of a marine top predator.
Asunto(s)
Clima , Inmunidad/fisiología , Temperatura , Animales , Glucemia , California , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Estado Nutricional , Océano Pacífico , Leones Marinos/fisiologíaRESUMEN
There is great concern regarding the population status of the endangered Galapagos sea lion (GSL) because it has drastically decreased over the last 30 years. We determined the population size and growth trend of the GSL in the Galapagos southeastern region (SER) at three population levels based on the available census data: 1) SER (2011-2015), including 13 rookeries on the four islands San Cristóbal (SC), Española, Floreana, and Santa Fe, comprising 58% of the archipelago's population; 2) SC (2011-2015), including five rookeries, comprising 52% of the SER population; and 3) El Malecón (2005-2015), the largest rookery on SC and in the SER (43% of the population on SC and 22% in the SER). We also analyzed the influence of environmental variability on pup abundance in these rookeries. The current GSL population size in the SER, after applying correction factors to the counts, is estimated at approximately 2300-4100 individuals and has declined at an average annual rate (Ê) of 8.7% over the last five years. A similar trend was determined for SC but at Ê = 1.4% during the same period. For El Malecón, a count-based population viability analysis using a diffusion approximation approach showed that the population increased from 2005 to 2015 at Ê = 2%. The interannual variability in pup abundance was associated with anomalies in sea surface temperature linked to oceanographic-atmospheric events, which impact the abundance and availability of prey, and ultimately may determine the population's reproductive success. Since rookeries in the SER had different population trends, management actions should be implemented based on their specific conditions, giving priority to rookeries such as El Malecón, which, despite showing a slightly increasing population trend, still faces a high risk of extinction due to anthropogenic disturbances and environmental variability that may affect its growth and survival.
Asunto(s)
Especies en Peligro de Extinción , Leones Marinos/fisiología , Animales , Conducta Alimentaria/fisiologíaRESUMEN
Our understanding of how air-breathing marine predators cope with environmental variability is limited by our inadequate knowledge of their ecological and physiological parameters. Because of their wide distribution along both coasts of the sub-continent, South American sea lions (Otaria byronia) provide a valuable opportunity to study the behavioral and physiological plasticity of a marine predator in different environments. We measured the oxygen stores and diving behavior of South American sea lions throughout most of its range, allowing us to demonstrate that diving ability and behavior vary across its range. We found no significant differences in mass-specific blood volumes of sea lions among field sites and a negative relationship between mass-specific oxygen storage and size, which suggests that exposure to different habitats and geographical locations better explains oxygen storage capacities and diving capability in South American sea lions than body size alone. The largest animals in our study (individuals from Uruguay) were the shallowest and shortest duration divers, and had the lowest mass-specific total body oxygen stores, while the deepest and longest duration divers (individuals from southern Chile) had significantly larger mass-specific oxygen stores, despite being much smaller animals. Our study suggests that the physiology of air-breathing diving predators is not fixed, but that it can be adjusted, to a certain extent, depending on the ecological setting and or habitat. These adjustments can be thought of as a 'training effect': as the animal continues to push its physiological capacity through greater hypoxic exposure, its breath-holding capacity increases.
Asunto(s)
Aire , Buceo/fisiología , Conducta Predatoria/fisiología , Respiración , Leones Marinos/fisiología , Aerobiosis , Animales , Peso Corporal , Geografía , Oxígeno/sangre , América del SurRESUMEN
The abundance of California sea lions (Zalophus californianus) (CSLs) and Guadalupe fur seals (Arctocephalus philippii townsendi) (GFSs) from the San Benito Archipelago (SBA) was determined through nine monthly surveys in 2014-2015. Assessment of their foraging habits was examined based on the isotopic analysis of pups (maternal indicators) (SIAR/SIBER-R). Environmental variability between 2014 and 2015 was also analyzed, in terms of sea surface temperature (SST) and chlorophyll (Chl-a) concentration. Both otariids reached their highest abundance in July of both years; however, relative to 2014, the 2015 survey showed a 59.7% decline in the total GFS abundance and a 42.9% decrease of GFS pups, while total CSL abundance decreased 52.0% and CSL pup presence decreased in 61.7%. All monthly surveys for both otariids showed a similar trend (>50% decrease in 2015). Compared to 2014, the 2015 GFSs isotopic niche was three times larger (2.0 in 2015, 0.6 in 2014) and the δ13C was significantly lower. CSLs also showed significantly lower δ13C and higher δ15N in 2015. Interannual segregation was greater for CSLs, and their pup body mass was also significantly lower during the 2015 breeding season (mean = 8.7 kg) than in the same season of 2014 (mean = 9.9 kg). The decrease in δ13C for both otariids reflected a more oceanic foraging; most likely associated with the decline in primary productivity in surrounding areas to the SBA, related to a higher SST caused by the 2015 ENSO, with a subsequent increase in foraging effort. These would explain the fewer observed individuals on land, especially pups, which showed diminished body condition (CSLs). This study highlights the importance of marine mammals as sentinel species that respond dynamically to changes in environment, providing valuable information on the effect of ENSO on pinnipeds in Mexican waters.
Asunto(s)
El Niño Oscilación del Sur , Conducta Alimentaria/fisiología , Lobos Marinos/fisiología , Islas , Leones Marinos/fisiología , Animales , Cruzamiento , Isótopos de Carbono , Ambiente , Geografía , Marcaje Isotópico , México , Isótopos de Nitrógeno , Estaciones del Año , TemperaturaRESUMEN
A species, according to the biological concept, is a natural group of potentially interbreeding individuals isolated by diverse mechanisms. Hybridization is considered the production of offspring resulting from the interbreeding of two genetically distinct taxa. It has been documented in over 10% of wild animals, and at least in 34 cases for Artic marine mammals. In Otariids, intergeneric hybridization has been reported though neither confirming it through genetic analyses nor presenting evidence of fertile offspring. In this study, we report the finding of a hybrid adult female between a South American fur seal (Arctocephalus australis) and a South American sea lion (Otaria byronia), and its offspring, a male pup, in Uruguay. Further based on morphological constraints and breeding seasons, sex-biased hybridization between the two species is hypothesized. Morphological and genetic (nuclear and mitochondrial) results confirm de hybrid nature of the female-pup pair. Here we discuss a genetic dilution effect, considering other hybridization events must be occurring, and how isolation mechanisms could be circumvented. Moreover, the results obtained from stable isotope analysis suggest feeding habits may be a trait transmitted maternally, leading to consider broader issues regarding hybridization as an evolutionary innovation phenomenon.
Asunto(s)
Lobos Marinos/genética , Hibridación Genética , Leones Marinos/genética , Animales , Conducta Alimentaria , Femenino , Lobos Marinos/fisiología , Masculino , Filogenia , Leones Marinos/fisiologíaRESUMEN
Most otariids have colony-specific foraging areas during the breeding season, when they behave as central place foragers. However, they may disperse over broad areas after the breeding season and individuals from different colonies may share foraging grounds at that time. Here, stable isotope ratios in the skull bone of adult Galapagos sea lions (Zalophus wollebaeki) were used to assess the long-term fidelity of both sexes to foraging grounds across the different regions of the Galapagos archipelago. Results indicated that the stable isotope ratios (δ(13)C and δ(15)N) of sea lion bone significantly differed among regions of the archipelago, without any significant difference between sexes and with a non significant interaction between sex and region. Moreover, standard ellipses, estimated by Bayesian inference and used as a measure of the isotopic resource use area at the population level, overlapped widely for the sea lions from the southern and central regions, whereas the overlap of the ellipses for sea lions from the central and western regions was small and non-existing for those from the western and southern regions. These results suggest that males and females from the same region within the archipelago use similar foraging grounds and have similar diets. Furthermore, they indicate that the exchange of adults between regions is limited, thus revealing a certain degree of foraging philopatry at a regional scale within the archipelago. The constraints imposed on males by an expanded reproductive season (~ 6 months), resulting from the weak reproductive synchrony among females, and those imposed on females by a very long lactation period (at least one year but up to three years), may explain the limited mobility of adult Galapagos sea lions of both sexes across the archipelago.
Asunto(s)
Conducta Alimentaria , Isótopos/metabolismo , Leones Marinos/fisiología , Animales , Ecuador , Femenino , MasculinoRESUMEN
Understanding temporal patterns of marine mammal occurrence is useful for establishing conservation strategies. We used a 38 yr-long dataset spanning 1976 to 2013 to describe temporal patterns and trends in marine mammal strandings along a subtropical stretch of the east coast of South America. This region is influenced by a transitional zone between tropical and temperate waters and is considered an important fishing ground off Brazil. Generalized Additive Models were used to evaluate the temporal stranding patterns of the most frequently stranded species. Forty species were documented in 12,540 stranding events. Franciscana (n = 4,574), South American fur seal, (n = 3,419), South American sea lion (n = 2,049), bottlenose dolphins (n = 293) and subantarctic fur seal (n = 219) were the most frequently stranded marine mammals. The seasonality of strandings of franciscana and bottlenose dolphin coincided with periods of higher fishing effort and strandings of South American and subantarctic fur seals with post-reproductive dispersal. For South American sea lion the seasonality of strandings is associated with both fishing effort and post-reproductive dispersal. Some clear seasonal patterns were associated with occurrence of cold- (e.g. subantarctic fur seal) and warm-water (e.g. rough-toothed dolphin) species in winter and summer, respectively. Inter-annual increases in stranding rate were observed for franciscana and South American fur seal and these are likely related to increased fishing effort and population growth, respectively. For subantarctic fur seal the stranding rate showed a slight decline while for bottlenose dolphin it remained steady. No significant year to year variation in stranding rate was observed for South American sea lion. The slight decrease in frequency of temperate/polar marine mammals and the increased occurrence of subtropical/tropical species since the late 1990s might be associated with environmental changes linked to climate change. This long-term study indicates that temporal stranding patterns of marine mammals might be explained by either fishing-related or environmental factors.
Asunto(s)
Delfines/fisiología , Lobos Marinos/fisiología , Leones Marinos/fisiología , Animales , Océano Atlántico , Brasil , Estaciones del AñoRESUMEN
Considerable uncertainties often surround the causes of long-term changes in population abundance. One striking example is the precipitous decline of southern sea lions (SSL; Otariaflavescens) at the Falkland Islands, from 80 555 pups in the mid 1930s to just 5506 pups in 1965. Despite an increase in SSL abundance over the past two decades, the population has not recovered, with the number of pups born in 2014 (minimum 4443 pups) less than 6% of the 1930s estimate. The order-of-magnitude decline is primarily attributed to commercial sealing in Argentina. Here, we test this established paradigm and alternative hypotheses by assessing (1) commercial sealing at the Falkland Islands, (2) winter migration of SSL from the Falkland Islands to Argentina, (3) whether the number of SSL in Argentina could have sustained the reported level of exploitation, and (4) environmental change. The most parsimonious hypothesis explaining the SSL population decline was environmental change. Specifically, analysis of 160 years of winter sea surface temperatures revealed marked changes, including a period of warming between 1930 and 1950 that was consistent with the period of SSL decline. Sea surface temperature changes likely influenced the distribution or availability of SSL prey and impacted its population dynamics. We suggest that historical harvesting may not always be the "smoking gun" as is often purported. Rather, our conclusions support the growing evidence for bottom-up forcing on the abundance of species at lower trophic levels (e.g., plankton and fish) and resulting impacts on higher trophic levels across a broad range of ecosystems.
Asunto(s)
Monitoreo del Ambiente , Leones Marinos/fisiología , Migración Animal , Animales , Argentina , Islas Malvinas , Femenino , Masculino , Dinámica Poblacional , Estaciones del Año , Factores de TiempoRESUMEN
RATIONALE: The use of accurate, species-specific diet-tissue discrimination factors is a critical requirement when applying stable isotope mixing models to predict consumer diet composition. Thus, diet-to-female and female-to-pup isotopic discrimination factors in several tissues for both captive and wild South American sea lions were estimated to provide appropriate values for quantifying feeding preferences at different timescales in the wild populations of this species. METHODS: Stable carbon and nitrogen isotope ratios in the blood components of two female-pup pairs and females' prey muscle from captive individuals were determined by elemental analyzer/isotope ratio mass spectrometry (EA/IRMS) to calculate the respective isotopic discrimination factors. The same analysis was carried out in both blood components, and skin and hair tissues for eight female-pup pairs from wild individuals. RESULTS: Mean diet-to-female Δ(13) C and Δ(15) N values were higher than the female-to-pup ones. Pup tissues were more (15) N-enriched than their mothers but (13) C-depleted in serum and plasma tissues. In most of the tissue comparisons, we found differences in both Δ(15) N and Δ(13) C values, supporting tissue-specific discrimination. We found no differences between captive and wild female-to-pup discrimination factors either in Δ(13) C or Δ(15) N values of blood components. CONCLUSIONS: Only the stable isotope ratios in pup blood are good proxies of the individual lactating females. Thus, we suggest that blood components are more appropriate to quantify the feeding habits of wild individuals of this species. Furthermore, because female-to-pup discrimination factors for blood components did not differ between captive and wild individuals, we suggest that results for captive experiments can be extrapolated to wild South American sea lion populations.
Asunto(s)
Animales Lactantes/fisiología , Isótopos de Carbono/análisis , Conducta Alimentaria/fisiología , Isótopos de Nitrógeno/análisis , Leones Marinos/fisiología , Animales , Isótopos de Carbono/sangre , Isótopos de Carbono/metabolismo , Dieta/veterinaria , Femenino , Lactancia , Isótopos de Nitrógeno/sangre , Isótopos de Nitrógeno/metabolismo , Alimentos Marinos/análisis , América del Sur , Distribución TisularRESUMEN
RATIONALE: The feeding success of predators is associated with the competition level for resources, and, thus, sympatric species are exposed to a potential trophic overlap. Isotopic Bayesian mixing models should provide a better understanding of the contribution of preys to the diet of predators and the feeding behavior of a species over time. METHODS: The carbon and nitrogen isotopic signatures from pup hair samples of 93 Galapagos sea lions and 48 Galapagos fur seals collected between 2003 and 2009 in different regions (east and west) of the archipelago were analyzed. A PDZ Europa ANCA-GSL elemental analyzer interfaced with a PDZ Europa 20-20 continuous flow gas source mass spectrometer was employed. Bayesian models, SIAR and SIBER, were used to estimate the contribution of prey to the diet of predators, the niche breadth, and the trophic overlap level between the populations. RESULTS: Statistical differences in the isotopic values of both predators were observed over the time. The mixing model determined that Galapagos fur seals had a primarily teutophagous diet, whereas the Galapagos sea lions fed exclusively on fish in both regions of the archipelago. The SIBER analysis showed differences in the trophic niche between the two sea lion populations, with the western rookery of the Galapagos sea lion being the population with the largest trophic niche area. CONCLUSIONS: A trophic niche partitioning between Galapagos fur seals and Galapagos sea lions in the west of the archipelago is suggested by our results. At intraspecific level, the western population of the Galapagos sea lion (ZwW) showed higher trophic breadth than the eastern population, a strategy adopted by the ZwW to decrease the interspecific competition levels in the western region.
Asunto(s)
Conducta Competitiva/fisiología , Ecosistema , Conducta Alimentaria/fisiología , Lobos Marinos/fisiología , Leones Marinos/fisiología , Animales , Teorema de Bayes , Isótopos de Carbono/análisis , Ecuador , Cabello/química , Espectrometría de Masas , Modelos Biológicos , Isótopos de Nitrógeno/análisisRESUMEN
Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki) is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on individuals, which could contribute to population declines, especially in times of energy shortage.
Asunto(s)
Conservación de los Recursos Naturales , Leones Marinos/inmunología , Adiposidad , Animales , Ecuador , Femenino , Humanos , Inmunoglobulina G/sangre , Recuento de Leucocitos , Masculino , Fitohemaglutininas/inmunología , Leones Marinos/fisiología , Grosor de los Pliegues Cutáneos , UrbanizaciónRESUMEN
It is still debated whether main individual fitness differences in natural populations can be attributed to genome-wide effects or to particular loci of outstanding functional importance such as the major histocompatibility complex (MHC). In a long-term monitoring project on Galápagos sea lions (Zalophus wollebaeki), we collected comprehensive fitness and mating data for a total of 506 individuals. Controlling for genome-wide inbreeding, we find strong associations between the MHC locus and nearly all fitness traits. The effect was mainly attributable to MHC sequence divergence and could be decomposed into contributions of own and maternal genotypes. In consequence, the population seems to have evolved a pool of highly divergent alleles conveying near-optimal MHC divergence even by random mating. Our results demonstrate that a single locus can significantly contribute to fitness in the wild and provide conclusive evidence for the 'divergent allele advantage' hypothesis, a special form of balancing selection with interesting evolutionary implications.
Asunto(s)
Exones , Genes MHC Clase II , Aptitud Genética , Leones Marinos/fisiología , Conducta Sexual Animal , Animales , Composición Corporal , Ecuador , Femenino , Genotipo , Longevidad , Masculino , Datos de Secuencia Molecular , Reproducción , Leones Marinos/genética , Leones Marinos/crecimiento & desarrolloRESUMEN
1. In vertebrates, patterns of resource utilization change throughout development according to age- and or size-specific abilities and requirements. Thus, interspecific competition affects different age classes differently. 2. Adults of sympatric species often show distinct foraging niche segregation, but juvenile resource use might overlap with adult competitors of similar body size. Resultant negative effects on juveniles can have important consequences for population dynamics, yet such interactions have received little attention in studies of mammalian communities. 3. Using GPS tracking devices, time-depth recorders and stable isotope data, we compared diving depth, activity time, trophic position and foraging habitat characteristics to investigate foraging niche overlap between similar-sized sympatric juvenile Galapagos sea lions (Zalophus wollebaeki) and adult Galapagos fur seals (Arctocephalus galapagoensis) and compared each group with much larger-bodied adult Galapagos sea lions. 4. We found little indication for direct competition but a complex pattern of foraging niche segregation: juvenile sea lions and adult fur seals dived to shallow depths at night, but foraged in different habitats with limited spatial overlap. Conversely, juvenile and adult sea lions employed different foraging patterns, but their foraging areas overlapped almost completely. 5. Consistency of foraging habitat characteristics between juvenile and adult sea lions suggests that avoidance of competition may be important in shaping foraging habitat utilization. Resultant specialization on a limited habitat could contribute to low sea lion numbers that contrast with high fur seal abundance. Our data suggest that exploitation by multiple predators within spatially restricted foraging ranges of juveniles might negatively impact juvenile foraging success and ultimately influence population dynamics.
Asunto(s)
Distribución Animal , Tamaño Corporal , Conducta Alimentaria , Lobos Marinos/fisiología , Leones Marinos/fisiología , Animales , Ecuador , Ambiente , Femenino , Lobos Marinos/crecimiento & desarrollo , Sistemas de Información Geográfica , Dinámica Poblacional , Leones Marinos/crecimiento & desarrolloRESUMEN
In many mammals, early survival differs between the sexes, with males proving the more fragile sex ["Fragile male (FM) hypothesis"], especially in sexually dimorphic species where males are the larger sex. Male-biased allocation (MBA) by females may offset this difference. Here, we evaluate support for the FM and MBA hypotheses using a dataset on Galapagos sea lions (Zalophus wollebaeki). We statistically model sex-specific survival as it depends on body mass and environmental conditions (sea surface temperature, SST, a correlate of marine productivity) at three developmental stages, the perinatal phase (1st month), the main lactation period (1st year), and the weaning period (2nd year). Supporting the FM hypothesis, we found that, early in life (1st month), at equal birth mass, males survived less well than females. During the remainder of the first year of life, male survival was actually less sensitive to harsh environmental conditions than that of females, contradicting the FM hypothesis and supporting the MBA hypothesis. During the second year of life, only male survival suffered with high SSTs as predicted by the FM hypothesis. At each developmental stage, observed survival rates were almost equal for both sexes, suggesting that mothers buffer against the inherent fragility of male offspring through increased allocation, thereby masking the differences in survival prospects between the sexes.